Add support for %x, %lx and %zx to _dl_exception_create_format and pad
to the full width with 0.
* elf/Makefile (tests-internal): Add tst-create_format1.
* elf/dl-exception.c (_dl_exception_create_format): Support
%x, %lx and %zx.
* elf/tst-create_format1.c: New file.
Mark the ra register as undefined in _start, so that unwinding through
main works correctly. Also, don't use a tail call so that ra points after
the call to __libc_start_main, not after the previous call.
Currently, DT_TEXTREL is incompatible with IFUNC. When DT_TEXTREL or
DF_TEXTREL is seen, the dynamic linker calls __mprotect on the segments
with PROT_READ|PROT_WRITE before applying dynamic relocations. It leads
to segfault when performing IFUNC resolution (which requires PROT_EXEC
as well for the IFUNC resolver).
This patch makes it call __mprotect with extra PROT_WRITE bit, which
will keep the PROT_EXEC bit if exists, and thus fixes the segfault.
FreeBSD rtld libexec/rtld-elf/rtld.c (reloc_textrel_prot) does the same.
Checked on x86_64-linux-gnu, i686-linux-gnu, aarch64-linux-gnu,
sparc64-linux-gnu, sparcv9-linux-gnu, and armv8-linux-gnueabihf.
Adam J. Richte <adam_richter2004@yahoo.com>
Adhemerval Zanella <adhemerval.zanella@linaro.org>
Fangrui Song <maskray@google.com>
[BZ #20480]
* config.h.in (CAN_TEXTREL_IFUNC): New define.
* configure.ac: Add check if linker supports textrel relocation with
ifunc.
* elf/dl-reloc.c (_dl_relocate_object): Use all required flags on
DT_TEXTREL segments, not only PROT_READ and PROT_WRITE.
* elf/Makefile (ifunc-pie-tests): Add tst-ifunc-textrel.
(CFLAGS-tst-ifunc-textrel.c): New rule.
* elf/tst-ifunc-textrel.c: New file.
I'm testing a patch to let the compiler expand calls to floor in libm
as built-in function calls as much as possible, instead of calling
__floor, so that no architecture-specific __floor inlines are needed,
and then to arrange for non-inlined calls to end up calling __floor,
as done with sqrt and __ieee754_sqrt.
This shows up elf/tst-relsort1mod2.c calling floor, which must not be
converted to a call to __floor. Now, while an IS_IN (libm)
conditional could be added to the existing conditionals on such
redirections in include/math.h, the _ISOMAC conditional ought to
suffice (code in other glibc libraries shouldn't be calling floor or
sqrt anyway, as they aren't provided in libc and the other libraries
don't link with libm). But while tests are mostly now built with
_ISOMAC defined, test modules in modules-names aren't unless also
listed in modules-names-tests.
As far as I can see, all the modules in modules-names in elf/ are in
fact parts of tests and so listing them in modules-names-tests is
appropriate, so they get built with something closer to the headers
used for user code, except in a few cases that actually rely on
something from internal headers. This patch duly sets
modules-names-tests there accordingly (filtering out those tests that
fail to build without internal headers).
Tested for x86_64, and with build-many-glibcs.py.
* elf/Makefile (modules-names-tests): New variable.
* scripts/check-execstack.awk: Consider `xfail' variable containing a
list
of libraries whose stack executability is expected.
* elf/Makefile ($(objpfx)check-execstack.out): Pass
$(check-execstack-xfail) to check-execstack.awk through `xfail'
variable.
* sysdeps/mach/hurd/i386/Makefile (check-execstack-xfail): Set to ld.so
libc.so libpthread.so.
Intel Control-flow Enforcement Technology (CET) instructions:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-en
forcement-technology-preview.pdf
includes Indirect Branch Tracking (IBT) and Shadow Stack (SHSTK).
GNU_PROPERTY_X86_FEATURE_1_IBT is added to GNU program property to
indicate that all executable sections are compatible with IBT when
ENDBR instruction starts each valid target where an indirect branch
instruction can land. Linker sets GNU_PROPERTY_X86_FEATURE_1_IBT on
output only if it is set on all relocatable inputs.
On an IBT capable processor, the following steps should be taken:
1. When loading an executable without an interpreter, enable IBT and
lock IBT if GNU_PROPERTY_X86_FEATURE_1_IBT is set on the executable.
2. When loading an executable with an interpreter, enable IBT if
GNU_PROPERTY_X86_FEATURE_1_IBT is set on the interpreter.
a. If GNU_PROPERTY_X86_FEATURE_1_IBT isn't set on the executable,
disable IBT.
b. Lock IBT.
3. If IBT is enabled, when loading a shared object without
GNU_PROPERTY_X86_FEATURE_1_IBT:
a. If legacy interwork is allowed, then mark all pages in executable
PT_LOAD segments in legacy code page bitmap. Failure of legacy code
page bitmap allocation causes an error.
b. If legacy interwork isn't allowed, it causes an error.
GNU_PROPERTY_X86_FEATURE_1_SHSTK is added to GNU program property to
indicate that all executable sections are compatible with SHSTK where
return address popped from shadow stack always matches return address
popped from normal stack. Linker sets GNU_PROPERTY_X86_FEATURE_1_SHSTK
on output only if it is set on all relocatable inputs.
On a SHSTK capable processor, the following steps should be taken:
1. When loading an executable without an interpreter, enable SHSTK if
GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on the executable.
2. When loading an executable with an interpreter, enable SHSTK if
GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on interpreter.
a. If GNU_PROPERTY_X86_FEATURE_1_SHSTK isn't set on the executable
or any shared objects loaded via the DT_NEEDED tag, disable SHSTK.
b. Otherwise lock SHSTK.
3. After SHSTK is enabled, it is an error to load a shared object
without GNU_PROPERTY_X86_FEATURE_1_SHSTK.
To enable CET support in glibc, --enable-cet is required to configure
glibc. When CET is enabled, both compiler and assembler must support
CET. Otherwise, it is a configure-time error.
To support CET run-time control,
1. _dl_x86_feature_1 is added to the writable ld.so namespace to indicate
if IBT or SHSTK are enabled at run-time. It should be initialized by
init_cpu_features.
2. For dynamic executables:
a. A l_cet field is added to struct link_map to indicate if IBT or
SHSTK is enabled in an ELF module. _dl_process_pt_note or
_rtld_process_pt_note is called to process PT_NOTE segment for
GNU program property and set l_cet.
b. _dl_open_check is added to check IBT and SHSTK compatibilty when
dlopening a shared object.
3. Replace i386 _dl_runtime_resolve and _dl_runtime_profile with
_dl_runtime_resolve_shstk and _dl_runtime_profile_shstk, respectively if
SHSTK is enabled.
CET run-time control can be changed via GLIBC_TUNABLES with
$ export GLIBC_TUNABLES=glibc.tune.x86_shstk=[permissive|on|off]
$ export GLIBC_TUNABLES=glibc.tune.x86_ibt=[permissive|on|off]
1. permissive: SHSTK is disabled when dlopening a legacy ELF module.
2. on: IBT or SHSTK are always enabled, regardless if there are IBT or
SHSTK bits in GNU program property.
3. off: IBT or SHSTK are always disabled, regardless if there are IBT or
SHSTK bits in GNU program property.
