It avoids regressions on possible future commands that might require
additional libc support. The downside is new commands added by newer
kernels will need further glibc support.
Checked on x86_64-linux-gnu and i686-linux-gnu (Linux v4.15 and v5.4).
Both commands are Linux extensions where the third argument is either
a 'struct shminfo' (IPC_INFO) or a 'struct shm_info' (SHM_INFO) instead
of 'struct shmid_ds'. And their information does not contain any time
related fields, so there is no need to extra conversion for __IPC_TIME64.
The regression testcase checks for Linux specifix SysV ipc message
control extension. For SHM_INFO it tries to match the values against the
tunable /proc values and for MSG_STAT/MSG_STAT_ANY it check if the create\
shared memory is within the global list returned by the kernel.
Checked on x86_64-linux-gnu and on i686-linux-gnu (Linux v5.4 and on
Linux v4.15).
Add CPU detection of Neoverse N2 and Neoverse V1, and select __memcpy_simd as
the memcpy/memmove ifunc.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
It adds the missing new symbols from 8ed005daf0 and 589260cef8 (which
added versioned symbols for {f,l}stat{at}{64} and mknod{a}t) on some
libc.abilist ABIs.
It also decouple mknod{at} from xmknod{at}. The riscv32 ABI was added
on 2.33, so it is safe to remove the old __xmknot{at} symbols and just
provide the newer mknod{at} ones.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
A new struct __stat{64}_t64 type is added with the required
__timespec64 time definition. Only LFS is added, 64-bit time with
32-bit offsets is not supposed to be supported (no existing glibc
configuration supports such a combination). It is done with an extra
__NR_statx call plus a conversion to the new __stat{64}_t64 type.
The statx call is done only for 32-bit time_t ABIs.
Internally some extra routines to copy from/to struct stat{64}
to struct __stat{64} used on multiple implementations (stat, fstat,
lstat, and fstatat) are added on a extra implementation
(stat_t64_cp.c). Alse some extra routines to copy from statx to
__stat{64} is added on statx_cp.c.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
They are no interna uses anymore. The riscv32 ABI was added on 2.33,
so it is safe to remove the old __{f,l}stat{at} symbols and just
provide the newer {f,l}stat{at} ones.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
It implements all the required syscall for the all Linux kABIS on
fstatat{64} instead of calling fxstatat{64}.
On non-LFS implementation, it handles 3 cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issues __NR_fstat64 plus handle the overflow on st_ino,
st_size, or st_blocks.
2. Old KABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, mips32, s390, sh, powerpc, and sparc32): it issues
__NR_fstatat64 and convert the result to struct stat.
3. 64-bit kABI outliers (mips64 and mips64-n32): it issues
__NR_newfstatat and convert the result to struct stat.
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. 64-bit kABI (aarch64, ia64, powerpc64*, s390x, riscv64, and
x86_64): it issues __NR_newfstatat.
1.2. 64-bit kABI outlier (alpha): it issues __NR_fstatat64.
1.3. 64-bit kABI outlier where struct stat64 does not match kernel
one (sparc64): it issues __NR_fstatat64 and convert the result
to struct stat64.
1.4. 32-bit kABI with default 64-bit time_t (arc, riscv32): it
issues __NR_statx and convert the result to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0:
2.1. All kABIs with non-LFS support (arm, csky, i386, hppa, m68k,
microblaze, nios2, sh, powerpc32, and sparc32): it issues
__NR_fstatat64.
2.2. 64-bit kABI outliers (mips64 and mips64-n32): it issues
__NR_newfstatat and convert the result to struct stat64.
It allows to remove all the hidden definitions from the {f,l}xstat{64}
(some are still kept because Hurd requires it).
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
Both fstatat and fstata64 calls the old fxstatat and fxstatat64
repectivelly with _STAT_VER, the one currently exported as default
for all ABIs.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
The common definitions are moved to a Linux generic stat.h while the
struct stat{64} definition are moved to a arch-specific struct_stat.h
header.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
This patch removes the mknod and mknodat static wrapper and add the
symbols on the libc with the expected names.