<cet.h> from CET-enabled GCC is automatically included by assembly codes
to add GNU_PROPERTY_X86_FEATURE_1_IBT and GNU_PROPERTY_X86_FEATURE_1_SHSTK
to GNU program property. _CET_ENDBR is added at the entrance of all
assembly functions whose address may be taken. _CET_NOTRACK is used to
insert NOTRACK prefix with indirect jump table to support IBT. It is
defined as notrack when _CET_NOTRACK is defined in <cet.h>.
[BZ #21598]
* configure.ac: Add --enable-cet.
* configure: Regenerated.
* elf/Makefille (all-built-dso): Add a comment.
* elf/dl-load.c (filebuf): Moved before "dynamic-link.h".
Include <dl-prop.h>.
(_dl_map_object_from_fd): Call _dl_process_pt_note on PT_NOTE
segment.
* elf/dl-open.c: Include <dl-prop.h>.
(dl_open_worker): Call _dl_open_check.
* elf/rtld.c: Include <dl-prop.h>.
(dl_main): Call _rtld_process_pt_note on PT_NOTE segment. Call
_rtld_main_check.
* sysdeps/generic/dl-prop.h: New file.
* sysdeps/i386/dl-cet.c: Likewise.
* sysdeps/unix/sysv/linux/x86/cpu-features.c: Likewise.
* sysdeps/unix/sysv/linux/x86/dl-cet.h: Likewise.
* sysdeps/x86/cet-tunables.h: Likewise.
* sysdeps/x86/check-cet.awk: Likewise.
* sysdeps/x86/configure: Likewise.
* sysdeps/x86/configure.ac: Likewise.
* sysdeps/x86/dl-cet.c: Likewise.
* sysdeps/x86/dl-procruntime.c: Likewise.
* sysdeps/x86/dl-prop.h: Likewise.
* sysdeps/x86/libc-start.h: Likewise.
* sysdeps/x86/link_map.h: Likewise.
* sysdeps/i386/dl-trampoline.S (_dl_runtime_resolve): Add
_CET_ENDBR.
(_dl_runtime_profile): Likewise.
(_dl_runtime_resolve_shstk): New.
(_dl_runtime_profile_shstk): Likewise.
* sysdeps/linux/x86/Makefile (sysdep-dl-routines): Add dl-cet
if CET is enabled.
(CFLAGS-.o): Add -fcf-protection if CET is enabled.
(CFLAGS-.os): Likewise.
(CFLAGS-.op): Likewise.
(CFLAGS-.oS): Likewise.
(asm-CPPFLAGS): Add -fcf-protection -include cet.h if CET
is enabled.
(tests-special): Add $(objpfx)check-cet.out.
(cet-built-dso): New.
(+$(cet-built-dso:=.note)): Likewise.
(common-generated): Add $(cet-built-dso:$(common-objpfx)%=%.note).
($(objpfx)check-cet.out): New.
(generated): Add check-cet.out.
* sysdeps/x86/cpu-features.c: Include <dl-cet.h> and
<cet-tunables.h>.
(TUNABLE_CALLBACK (set_x86_ibt)): New prototype.
(TUNABLE_CALLBACK (set_x86_shstk)): Likewise.
(init_cpu_features): Call get_cet_status to check CET status
and update dl_x86_feature_1 with CET status. Call
TUNABLE_CALLBACK (set_x86_ibt) and TUNABLE_CALLBACK
(set_x86_shstk). Disable and lock CET in libc.a.
* sysdeps/x86/cpu-tunables.c: Include <cet-tunables.h>.
(TUNABLE_CALLBACK (set_x86_ibt)): New function.
(TUNABLE_CALLBACK (set_x86_shstk)): Likewise.
* sysdeps/x86/sysdep.h (_CET_NOTRACK): New.
(_CET_ENDBR): Define if not defined.
(ENTRY): Add _CET_ENDBR.
* sysdeps/x86/dl-tunables.list (glibc.tune): Add x86_ibt and
x86_shstk.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve): Add
_CET_ENDBR.
(_dl_runtime_profile): Likewise.
We have this condition in `check_match' (in elf/dl-lookup.c):
if (__glibc_unlikely ((sym->st_value == 0 /* No value. */
&& stt != STT_TLS)
|| ELF_MACHINE_SYM_NO_MATCH (sym)
|| (type_class & (sym->st_shndx == SHN_UNDEF))))
return NULL;
which causes all !STT_TLS symbols whose value is zero to be silently
ignored in lookup. This may make sense for regular symbols, however not
for absolute (SHN_ABS) ones, where zero is like any value, there's no
special meaning attached to it.
Consequently legitimate programs fail, for example taking the
`elf/tst-absolute-sym' test case, substituting 0 for 0x55aa in
`elf/tst-absolute-sym-lib.lds' and then trying to run the resulting
program we get this:
$ .../elf/tst-absolute-sym
.../elf/tst-absolute-sym: symbol lookup error: .../elf/tst-absolute-sym-lib.so: undefined symbol: absolute
$
even though the symbol clearly is there:
$ readelf --dyn-syms .../elf/tst-absolute-sym-lib.so | grep '\babsolute\b'
7: 00000000 0 NOTYPE GLOBAL DEFAULT ABS absolute
$
The check for the zero value has been there since forever or commit
d66e34cd4234/08162fa88891 ("Implemented runtime dynamic linker to
support ELF shared libraries.") dating back to May 2nd 1995, and the
problem triggers regardless of commit e7feec374c ("elf: Correct
absolute (SHN_ABS) symbol run-time calculation [BZ #19818]") being
present or not.
Fix the issue then, by permitting `sym->st_value' to be 0 for SHN_ABS
symbols in lookup.
[BZ #23307]
* elf/dl-lookup.c (check_match): Do not reject a symbol whose
`st_value' is 0 if `st_shndx' is SHN_ABS.
* elf/tst-absolute-zero.c: New file.
* elf/tst-absolute-zero-lib.c: New file.
* elf/tst-absolute-zero-lib.lds: New file.
* elf/Makefile (tests): Add `tst-absolute-zero'.
(modules-names): Add `tst-absolute-zero-lib'.
(LDLIBS-tst-absolute-zero-lib.so): New variable.
($(objpfx)tst-absolute-zero-lib.so): New dependency.
($(objpfx)tst-absolute-zero: New dependency.
Some Linux distributions are experimenting with a new, separately
maintained and hopefully more agile implementation of the crypt
API. To facilitate this, add a configure option which disables
glibc's embedded libcrypt. When this option is given, libcrypt.*
and crypt.h will not be built nor installed.
_init and _fini are special functions provided by glibc for linker to
define DT_INIT and DT_FINI in executable and shared library. They
should never be put in dynamic symbol table. This patch marks them as
hidden to remove them from dynamic symbol table.
Tested with build-many-glibcs.py.
[BZ #23145]
* elf/Makefile (tests-special): Add $(objpfx)check-initfini.out.
($(all-built-dso:=.dynsym): New target.
(common-generated): Add $(all-built-dso:$(common-objpfx)%=%.dynsym).
($(objpfx)check-initfini.out): New target.
(generated): Add check-initfini.out.
* scripts/check-initfini.awk: New file.