Both the prototypes of the internal symbol linked by the static
wrappers and the inline redirectors are also removed from the installed
sys/stat.h header file. The wrapper implementation license LGPL
exception is also removed since it is no longer statically linked to
binaries.
Internally the _STAT_VER* definitions are moved to the arch-specific
xstatver.h file.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
This patch removes the stat, stat64, lstat, lstat64, fstat, fstat64,
fstatat, and fstatat64 static wrapper and add the symbol on the libc
with the expected names.
Both the prototypes of the internal symbol linked by the static
wrappers and the inline redirectors are also removed from the installed
sys/stat.h header file. The wrapper implementation license LGPL
exception is also removed since it is no longer statically linked to
binaries.
Internally the _STAT_VER* definitions are moved to a arch-specific
xstatver.h file. The internal defines that redirects internals
{f}stat{at} to their {f}xstat{at} counterparts are removed for Linux
(!NO_RTLD_HIDDEN). Hurd still requires them since {f}stat{at} pulls
extra objects that makes the loader build fail otherwise (I haven't
dig into why exactly).
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
It fixes the tst-cancelx{4,5} and tst-cancel24-{static} regression on
some platforms (arm and sparc32).
Checked on arm-linux-gnueabihf and sparcv9-linux-gnu.
The generic version is parallel to _dl_writev. It cannot use
_dl_writev directly because the errno value needs to be obtained
under a lock.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Current systems do not have BSD terminals, so the fallback code in
posix_openpt/getpt does not do anything. Also remove the file system
check for /dev/pts. Current systems always have a devpts file system
mounted there if /dev/ptmx exists.
grantpt is now essentially a no-op. It only verifies that the
argument is a ptmx-descriptor. Therefore, this change indirectly
addresses bug 24941.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The EINVAL error code is mandated by POSIX and documented in the
manual. Also clean up the unlockpt implementation a bit, assuming
that TIOCSPTLCK is always defined.
Enhance login/tst-grantpt to cover unlockpt corner cases.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
GCC 11 -Warray-bounds triggers invalid warnings when building
Linux timer_create.c:
../sysdeps/unix/sysv/linux/timer_create.c: In function '__timer_create_new':
../sysdeps/unix/sysv/linux/timer_create.c:83:17: warning: array subscript 'struct timer[0]' is partly outside array bounds of 'unsigned char[8]' [-Warray-bounds]
83 | newp->sigev_notify = (evp != NULL
| ^~
../sysdeps/unix/sysv/linux/timer_create.c:59:47: note: referencing an object of size 8 allocated by 'malloc'
59 | struct timer *newp = (struct timer *) malloc (offsetof (struct timer,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
60 | thrfunc));
| ~~~~~~~~~
The struct allocated for !SIGEV_THREAD timers only requires two 'int'
fields (sigev_notify and ktimerid) and the offsetof trick tries minimize
the memory usage by only allocation the required size. However,
although the resulting size is suffice for !SIGEV_THREAD time, accessing
the partially allocated object is error-prone and UB.
This patch fixes both issues by embedding the information whether
the timer if a SIGEV_THREAD in the returned 'timer_t'. For
!SIGEV_THREAD, the resulting 'timer_t' is the returned kernel timer
identifer (kernel_timer_t), while for SIGEV_THREAD it uses the fact
malloc returns at least _Alignof (max_align_t) pointers plus that
valid kernel_timer_t are always positive to set MSB bit of the returned
'timer_t' to indicate the timer handles a SIGEV_THREAD.
It allows to remove the memory allocation for !SIGEV_THREAD and also
remove the 'sigev_notify' field from 'struct timer'.
Checked on x86_64-linux-gnu and i686-linux-gnu.
It avoids regressions on possible future commands that might require
additional libc support. The downside is new commands added by newer
kernels will need further glibc support.
Checked on x86_64-linux-gnu and i686-linux-gnu (Linux v4.15 and v5.4).
Both commands are Linux extensions where the third argument is a
'struct msginfo' instead of 'struct msqid_ds' and its information
does not contain any time related fields (so there is no need to
extra conversion for __IPC_TIME64.
The regression testcase checks for Linux specifix SysV ipc message
control extension. For IPC_INFO/MSG_INFO it tries to match the values
against the tunable /proc values and for MSG_STAT/MSG_STAT_ANY it
check if the create message queue is within the global list returned
by the kernel.