* sysdeps/aarch64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/alpha/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/arm/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/hppa/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/i386/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/ia64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/m68k/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/microblaze/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips64/n32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips64/n64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/nios2/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/powerpc/powerpc32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/powerpc/powerpc64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/s390/s390-32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/s390/s390-64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/sh/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/sparc/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/x86_64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
alloca for it may cause stack overflow. If the note is larger than
__MAX_ALLOCA_CUTOFF, use dynamically allocated memory to read it in.
2018-05-05 Paul Pluzhnikov <ppluzhnikov@google.com>
[BZ #20419]
* elf/dl-load.c (open_verify): Fix stack overflow.
* elf/Makefile (tst-big-note): New test.
* elf/tst-big-note-lib.S: New.
* elf/tst-big-note.c: New.
Do not relocate absolute symbols by the base address. Such symbols have
SHN_ABS as the section index and their value is not supposed to be
affected by relocation as per the ELF gABI[1]:
"SHN_ABS
The symbol has an absolute value that will not change because of
relocation."
The reason for our non-conformance here seems to be an old SysV linker
bug causing symbols like _DYNAMIC to be incorrectly emitted as absolute
symbols[2]. However in a previous discussion it was pointed that this
is seriously flawed by preventing the lone purpose of the existence of
absolute symbols from being used[3]:
"On the contrary, the only interpretation that makes sense to me is that
it will not change because of relocation at link time or at load time.
Absolute symbols, from the days of the earliest linking loaders, have
been used to represent addresses that are outside the address space of
the module (e.g., memory-mapped addresses or kernel gateway pages).
They've even been used to represent true symbolic constants (e.g.,
system entry point numbers, sizes, version numbers). There's no other
way to represent a true absolute symbol, while the meaning you seek is
easily represented by giving the symbol a non-negative st_shndx value."
and we ought to stop supporting our current broken interpretation.
Update processing for dladdr(3) and dladdr1(3) so that SHN_ABS symbols
are ignored, because under the corrected interpretation they do not
represent addresses within a mapped file and therefore are not supposed
to be considered.
References:
[1] "System V Application Binary Interface - DRAFT - 19 October 2010",
The SCO Group, Section "Symbol Table",
<http://www.sco.com/developers/gabi/2012-12-31/ch4.symtab.html>
[2] Alan Modra, "Absolute symbols"
<https://sourceware.org/ml/binutils/2012-05/msg00019.html>
[3] Cary Coutant, "Re: Absolute symbols"
<https://sourceware.org/ml/binutils/2012-05/msg00020.html>
[BZ #19818]
* sysdeps/generic/ldsodefs.h (SYMBOL_ADDRESS): Handle SHN_ABS
symbols.
* elf/dl-addr.c (determine_info): Ignore SHN_ABS symbols.
* elf/tst-absolute-sym.c: New file.
* elf/tst-absolute-sym-lib.c: New file.
* elf/tst-absolute-sym-lib.lds: New file.
* elf/Makefile (tests): Add `tst-absolute-sym'.
(modules-names): Add `tst-absolute-sym-lib'.
(LDLIBS-tst-absolute-sym-lib.so): New variable.
($(objpfx)tst-absolute-sym-lib.so): New dependency.
($(objpfx)tst-absolute-sym): New dependency.
When $(tests-execstack-$(have-z-execstack)) is added to tests before
it is defined, it is empty. This patch adds it to tests after it is
defined.
[BZ #22998]
* elf/Makefile (tests): Add $(tests-execstack-$(have-z-execstack))
after it is defined.
This looks like a post-exploitation hardening measure: If an attacker is
able to redirect execution flow, they could use that to load a DSO which
contains additional code (or perhaps make the stack executable).
However, the checks are not in the correct place to be effective: If
they are performed before the critical operation, an attacker with
sufficient control over execution flow could simply jump directly to
the code which performs the operation, bypassing the check. The check
would have to be executed unconditionally after the operation and
terminate the process in case a caller violation was detected.
Furthermore, in _dl_check_caller, there was a fallback reading global
writable data (GL(dl_rtld_map).l_map_start and
GL(dl_rtld_map).l_text_end), which could conceivably be targeted by an
attacker to disable the check, too.
Other critical functions (such as system) remain completely
unprotected, so the value of these additional checks does not appear
that large. Therefore this commit removes this functionality.
This commit adds a new _dl_open_hook entry for dlvsym and implements the
function using the existing dl_lookup_symbol_x function supplied by the
dynamic loader.
A new hook variable, _dl_open_hook2, is introduced, which should make
this change suitable for backporting: For old statically linked
binaries, __libc_dlvsym will always return NULL.
After
commit 9d7a3741c9
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Fri Dec 15 16:59:33 2017 -0800
Add --enable-static-pie configure option to build static PIE [BZ #19574]
and
commit 00c714df39
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Mon Dec 18 12:24:26 2017 -0800
Pass -no-pie to GCC only if GCC defaults to PIE [BZ #22614]
$(no-pie-ldflag) is no longer effective since no-pie-ldflag is defined
to -no-pie only if GCC defaults to PIE. When --enable-static-pie is
used to configure glibc build and GCC doesn't default to PIE. no-pie-ldflag
is undefined and these tests:
elf/Makefile:LDFLAGS-tst-dlopen-aout = $(no-pie-ldflag)
elf/Makefile:LDFLAGS-tst-prelink = $(no-pie-ldflag)
elf/Makefile:LDFLAGS-tst-main1 = $(no-pie-ldflag)
gmon/Makefile:LDFLAGS-tst-gmon := $(no-pie-ldflag)
may fail to link. This patch replaces "-pie" with
$(if $($(@F)-no-pie),$(no-pie-ldflag),-pie)
and repleces
LDFLAGS-* = $(no-pie-ldflag)
with
tst-*-no-pie = yes
so that tst-dlopen-aout, tst-prelink, tst-main1 and tst-gmon are always
built as non-PIE, with and without --enable-static-pie, regardless if
GCC defaults to PIE or non-PIE.
Tested with build-many-glibcs.py without --enable-static-pie as well as
with --enable-static-pie for x86_64, x32 and i686.
[BZ #22630]
* Makeconfig (link-pie-before-libc): Replace -pie with
$(if $($(@F)-no-pie),$(no-pie-ldflag),-pie).
* elf/Makefile (LDFLAGS-tst-dlopen-aout): Removed.
(tst-dlopen-aout-no-pie): New.
(LDFLAGS-tst-prelink): Removed.
(tst-prelink-no-pie): New.
(LDFLAGS-tst-main1): Removed.
(tst-main1-no-pie): New.
* gmon/Makefile (LDFLAGS-tst-gmon): Removed.
(tst-gmon-no-pie): New.
Static PIE extends address space layout randomization to static
executables. It provides additional security hardening benefits at
the cost of some memory and performance.
Dynamic linker, ld.so, is a standalone program which can be loaded at
any address. This patch adds a configure option, --enable-static-pie,
to embed the part of ld.so in static executable to create static position
independent executable (static PIE). A static PIE is similar to static
executable, but can be loaded at any address without help from a dynamic
linker. When --enable-static-pie is used to configure glibc, libc.a is
built as PIE and all static executables, including tests, are built as
static PIE. The resulting libc.a can be used together with GCC 8 or
above to build static PIE with the compiler option, -static-pie. But
GCC 8 isn't required to build glibc with --enable-static-pie. Only GCC
with PIE support is needed. When an older GCC is used to build glibc
with --enable-static-pie, proper input files are passed to linker to
create static executables as static PIE, together with "-z text" to
prevent dynamic relocations in read-only segments, which are not allowed
in static PIE.