Checked on x86_64-linux-gnu and on i686-linux-gnu (Linux v5.4 and on
Linux v4.15).
It avoids regressions on possible future commands that might require
additional libc support. The downside is new commands added by newer
kernels will need further glibc support.
Checked on x86_64-linux-gnu and i686-linux-gnu (Linux v4.15 and v5.4).
Handle SEM_STAT_ANY the same way as SEM_STAT so that the buffer argument
of SEM_STAT_ANY is properly passed to the kernel and back.
The regression testcase checks for Linux specifix SysV ipc message
control extension. For IPC_INFO/SEM_INFO it tries to match the values
against the tunable /proc values and for SEM_STAT/SEM_STAT_ANY it
check if the create message queue is within the global list returned
by the kernel.
Checked on x86_64-linux-gnu and on i686-linux-gnu (Linux v5.4 and on
Linux v4.15).
Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Both powerpc64 and s390x provides semtimedop through __NR_ipc for
pre v5.1 kernel. Neither the y2038 support (7c437d3778) nor the
attempt to fix an issue for !__ASSUME_DIRECT_SYSVIPC_SYSCALLS
(aaa12e9ff0) took this in consideration.
This patch fixes it by issuing __NR_semtimedop_time64 iff it is
defined, otherwise __NR_semtimeop is issued if both
__ASSUME_DIRECT_SYSVIPC_SYSCALLS it set and __NR_semtimedop is
define, other __NR_ipc is used instead. To summarize:
1. For 32-bit architetures __NR_semtimedop_time64 is always
issued. The fallback is used only for !__ASSUME_TIME64_SYSCALLS
and it issues either __NR_ipc or __NR_semtimedop.
2. For 64-bit architecture with wire-up SysV syscall
(__ASSUME_DIRECT_SYSVIPC_SYSCALLS and __NR_semtimeop defined)
__NR_semtimeop is issued.
3. Otherwise __NR_ipc is used instead.
Checked on x86_64-linux-gnu, i686-linux-gnu (kernel 4.15 and 5.4),
powerpc64le (kernel 4.18), and s390x (kernel 4.12).
Reviewed-by: Matheus Castanho <msc@linux.ibm.com>
The wire-up syscall __NR_recvmmsg_time64 (for 32-bit) or
__NR_recvmmsg (for 64-bit) is used as default. The 32-bit fallback
is used iff __ASSUME_TIME64_SYSCALLS is not defined, which assumes the
kernel ABI provides either __NR_socketcall or __NR_recvmmsg
(32-bit time_t).
It does not handle the timestamps on ancillary data (SCM_TIMESTAMPING
records).
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
It uses __clock_nanosleep64 and adds the __nanosleep64 symbol.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
The generic version does not have time64 support and Linux default
uses utimensat. With hppa version gone, __ASSUME_UTIMES is not used
anymore.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
The syscall __NR_clock_getres_time64 (for 32-bit) or __NR_clock_getres
(for 64-bit) is used as default. The 32-bit fallback is used iff
__ASSUME_TIME64_SYSCALLS is not defined, which assumes the kernel ABI
provides either __NR_rt_sigtimedwait (32-bit time_t).
Since the symbol does not use any type which might be affected by the
time_t, there is no need to add a 64-bit variant.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
The syscall __NR_sigtimedwait_time64 (for 32-bit) or __NR_sigtimedwait
(for 64-bit) is used as default. The 32-bit fallback is used iff
__ASSUME_TIME64_SYSCALLS is not defined, which assumes the kernel ABI
provides either __NR_rt_sigtimedwait (32-bit time_t).
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
The syscall __NR_pselect6_time64 (32-bit) or __NR_pselect6 (64-bit)
is used as default. For architectures with __ASSUME_TIME64_SYSCALLS
the 32-bit fallback uses __NR_select/__NR__newselect or __NR_pselect6
(it should cover the microblaze case where older kernels do not
provide __NR_pselect6).
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
This patch adds the ABI-related bits to reflect the new mallinfo2
function, and adds a test case to verify basic functionality.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This is similar to commit a26e2e9fea
"Allow memset local PLT reference for powerpc soft-float.".