The following changes are made for static PIE:
1. Add a new function, _dl_relocate_static_pie, to:
a. Get the run-time load address.
b. Read the dynamic section.
c. Perform dynamic relocations.
Dynamic linker also performs these steps. But static PIE doesn't load
any shared objects.
2. Call _dl_relocate_static_pie at entrance of LIBC_START_MAIN in
libc.a. crt1.o, which is used to create dynamic and non-PIE static
executables, is updated to include a dummy _dl_relocate_static_pie.
rcrt1.o is added to create static PIE, which will link in the real
_dl_relocate_static_pie. grcrt1.o is also added to create static PIE
with -pg. GCC 8 has been updated to support rcrt1.o and grcrt1.o for
static PIE.
Static PIE can work on all architectures which support PIE, provided:
1. Target must support accessing of local functions without dynamic
relocations, which is needed in start.S to call __libc_start_main with
function addresses of __libc_csu_init, __libc_csu_fini and main. All
functions in static PIE are local functions. If PIE start.S can't reach
main () defined in a shared object, the code sequence:
pass address of local_main to __libc_start_main
...
local_main:
tail call to main via PLT
can be used.
2. start.S is updated to check PIC instead SHARED for PIC code path and
avoid dynamic relocation, when PIC is defined and SHARED isn't defined,
to support static PIE.
3. All assembly codes are updated check PIC instead SHARED for PIC code
path to avoid dynamic relocations in read-only sections.
4. All assembly codes are updated check SHARED instead PIC for static
symbol name.
5. elf_machine_load_address in dl-machine.h are updated to support static
PIE.
6. __brk works without TLS nor dynamic relocations in read-only section
so that it can be used by __libc_setup_tls to initializes TLS in static
PIE.
NB: When glibc is built with GCC defaulted to PIE, libc.a is compiled
with -fPIE, regardless if --enable-static-pie is used to configure glibc.
When glibc is configured with --enable-static-pie, libc.a is compiled
with -fPIE, regardless whether GCC defaults to PIE or not. The same
libc.a can be used to build both static executable and static PIE.
There is no need for separate PIE copy of libc.a.
On x86-64, the normal static sln:
text data bss dec hex filename
625425 8284 5456 639165 9c0bd elf/sln
the static PIE sln:
text data bss dec hex filename
657626 20636 5392 683654 a6e86 elf/sln
The code size is increased by 5% and the binary size is increased by 7%.
Linker requirements to build glibc with --enable-static-pie:
1. Linker supports --no-dynamic-linker to remove PT_INTERP segment from
static PIE.
2. Linker can create working static PIE. The x86-64 linker needs the
fix for
https://sourceware.org/bugzilla/show_bug.cgi?id=21782
The i386 linker needs to be able to convert "movl main@GOT(%ebx), %eax"
to "leal main@GOTOFF(%ebx), %eax" if main is defined locally.
Binutils 2.29 or above are OK for i686 and x86-64. But linker status for
other targets need to be verified.
3. Linker should resolve undefined weak symbols to 0 in static PIE:
https://sourceware.org/bugzilla/show_bug.cgi?id=22269
4. Many ELF backend linkers incorrectly check bfd_link_pic for TLS
relocations, which should check bfd_link_executable instead:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Tested on aarch64, i686 and x86-64.
Using GCC 7 and binutils master branch, build-many-glibcs.py with
--enable-static-pie with all patches for static PIE applied have the
following build successes:
PASS: glibcs-aarch64_be-linux-gnu build
PASS: glibcs-aarch64-linux-gnu build
PASS: glibcs-armeb-linux-gnueabi-be8 build
PASS: glibcs-armeb-linux-gnueabi build
PASS: glibcs-armeb-linux-gnueabihf-be8 build
PASS: glibcs-armeb-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabi build
PASS: glibcs-arm-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabihf-v7a build
PASS: glibcs-arm-linux-gnueabihf-v7a-disable-multi-arch build
PASS: glibcs-m68k-linux-gnu build
PASS: glibcs-microblazeel-linux-gnu build
PASS: glibcs-microblaze-linux-gnu build
PASS: glibcs-mips64el-linux-gnu-n32 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n32-soft build
PASS: glibcs-mips64el-linux-gnu-n64 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n64-soft build
PASS: glibcs-mips64-linux-gnu-n32 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n32-soft build
PASS: glibcs-mips64-linux-gnu-n64 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n64-soft build
PASS: glibcs-mipsel-linux-gnu build
PASS: glibcs-mipsel-linux-gnu-nan2008 build
PASS: glibcs-mipsel-linux-gnu-nan2008-soft build
PASS: glibcs-mipsel-linux-gnu-soft build
PASS: glibcs-mips-linux-gnu build
PASS: glibcs-mips-linux-gnu-nan2008 build
PASS: glibcs-mips-linux-gnu-nan2008-soft build
PASS: glibcs-mips-linux-gnu-soft build
PASS: glibcs-nios2-linux-gnu build
PASS: glibcs-powerpc64le-linux-gnu build
PASS: glibcs-powerpc64-linux-gnu build
PASS: glibcs-tilegxbe-linux-gnu-32 build
PASS: glibcs-tilegxbe-linux-gnu build
PASS: glibcs-tilegx-linux-gnu-32 build
PASS: glibcs-tilegx-linux-gnu build
PASS: glibcs-tilepro-linux-gnu build
and the following build failures:
FAIL: glibcs-alpha-linux-gnu build
elf/sln is failed to link due to:
assertion fail bfd/elf64-alpha.c:4125
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-hppa-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
https://sourceware.org/bugzilla/show_bug.cgi?id=22537
FAIL: glibcs-ia64-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
FAIL: glibcs-powerpc-linux-gnu build
FAIL: glibcs-powerpc-linux-gnu-soft build
FAIL: glibcs-powerpc-linux-gnuspe build
FAIL: glibcs-powerpc-linux-gnuspe-e500v1 build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22264
FAIL: glibcs-powerpc-linux-gnu-power4 build
elf/sln is failed to link due to:
findlocale.c:96:(.text+0x22c): @local call to ifunc memchr
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-s390-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault], core dumped
assertion fail bfd/elflink.c:14299
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-sh3eb-linux-gnu build
FAIL: glibcs-sh3-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu-soft build
FAIL: glibcs-sh4-linux-gnu build
FAIL: glibcs-sh4-linux-gnu-soft build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Also TLS code sequence in SH assembly syscalls in glibc doesn't match TLS
code sequence expected by ld:
https://sourceware.org/bugzilla/show_bug.cgi?id=22270
FAIL: glibcs-sparc64-linux-gnu build
FAIL: glibcs-sparcv9-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu-32 build
FAIL: glibcs-tilegx-linux-gnu build
FAIL: glibcs-tilegx-linux-gnu-32 build
FAIL: glibcs-tilepro-linux-gnu build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
[BZ #19574]
* INSTALL: Regenerated.
* Makeconfig (real-static-start-installed-name): New.
(pic-default): Updated for --enable-static-pie.
(pie-default): New for --enable-static-pie.
(default-pie-ldflag): Likewise.
(+link-static-before-libc): Replace $(DEFAULT-LDFLAGS-$(@F))
with $(if $($(@F)-no-pie),$(no-pie-ldflag),$(default-pie-ldflag)).
Replace $(static-start-installed-name) with
$(real-static-start-installed-name).
(+prectorT): Updated for --enable-static-pie.
(+postctorT): Likewise.
(CFLAGS-.o): Add $(pie-default).
(CFLAGS-.op): Likewise.
* NEWS: Mention --enable-static-pie.
* config.h.in (ENABLE_STATIC_PIE): New.
* configure.ac (--enable-static-pie): New configure option.
(have-no-dynamic-linker): New LIBC_CONFIG_VAR.
(have-static-pie): Likewise.
Enable static PIE if linker supports --no-dynamic-linker.
(ENABLE_STATIC_PIE): New AC_DEFINE.
(enable-static-pie): New LIBC_CONFIG_VAR.
* configure: Regenerated.
* csu/Makefile (omit-deps): Add r$(start-installed-name) and
gr$(start-installed-name) for --enable-static-pie.
(extra-objs): Likewise.
(install-lib): Likewise.
(extra-objs): Add static-reloc.o and static-reloc.os
($(objpfx)$(start-installed-name)): Also depend on
$(objpfx)static-reloc.o.
($(objpfx)r$(start-installed-name)): New.
($(objpfx)g$(start-installed-name)): Also depend on
$(objpfx)static-reloc.os.
($(objpfx)gr$(start-installed-name)): New.
* csu/libc-start.c (LIBC_START_MAIN): Call _dl_relocate_static_pie
in libc.a.
* csu/libc-tls.c (__libc_setup_tls): Add main_map->l_addr to
initimage.
* csu/static-reloc.c: New file.
* elf/Makefile (routines): Add dl-reloc-static-pie.
(elide-routines.os): Likewise.
(DEFAULT-LDFLAGS-tst-tls1-static-non-pie): Removed.
(tst-tls1-static-non-pie-no-pie): New.
* elf/dl-reloc-static-pie.c: New file.
* elf/dl-support.c (_dl_get_dl_main_map): New function.
* elf/dynamic-link.h (ELF_DURING_STARTUP): Also check
STATIC_PIE_BOOTSTRAP.
* elf/get-dynamic-info.h (elf_get_dynamic_info): Likewise.
* gmon/Makefile (tests): Add tst-gmon-static-pie.
(tests-static): Likewise.
(DEFAULT-LDFLAGS-tst-gmon-static): Removed.
(tst-gmon-static-no-pie): New.
(CFLAGS-tst-gmon-static-pie.c): Likewise.
(CRT-tst-gmon-static-pie): Likewise.
(tst-gmon-static-pie-ENV): Likewise.
(tests-special): Likewise.
($(objpfx)tst-gmon-static-pie.out): Likewise.
(clean-tst-gmon-static-pie-data): Likewise.
($(objpfx)tst-gmon-static-pie-gprof.out): Likewise.
* gmon/tst-gmon-static-pie.c: New file.
* manual/install.texi: Document --enable-static-pie.
* sysdeps/generic/ldsodefs.h (_dl_relocate_static_pie): New.
(_dl_get_dl_main_map): Likewise.
* sysdeps/i386/configure.ac: Check if linker supports static PIE.
* sysdeps/x86_64/configure.ac: Likewise.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure: Likewise.
* sysdeps/mips/Makefile (ASFLAGS-.o): Add $(pie-default).
(ASFLAGS-.op): Likewise.
A glibc master build with --enable-nss-crypt using the NSS
crypto libraries fails during make check with the following error:
<command-line>:0:0: error: "USE_CRYPT" redefined [-Werror]
<command-line>:0:0: note: this is the location of the previous
definition
This is caused by commit 36975e8e7e
by H.J. Lu which replaces all = with +=. The fix is to undefine
USE_CRYPT before defining it to zero.
Committed as an obvious fix. Fixes the build issue on x86_64 with
no regressions.
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
Combine the four places where link maps are sorted into a single function.
This also moves the logic to skip the first map (representing the main
binary) to the callers.
Use $(LDFLAGS-$(@F)) with tst-tls1-static-non-pie may not be sufficient
when static PIE is built by default. Use $(DEFAULT-LDFLAGS-$(@F)) in
+link-static-before-libc to make sure that tst-tls1-static-non-pie is
always built as non-PIE static executable and make sure that crt1.o is
used with tst-tls1-static-non-pie.
* Makeconfig (+link-static-before-libc): Use
$(DEFAULT-LDFLAGS-$(@F)).
* elf/Makefile (CRT-tst-tls1-static-non-pie): New.
(LDFLAGS-tst-tls1-static-non-pie): Renamed to ...
(DEFAULT-LDFLAGS-tst-tls1-static-non-pie): This.
Verify that crt1.o can be used with main () in a shared object.
* elf/Makefile (tests): Add tst-main1.
(modules-names): Add tst-main1mod.
($(objpfx)tst-main1): New.
(CRT-tst-main1): Likewise.
(LDFLAGS-tst-main1): Likewise.
(LDLIBS-tst-main1): Likewise.
(tst-main1mod.so-no-z-defs): Likewise.
* elf/tst-main1.c: New file.
* elf/tst-main1mod.c: Likewise.
tst-tls1-static-non-pie is built with $(no-pie-ldflag) to make it a
non-PIE static executable, regardless if --enable-static-pie is used
to configure glibc.
* elf/Makefile (tests-static-internal): Add
tst-tls1-static-non-pie.
(LDFLAGS-tst-tls1-static-non-pie): New.
* elf/tst-tls1-static-non-pie.c: New file.
ELF objects generated with "objcopy --only-keep-debug" have
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
DYNAMIC 0x0+e28 0x0+200e40 0x0+200e40 0x0+ 0x0+1a0 RW 0x8
with 0 file size. ld.so should skip such PT_DYNAMIC segments.
Without a PT_DYNAMIC segment the loading of the shared object will
fail, and therefore ldd on such objects will also fail instead of
crashing. This provides better diagnostics for tooling that is
attempting to inspect the invalid shared objects which may just
contain debug information.
[BZ #22101]
* elf/Makefile (tests): Add tst-debug1.
($(objpfx)tst-debug1): New.
($(objpfx)tst-debug1.out): Likewise.
($(objpfx)tst-debug1mod1.so): Likewise.
* elf/dl-load.c (_dl_map_object_from_fd): Skip PT_DYNAMIC segment
with p_filesz == 0.
* elf/tst-debug1.c: New file.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Some programs have more than one source files. These non-lib modules
should not be compiled with -DMODULE_NAME=libc. This patch puts these
non-lib modules in $(others-extras) and adds $(others-extras) to
all-nonlib.
[BZ #21864]
* Makerules (all-nonlib): Add $(others-extras).
* catgets/Makefile (others-extras): New.
* elf/Makefile (others-extras): Likewise.
* nss/Makefile (others-extras): Likewise.
This commit separates allocating and raising exceptions. This
simplifies catching and re-raising them because it is no longer
necessary to make a temporary, on-stack copy of the exception message.
tst-prelink.c checks for conflict with GLOB_DAT relocation against stdio.
On i386, there is no GLOB_DAT relocation against stdio with PIE. We
should compile tst-prelink.c without PIE.