GCC 10.1 results in the localplt test failing for RISC-V.
From the original commit for power-pc:
Since memset is documented as a function GCC may always implicitly
generate calls to, it seems reasonable to allow that local PLT
reference (just like those for libgcc functions that GCC implicitly
generates calls to and that are also exported from libc.so), which
this patch does.
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
Install <sys/platform/x86.h> so that programmers can do
#if __has_include(<sys/platform/x86.h>)
#include <sys/platform/x86.h>
#endif
...
if (CPU_FEATURE_USABLE (SSE2))
...
if (CPU_FEATURE_USABLE (AVX2))
...
<sys/platform/x86.h> exports only:
enum
{
COMMON_CPUID_INDEX_1 = 0,
COMMON_CPUID_INDEX_7,
COMMON_CPUID_INDEX_80000001,
COMMON_CPUID_INDEX_D_ECX_1,
COMMON_CPUID_INDEX_80000007,
COMMON_CPUID_INDEX_80000008,
COMMON_CPUID_INDEX_7_ECX_1,
/* Keep the following line at the end. */
COMMON_CPUID_INDEX_MAX
};
struct cpuid_features
{
struct cpuid_registers cpuid;
struct cpuid_registers usable;
};
struct cpu_features
{
struct cpu_features_basic basic;
struct cpuid_features features[COMMON_CPUID_INDEX_MAX];
};
/* Get a pointer to the CPU features structure. */
extern const struct cpu_features *__x86_get_cpu_features
(unsigned int max) __attribute__ ((const));
Since all feature checks are done through macros, programs compiled with
a newer <sys/platform/x86.h> are compatible with the older glibc binaries
as long as the layout of struct cpu_features is identical. The features
array can be expanded with backward binary compatibility for both .o and
.so files. When COMMON_CPUID_INDEX_MAX is increased to support new
processor features, __x86_get_cpu_features in the older glibc binaries
returns NULL and HAS_CPU_FEATURE/CPU_FEATURE_USABLE return false on the
new processor feature. No new symbol version is neeeded.
Both CPU_FEATURE_USABLE and HAS_CPU_FEATURE are provided. HAS_CPU_FEATURE
can be used to identify processor features.
Note: Although GCC has __builtin_cpu_supports, it only supports a subset
of <sys/platform/x86.h> and it is equivalent to CPU_FEATURE_USABLE. It
doesn't support HAS_CPU_FEATURE.
The syscall __NR_pselect6_time64 (32-bit) or __NR_pselect6 (64-bit)
is used as default. For architectures with __ASSUME_TIME64_SYSCALLS
the 32-bit fallback uses __NR_pselec6.
To accomodate microblaze missing pselect6 support on kernel older
than 3.15 the fallback is moved to its own function to the microblaze
specific implementation can override it.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Either the __NR_semtimedop_time64 (for 32-bit) or the __NR_semtimedop
(for 64-bit) syscall is used as default. The 32-bit fallback is used
iff __ASSUME_TIME64_SYSCALLS is not defined, which assumes the kernel
ABI provides either __NR_ipc or __NR_semtimeop (for 32-bit time_t).
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
It avoid continuing issue the __NR_ppoll_time64 syscall once the kernel
advertise it does not support it.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
With arch-syscall.h it can now assumes the existance of either
__NR_clock_getres or __NR_clock_getres_time64. The 32-bit time_t
support is now only build for !__ASSUME_TIME64_SYSCALLS.
It also uses the time64-support functions to simplify it further.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
It replaces the internal usage of __{f,l}xstat{at}{64} with the
__{f,l}stat{at}{64}. It should not change the generate code since
sys/stat.h explicit defines redirections to internal calls back to
xstat* symbols.
Checked with a build for all affected ABIs. I also check on
x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
The __NR_mknodat syscall is supported on all kernels, so the generic
implementation is used as default.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
The LFS support is implemented on fxstat64.c, instead of fxstat.c for
64-bit architectures. The fxstatat.c implements the non-LFS and it is
a no-op for !XSTAT_IS_XSTAT64.