[BZ #21815]
* elf/Makefile (CFLAGS-tst-prelink.c): New.
(LDFLAGS-tst-prelink): Likewise.
Gold doesn't support protected data symbol:
configure:5672: checking linker support for protected data symbol
configure:5682: gcc -fuse-ld=gold -nostdlib -nostartfiles -fno-stack-protector -fPIC -shared conftest.c -o conftest.so
configure:5685: $? = 0
configure:5692: gcc -fuse-ld=gold -nostdlib -nostartfiles -fno-stack-protector conftest.c -o conftest conftest.so
/usr/local/bin/ld.gold: error: /tmp/ccXWoofs.o: cannot make copy relocation for protected symbol 'bar', defined in conftest.so
collect2: error: ld returned 1 exit status
Run vismain only if linker supports protected data symbol.
* elf/Makefile (tests): Add vismain only if
$(have-protected-data) == yes.
(tests-pie): Likewise.
Since _dl_resolve_conflicts is only used in elf/rtld.c, don't include
it in libc.a.
[BZ #21742]
* elf/Makefile (dl-routines): Move dl-conflict to ...
(rtld-routines): Here.
It was discovered that the dynamic linker allocates a massive amount
of memory that increases with the value of LD_HWCAP_MASK. Due to
this, setting its value to 0xffffffff in the environment of
tst-env-setuid would cause it to fail in some environments where
overcommit was disabled or severely constrained because malloc would
fail.
Since this test is only concerned with the value of LD_HWCAP_MASK
envvar being conserved (or not, for setxid binaries), lower its value
to avoid spurious failures.
The allocation bug is reported as #21502.
This patch adds a new build module called 'testsuite'.
IS_IN (testsuite) implies _ISOMAC, as do IS_IN_build and __cplusplus
(which means several ad-hoc tests for __cplusplus can go away).
libc-symbols.h now suppresses almost all of *itself* when _ISOMAC is
defined; in particular, _ISOMAC mode does not get config.h
automatically anymore.
There are still quite a few tests that need to see internal gunk of
one variety or another. For them, we now have 'tests-internal' and
'test-internal-extras'; files in this category will still be compiled
with MODULE_NAME=nonlib, and everything proceeds as it always has.
The bulk of this patch is moving tests from 'tests' to
'tests-internal'. There is also 'tests-static-internal', which has
the same effect on files in 'tests-static', and 'modules-names-tests',
which has the *inverse* effect on files in 'modules-names' (it's
inverted because most of the things in modules-names are *not* tests).
For both of these, the file must appear in *both* the new variable and
the old one.
There is also now a special case for when libc-symbols.h is included
without MODULE_NAME being defined at all. (This happens during the
creation of libc-modules.h, and also when preprocessing Versions
files.) When this happens, IS_IN is set to be always false and
_ISOMAC is *not* defined, which was the status quo, but now it's
explicit.
The remaining changes to C source files in this patch seemed likely to
cause problems in the absence of the main change. They should be
relatively self-explanatory. In a few cases I duplicated a definition
from an internal header rather than move the test to tests-internal;
this was a judgement call each time and I'm happy to change those
however reviewers feel is more appropriate.
* Makerules: New subdir configuration variables 'tests-internal'
and 'test-internal-extras'. Test files in these categories will
still be compiled with MODULE_NAME=nonlib. Test files in the
existing categories (tests, xtests, test-srcs, test-extras) are
now compiled with MODULE_NAME=testsuite.
New subdir configuration variable 'modules-names-tests'. Files
which are in both 'modules-names' and 'modules-names-tests' will
be compiled with MODULE_NAME=testsuite instead of
MODULE_NAME=extramodules.
(gen-as-const-headers): Move to tests-internal.
(do-tests-clean, common-mostlyclean): Support tests-internal.
* Makeconfig (built-modules): Add testsuite.
* Makefile: Change libof-check-installed-headers-c and
libof-check-installed-headers-cxx to 'testsuite'.
* Rules: Likewise. Support tests-internal.
* benchtests/strcoll-inputs/filelist#en_US.UTF-8:
Remove extra-modules.mk.
* config.h.in: Don't check for __OPTIMIZE__ or __FAST_MATH__ here.
* include/libc-symbols.h: Move definitions of _GNU_SOURCE,
PASTE_NAME, PASTE_NAME1, IN_MODULE, IS_IN, and IS_IN_LIB to the
very top of the file and rationalize their order.
If MODULE_NAME is not defined at all, define IS_IN to always be
false, and don't define _ISOMAC.
If any of IS_IN (testsuite), IS_IN_build, or __cplusplus are
true, define _ISOMAC and suppress everything else in this file,
starting with the inclusion of config.h.
Do check for inappropriate definitions of __OPTIMIZE__ and
__FAST_MATH__ here, but only if _ISOMAC is not defined.
Correct some out-of-date commentary.
* include/math.h: If _ISOMAC is defined, undefine NO_LONG_DOUBLE
and _Mlong_double_ before including math.h.
* include/string.h: If _ISOMAC is defined, don't expose
_STRING_ARCH_unaligned. Move a comment to a more appropriate
location.
* include/errno.h, include/stdio.h, include/stdlib.h, include/string.h
* include/time.h, include/unistd.h, include/wchar.h: No need to
check __cplusplus nor use __BEGIN_DECLS/__END_DECLS.
* misc/sys/cdefs.h (__NTHNL): New macro.
* sysdeps/m68k/m680x0/fpu/bits/mathinline.h
(__m81_defun): Use __NTHNL to avoid errors with GCC 6.
* elf/tst-env-setuid-tunables.c: Include config.h with _LIBC
defined, for HAVE_TUNABLES.
* inet/tst-checks-posix.c: No need to define _ISOMAC.
* intl/tst-gettext2.c: Provide own definition of N_.
* math/test-signgam-finite-c99.c: No need to define _ISOMAC.
* math/test-signgam-main.c: No need to define _ISOMAC.
* stdlib/tst-strtod.c: Convert to test-driver. Split locale_test to...
* stdlib/tst-strtod1i.c: ...this new file.
* stdlib/tst-strtod5.c: Convert to test-driver and add copyright notice.
Split tests of __strtod_internal to...
* stdlib/tst-strtod5i.c: ...this new file.
* string/test-string.h: Include stdint.h. Duplicate definition of
inhibit_loop_to_libcall here (from libc-symbols.h).
* string/test-strstr.c: Provide dummy definition of
libc_hidden_builtin_def when including strstr.c.
* sysdeps/ia64/fpu/libm-symbols.h: Suppress entire file in _ISOMAC
mode; no need to test __STRICT_ANSI__ nor __cplusplus as well.
* sysdeps/x86_64/fpu/math-tests-arch.h: Include cpu-features.h.
Don't include init-arch.h.
* sysdeps/x86_64/multiarch/test-multiarch.h: Include cpu-features.h.
Don't include init-arch.h.
* elf/Makefile: Move tst-ptrguard1-static, tst-stackguard1-static,
tst-tls1-static, tst-tls2-static, tst-tls3-static, loadtest,
unload, unload2, circleload1, neededtest, neededtest2,
neededtest3, neededtest4, tst-tls1, tst-tls2, tst-tls3,
tst-tls6, tst-tls7, tst-tls8, tst-dlmopen2, tst-ptrguard1,
tst-stackguard1, tst-_dl_addr_inside_object, and all of the
ifunc tests to tests-internal.