The generic non-LFS implementation handles two cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issues __NR_fstatat64 plus handle the overflow on st_ino,
st_size, or st_blocks. It only handles _STAT_VER_KERNEL.
2. Old kABIs with old non-LFS support (arm, i386, hppa, m68k, mips32,
microblaze, s390, sh, powerpc, and sparc32). it issues
__NR_fstatat64 and convert to non-LFS stat struct based on the
version.
Also non-LFS mips64 is an outlier and it has its own implementation
since _STAT_VER_LINUX requires a different conversion function (it
uses the kernel_stat as the sysissues argument since its exported ABI
is different than the kernel one for both non-LFS and LFS
implementation).
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. 64-bit kABI (aarch64, ia64, powerpc64*, s390x, riscv64, and
x86_64): it issues __NR_newfstatat for _STAT_VER_KERNEL or
_STAT_VER_LINUX.
1.2. 64-bit kABI outlier (sparc64): it issuess fstatat64 with a
temporary stat64 and convert to output stat64 based on the
input version (and using a sparc64 specific __xstat32_conv).
1.3. New 32-bit kABIs with only 64-bit time_t support (arc and
riscv32): it issues __NR_statx and covert to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0 (arm, csky, i386, hppa, m68k,
microblaze, mips32, nios2, sh, powerpc32, and sparc32): it issues
__NR_fstat64.
Also, two special cases requires specific implementations:
1. alpha: it uses the __NR_fstatat64 syscall instead.
2. mips64: as for non-LFS implementation its ABIs differ from
glibc exported one, which requires an specific conversion
function to handle the kernel_stat.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
The LFS support is implemented on fxstat64.c, instead of fxstat.c for
64-bit architectures. The fxstat.c implements the non-LFS and it is
a no-op for !XSTAT_IS_XSTAT64.
The generic non-LFS implementation handles two cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issuess __NR_fstat64 plus handle the overflow on st_ino,
st_size, or st_blocks. It only handles _STAT_VER_KERNEL.
2. Old KABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, powerpc, and sparc32). For _STAT_VER_KERNEL
it issues __NR_fstat, otherwise it calls __NR_fstat64 and convert
to non-LFS stat struct and handle possible overflows on st_ino,
st_size, or st_blocks.
Also non-LFS mips is an outlier and it has its own implementation since
_STAT_VER_LINUX requires a different conversion function (it uses the
kernel_stat as the sysissues argument since its exported ABI is
different than the kernel one for both non-LFS and LFS implementation).
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. 64-bit kABI (aarch64, ia64, powerpc64*, s390x, riscv64, and
x86_64): it issuess __NR_fstat for _STAT_VER_KERNEL or
_STAT_VER_LINUX.
1.2. Old 64-bit kABI with defines __NR_fstat64 instead of __NR_fstat
(sparc64): it issues __NR_fstat for _STAT_VER_KERNEL or
__NR_fstat64 and convert to struct stat64.
1.3. New 32-bit kABIs with only 64-bit time_t support (arc and
riscv32): it issuess __NR_statx and covert to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0 (arm, csky, i386, hppa,
m68k, microblaze, mips32, nios2, sh, powerpc32, and sparc32): it
issues __NR_fstat64.
Also, two special cases requires specific implementations:
1. alpha: it requires to handle _STAT_VER_KERNEL64 to issues
__NR_fstat64 and use the kernel_stat with __NR_fstat otherwise.
2. mips64: as for non-LFS implementation its ABIs differ from
glibc exported one, which requires an specific conversion
function to handle the kernel_stat.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
The LFS support is implemented on lxstat64.c, instead of lxstat.c for
64-bit architectures. The xstat.c implements the non-LFS and it is
a no-op for !XSTAT_IS_XSTAT64.
The generic non-LFS implementation handles two cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issues __NR_fstat64 with AT_SYMLINK_NOFOLLOW plus handles
the possible overflow off st_ino, st_size, or st_blocks. It only
handles _STAT_VER_KERNEL.
2. Old KABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, powerpc, and sparc32). For _STAT_VER_KERNEL
it issues __NR_lstat, otherwise it isseus __NR_lstat64 and convert
to non-LFS stat struct and handle possible overflows on st_ino,
st_size, or st_blocks.
Also non-LFS mips is an outlier and it has its own implementation since
_STAT_VER_LINUX requires a different conversion function (it uses the
kernel_stat as the syscall argument since its exported ABI is different
than the kernel one for both non-LFS and LFS implementation).
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. Old 64-bit kABI (ia64, powerpc64*, s390x, sparc64, x86_64): it
issues __NR_lstat for _STAT_VER_KERNEL or _STAT_VER_LINUX.
1.2. Old 64-bit kABI with defines __NR_lstat64 instead of __NR_lstat
(sparc64): it issues __NR_lstat for _STAT_VER_KERNEL or
__NR_lstat64 and convert to struct stat64.
1.3. New kABIs which uses generic 64-bit Linux ABI (aarch64 and
riscv64): it issues __NR_newfstatat with AT_SYMLINK_NOFOLLOW
and only for _STAT_VER_KERNEL.
1.4. New 32-bit kABIs with only 64-bit time_t support (arc and
riscv32): it issues __NR_statx and covert to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0:
2.1. New kABIs which uses generic pre 64-bit time Linux ABI (csky
and nios2): it issues __NR_fstatat64 for _STAT_VER_KERNEL.
2.2. Old kABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, mips32, powerpc32, and sparc32): it
issues __NR_lstat64.
Also, two special cases requires specific LFS implementations:
1. alpha: it requires to handle _STAT_VER_KERNEL64 to issue
__NR_lstat64 and use the kernel_stat with __NR_lstat otherwise.
2. mips64: as for non-LFS implementation its ABIs differ from
glibc exported one, which requires a specific conversion
function to handle the kernel_stat.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
The LFS support is implemented on xstat64.c, instead of xstat.c for
64-bit architectures. The xstat.c implements the non-LFS it is
no-op for !XSTAT_IS_XSTAT64.
The generic non-LFS implementation handle two cases:
1. New kABIs which uses generic pre 64-bit time Linux ABI (csky and
nios): it issues __NR_fstat64 plus handle the overflow on st_ino,
st_size, or st_blocks. It only handles _STAT_VER_KERNEL.
2. Old KABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, powerpc, and sparc32). For _STAT_VER_KERNEL
it issues __NR_stat, otherwise it issues __NR_stat64 and convert
to non-LFS stat struct handling possible overflows on st_ino,
st_size, or st_blocks.
Also the non-LFS mips is an outlier and it has its own implementation
since _STAT_VER_LINUX requires a different conversion function (it uses
the kernel_stat as the syscall argument since its exported ABI is
different than the kernel one for both non-LFS and LFS implementation).
The generic LFS implementation handles multiple cases:
1. XSTAT_IS_XSTAT64 being 1:
1.1. Old 64-bit kABI (ia64, powerpc64*, s390x, x86_64): it
issues __NR_stat for _STAT_VER_KERNEL or _STAT_VER_LINUX.
1.2. Old 64-bit kABI with defines __NR_stat64 instead of __NR_stat
(sparc64): it issues __NR_stat for _STAT_VER_KERNEL or
__NR_stat64 and convert to struct stat64.
1.3. New kABIs which uses generic 64-bit Linux ABI (aarch64 and
riscv64): it issues __NR_newfstatat and only for
_STAT_VER_KERNEL.
1.4. New 32-bit kABIs with only 64-bit time_t support (arc and
riscv32): it issues __NR_statx and covert to struct stat64.
2. Old ABIs with XSTAT_IS_XSTAT64 being 0:
2.1. New kABIs which uses generic pre 64-bit time Linux ABI (csky
and nios2): it issues __NR_fstatat64 for _STAT_VER_KERNEL.
2.2. Old kABIs with old non-LFS support (arm, i386, hppa, m68k,
microblaze, s390, sh, mips32, powerpc32, and sparc32): it
issues __NR_stat64.
Also, two special cases requires specific LFS implementations:
1. alpha: it requires to handle _STAT_VER_KERNEL64 to call __NR_stat64
or use the kernel_stat with __NR_stat otherwise.
2. mips64: as for non-LFS implementation its ABIs differ from glibc
exported one, which requires an specific conversion function to
handle the kernel_stat.