Don't add $(modules-names) to test-extras.
* inet/Makefile: Move tst-inet6_scopeid_pton to tests-internal.
Add tst-deadline to tests-static-internal.
* malloc/Makefile: Move tst-mallocstate and tst-scratch_buffer to
tests-internal.
* misc/Makefile: Move tst-atomic and tst-atomic-long to tests-internal.
* nptl/Makefile: Move tst-typesizes, tst-rwlock19, tst-sem11,
tst-sem12, tst-sem13, tst-barrier5, tst-signal7, tst-tls3,
tst-tls3-malloc, tst-tls5, tst-stackguard1, tst-sem11-static,
tst-sem12-static, and tst-stackguard1-static to tests-internal.
Link tests-internal with libpthread also.
Don't add $(modules-names) to test-extras.
* nss/Makefile: Move tst-field to tests-internal.
* posix/Makefile: Move bug-regex5, bug-regex20, bug-regex33,
tst-rfc3484, tst-rfc3484-2, and tst-rfc3484-3 to tests-internal.
* stdlib/Makefile: Move tst-strtod1i, tst-strtod3, tst-strtod4,
tst-strtod5i, tst-tls-atexit, and tst-tls-atexit-nodelete to
tests-internal.
* sunrpc/Makefile: Move tst-svc_register to tests-internal.
* sysdeps/powerpc/Makefile: Move test-get_hwcap and
test-get_hwcap-static to tests-internal.
* sysdeps/unix/sysv/linux/Makefile: Move tst-setgetname to
tests-internal.
* sysdeps/x86_64/fpu/Makefile: Add all libmvec test modules to
modules-names-tests.
cppflags-iterator.mk no longer has anything to do with CPPFLAGS; all
it does is set libof-$(foo) for a list of files. extra-modules.mk
does the same thing, but with a different input variable, and doesn't
let the caller control the module. Therefore, this patch gives
cppflags-iterator.mk a better name, removes extra-modules.mk, and
updates all uses of both.
* extra-modules.mk: Delete file.
* cppflags-iterator.mk: Rename to ...
* libof-iterator.mk: ...this. Adjust comments.
* Makerules, extra-lib.mk, benchtests/Makefile, elf/Makefile
* elf/rtld-Rules, iconv/Makefile, locale/Makefile, malloc/Makefile
* nscd/Makefile, sunrpc/Makefile, sysdeps/s390/Makefile:
Use libof-iterator.mk instead of cppflags-iterator.mk or
extra-modules.mk.
* benchtests/strcoll-inputs/filelist#en_US.UTF-8: Remove
extra-modules.mk and cppflags-iterator.mk, add libof-iterator.mk.
The LD_HWCAP_MASK environment variable may alter the selection of
function variants for some architectures. For AT_SECURE process it
means that if an outdated routine has a bug that would otherwise not
affect newer platforms by default, LD_HWCAP_MASK will allow that bug
to be exploited.
To be on the safe side, ignore and disable LD_HWCAP_MASK for setuid
binaries.
[BZ #21209]
* elf/rtld.c (process_envvars): Ignore LD_HWCAP_MASK for
AT_SECURE processes.
* sysdeps/generic/unsecvars.h: Add LD_HWCAP_MASK.
* elf/tst-env-setuid.c (test_parent): Test LD_HWCAP_MASK.
(test_child): Likewise.
* elf/Makefile (tst-env-setuid-ENV): Add LD_HWCAP_MASK.
Florian Weimer pointed out that we have three different kinds of
environment variables (and hence tunables):
1. Variables that are removed for setxid processes
2. Variables that are ignored in setxid processes but is passed on to
child processes
3. Variables that are passed on to child processes all the time
Tunables currently only does (2) and (3) when it should be doing (1)
for MALLOC_CHECK_. This patch enhances the is_secure flag in tunables
to an enum value that can specify which of the above three categories
the tunable (and its envvar alias) belongs to.
The default is for tunables to be in (1). Hence, all of the malloc
tunables barring MALLOC_CHECK_ are explicitly specified to belong to
category (2). There were discussions around abolishing category (2)
completely but we can do that as a separate exercise in 2.26.
Tested on x86_64 to verify that there are no regressions.
[BZ #21073]
* elf/dl-tunable-types.h (tunable_seclevel_t): New enum.
* elf/dl-tunables.c (tunables_strdup): Remove.
(get_next_env): Also return the previous envp.
(parse_tunables): Erase tunables of category
TUNABLES_SECLEVEL_SXID_ERASE.
(maybe_enable_malloc_check): Make MALLOC_CHECK_
TUNABLE_SECLEVEL_NONE if /etc/setuid-debug is accessible.
(__tunables_init)[TUNABLES_FRONTEND ==
TUNABLES_FRONTEND_valstring]: Update GLIBC_TUNABLES envvar
after parsing.
[TUNABLES_FRONTEND != TUNABLES_FRONTEND_valstring]: Erase
tunable envvars of category TUNABLES_SECLEVEL_SXID_ERASE.
* elf/dl-tunables.h (struct _tunable): Change member is_secure
to security_level.
* elf/dl-tunables.list: Add security_level annotations for all
tunables.
* scripts/gen-tunables.awk: Recognize and generate enum values
for security_level.
* elf/tst-env-setuid.c: New test case.
* elf/tst-env-setuid-tunables: new test case.
* elf/Makefile (tests-static): Add them.
elf/Makefile passes arguments to tst-ldconfig-X.sh that are different
from what it expects, so resulting in the test failing in cross
testing. This patch corrects the arguments passed (the script itself
has correct logic for cross testing, it's just the Makefile that's
wrong).
Tested for powerpc (cross testing) and for x86_64 (native testing).
* elf/Makefile ($(objpfx)tst-ldconfig-X.out): Correct arguments
passed to tst-ldconfig-X.sh.
At the GNU Tools Cauldron 2016, the state of the current tunables
patchset was considered OK with the addition of a way to select the
frontend to be used for the tunables. That is, to avoid being locked
in to one type of frontend initially, it should be possible to build
tunables with a different frontend with something as simple as a
configure switch.
To that effect, this patch enhances the --enable-tunables option to
accept more values than just 'yes' or 'no'. The current frontend (and
default when enable-tunables is 'yes') is called 'valstring', to
select the frontend where a single environment variable is set to a
colon-separated value string. More such frontends can be added in
future.
* Makeconfig (have-tunables): Check for non-negative instead
of positive.
* configure.ac: Add 'valstring' as a valid value for
--enable-tunables.
* configure: Regenerate.
* elf/Makefile (have-tunables): Check for non-negative instead
of positive.
(CPPFLAGS-dl-tunables.c): Define TUNABLES_FRONTEND for
dl-tunables.c.
* elf/dl-tunables.c (GLIBC_TUNABLES): Define only when
TUNABLES_FRONTEND == TUNABLES_FRONTEND_valstring.
(tunables_strdup): Likewise.
(disable_tunables): Likewise.
(parse_tunables): Likewise.
(__tunables_init): Process GLIBC_TUNABLES envvar only when.
TUNABLES_FRONTEND == TUNABLES_FRONTEND_valstring.
* elf/dl-tunables.h (TUNABLES_FRONTEND_valstring): New macro.
(TUNABLES_FRONTEND_yes): New macro, define as
TUNABLES_FRONTEND_valstring by default.
* manual/install.texi: Document new acceptable values for
--enable-tunables.
* INSTALL: Regenerate.
Read tunables values from the users using the GLIBC_TUNABLES
environment variable. The value of this variable is a colon-separated
list of name=value pairs. So a typical string would look like this:
GLIBC_TUNABLES=glibc.malloc.mmap_threshold=2048:glibc.malloc.trim_threshold=1024
* config.make.in (have-loop-to-function): Define.
* elf/Makefile (CFLAGS-dl-tunables.c): Add
-fno-tree-loop-distribute-patterns.
* elf/dl-tunables.c: Include libc-internals.h.
(GLIBC_TUNABLES): New macro.
(tunables_strdup): New function.
(parse_tunables): New function.
(min_strlen): New function.
(__tunables_init): Use the new functions and macro.
(disable_tunable): Disable tunable from GLIBC_TUNABLES.
* malloc/tst-malloc-usable-tunables.c: New test case.
* malloc/tst-malloc-usable-static-tunables.c: New test case.
* malloc/Makefile (tests, tests-static): Add tests.
The tunables framework allows us to uniformly manage and expose global
variables inside glibc as switches to users. tunables/README has
instructions for glibc developers to add new tunables.
Tunables support can be enabled by passing the --enable-tunables
configure flag to the configure script. This patch only adds a
framework and does not pose any limitations on how tunable values are
read from the user. It also adds environment variables used in malloc
behaviour tweaking to the tunables framework as a PoC of the
compatibility interface.
* manual/install.texi: Add --enable-tunables option.
* INSTALL: Regenerate.
* README.tunables: New file.
* Makeconfig (CPPFLAGS): Define TOP_NAMESPACE.
(before-compile): Generate dl-tunable-list.h early.
* config.h.in: Add HAVE_TUNABLES.
* config.make.in: Add have-tunables.
* configure.ac: Add --enable-tunables option.
* configure: Regenerate.
* csu/init-first.c (__libc_init_first): Move
__libc_init_secure earlier...
* csu/init-first.c (LIBC_START_MAIN):... to here.
Include dl-tunables.h, libc-internal.h.
(LIBC_START_MAIN) [!SHARED]: Initialize tunables for static
binaries.
* elf/Makefile (dl-routines): Add dl-tunables.
* elf/Versions (ld): Add __tunable_set_val to GLIBC_PRIVATE
namespace.
* elf/dl-support (_dl_nondynamic_init): Unset MALLOC_CHECK_
only when !HAVE_TUNABLES.
* elf/rtld.c (process_envvars): Likewise.
* elf/dl-sysdep.c [HAVE_TUNABLES]: Include dl-tunables.h
(_dl_sysdep_start): Call __tunables_init.
* elf/dl-tunable-types.h: New file.
* elf/dl-tunables.c: New file.
* elf/dl-tunables.h: New file.
* elf/dl-tunables.list: New file.
* malloc/tst-malloc-usable-static.c: New test case.
* malloc/Makefile (tests-static): Add it.
* malloc/arena.c [HAVE_TUNABLES]: Include dl-tunables.h.
Define TUNABLE_NAMESPACE.
(DL_TUNABLE_CALLBACK (set_mallopt_check)): New function.
(DL_TUNABLE_CALLBACK_FNDECL): New macro. Use it to define
callback functions.
(ptmalloc_init): Set tunable values.
* scripts/gen-tunables.awk: New file.
* sysdeps/mach/hurd/dl-sysdep.c: Include dl-tunables.h.
(_dl_sysdep_start): Call __tunables_init.
The previous commit prevented rtld itself from being built with
-fstack-protector, but this is not quite enough. We identify which
objects belong in rtld via a test link and analysis of the resulting
mapfile. That link is necessarily done against objects that are
stack-protected, so drags in __stack_chk_fail_local, __stack_chk_fail,
and all the libc and libio code they use.
To stop this happening, use --defsym in the test librtld.map-production
link to force the linker to predefine these two symbols (to 0, but it
could be to anything). (In a real link, this would of course be
catastrophic, but these object files are never used for anything else.)
There is at least one use case where during exit a library destructor
might call dlclose() on a valid handle and have it fail with an
assertion. We must allow this case, it is a valid handle, and dlclose()
should not fail with an assert. In the future we might be able to return
an error that the dlclose() could not be completed because the opened
library has already been unloaded and destructors have run as part of
exit processing.
For more details see:
https://www.sourceware.org/ml/libc-alpha/2016-12/msg00859.html
The new test driver in <support/test-driver.c> has feature parity with
the old one. The main difference is that its hooking mechanism is
based on functions and function pointers instead of macros. This
commit also implements a new environment variable, TEST_COREDUMPS,
which disables the code which disables coredumps (that is, it enables
them if the invocation environment has not disabled them).
<test-skeleton.c> defines wrapper functions so that it is possible to
use existing macros with the new-style hook functionality.
This commit changes only a few test cases to the new test driver, to
make sure that it works as expected.
Some configurations may use NSS cryptographic routines but have no
static library for those routines. The following changes allow glibc to
be built and tested with --enable-nss-crypt, but without having a static
NSS library. At a high level the change does two things:
(1) Detect at configure time if static NSS crypto libraries are
available. Assumes libfreebl3.a (instead of the existing Fedora
libfreebl.a which is incomplete) which matches libfreebl3.so.
(2) If static NSS crypto libraries are _not_ available then adjust the
way in which we build tst-linkall-static. This includes excluding a
reference to crypt and not linking against libcrypt.a, all of which
will fail otherwise.
Testing assumptions:
* Static library is named libfreebl3.a (not libfreebl.a as is currently
provided in Fedora), matching libfreebl3.so shared link name.
Tested on x86_64 on Fedora with:
(a) --enable-nss-crypt, with no static NSS library support: PASS
(previous FAIL)
(b) --enable-nss-crypt, with faked static NSS library support: PASS
(unsupported)
* Requires changing elf/Makefile to include a stub
/lib64/libfreebl3.a for testing purposes.
(c) --disable-nss-crypt: PASS
(default)
No regressions on x86_64.
For details see:
https://www.sourceware.org/ml/libc-alpha/2016-11/msg00647.html
The first dlopen ("tst-latepthreadmod.so", RTLD_LOCAL | RTLD_LAZY) call
in elf/tst-latepthread.c fails on s390x with "error: dlopen failed:
.../build-s390x/elf/tst-latepthreadmod.so:
undefined symbol: this_function_is_not_defined".
In elf/tst-latepthreadmod.c, this_function_is_not_defined is a sibling
call which leads to a R_390_GLOB_DAT relocation in .rela.dyn instead of
a R_390_JMP_SLOT in .rela.plt.
As RTLD_LAZY skips the JMP_SLOT relocations, but not GLOB_DAT ones,
the dlopen call fails. If elf/tst-latepthreadmod.c is build with
-fno-optimize-sibling-calls, a JMP_SLOT relocation is generated for
this_function_is_not_defined and the test passes.
ChangeLog:
* elf/Makefile (CFLAGS-tst-latepthreadmod.c):
Add -fno-optimize-sibling-calls.