Checked with a build for all affected ABIs. I also checked on x86_64,
i686, powerpc, powerpc64le, sparcv9, sparc64, s390, and s390x.
Reviewed-by: Lukasz Majewski <lukma@denx.de>
It indicates that the glibc export stat64 is similar in size and
layout of the kernel stat64 used on the syscall. It is not currently
used on stat implementation, but the idea is to indicate whether
to use the kernel_stat to issue on the syscall on the *stat*64
variant (more specifically on mips which its exported ABI does not
match the kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
This is the first of a series of patches to sync with Gnulib commit
615b43e1f9. This patch adopts most of the changes of Gnulib, except it
retains GETCWD_RETURN_TYPE and does not always use a 64-bit internal
API. These remaining discrepancies will be addressed in later patches
in this series.
Checked on x86_64-linux-gnu and i686-linux-gnu.
X32 uses the same 64-bit syscall interface for set_thread_area. But
__NR_set_thread_area is missing from <asm/unistd_x32.h>. A kernel patch
was submitted:
From 7b05d5b43ae2545e0d4a3edb24205d18bc883626 Mon Sep 17 00:00:00 2001
From: "H.J. Lu" <hjl.tools@gmail.com>
Date: Sat, 15 Aug 2020 10:34:00 -0700
Subject: [PATCH] x86-64: Enable x32 set_thread_area
X32 uses the common 64-bit syscall interface for set_thread_area. Add
<fixup-asm-unistd.h> to provide __NR_set_thread_area.
Co-authored-by: Florian Weimer <fweimer@redhat.com>
This patch lays out the top-level organisation of the RISC-V 32-bit port.
It provides all the Implies files as well as various other fragments of
the build infrastructure.
Reviewed-by: Maciej W. Rozycki <macro@wdc.com>
Specify the minimum kernel version for RISC-V 32-bit as the 5.4 kernel.
We require this commit: "waitid: Add support for waiting for the current
process group" for the kernel as it adds support for the P_PGID id for
the waitid syscall. Without this patch we can't replace the wait4
syscall on 64-bit time_t only systems.
Reviewed-by: Maciej W. Rozycki <macro@wdc.com>
This patch adds the ABI implementation for 32-bit RISC-V. It contains
the Linux-specific and RISC-V architecture code.
Reviewed-by: Maciej W. Rozycki <macro@wdc.com>
With RV32 support the list of possible RISC-V system directories
increases to:
- /lib64/lp64d
- /lib64/lp64
- /lib32/ilp32d
- /lib32/ilp32
- /lib (only ld.so)
This patch changes the add_system_dir () macro to support the new ilp32d
and ilp32 directories for RV32. While refactoring this code let's split
out the confusing if statements into a loop to make it easier to
understand and extend.
Reviewed-by: Maciej W. Rozycki <macro@wdc.com>
sysdep.h redefines only the syscall where the generic implementation
still does not have actual 64-bit time_t support:
/* Workarounds for generic code needing to handle 64-bit time_t. */
/* Fix sysdeps/unix/sysv/linux/clock_getcpuclockid.c. */
#define __NR_clock_getres __NR_clock_getres_time64
/* Fix sysdeps/nptl/lowlevellock-futex.h. */
#define __NR_futex __NR_futex_time64
[...]
This patch also adds a comment that it is a workaround to handle 64-bit
time_t and on each #define comment for which implementation it intends
to.
Reviewed-by: Maciej W. Rozycki <macro@wdc.com>
Remove a duplicate inclusion of <sysdeps/unix/sysdep.h> which is already
pulled via <sysdeps/unix/sysv/linux/generic/sysdep.h>, and the inclusion
of <errno.h> whose definition of `__set_errno' is not needed here.
Reviewed-by: Maciej W. Rozycki <macro@wdc.com>
Using the original glibc headers under bits/ let's make small
modifications to use 64-bit time_t and off_t for both RV32 and RV64.
For the typesizes.h, here are justifications for the changes from the
generic version (based on Arnd's very helpful feedback):
- All the !__USE_FILE_OFFSET64 types (__off_t, __ino_t, __rlim_t, ...)
are changed to match the 64-bit replacements.
- __time_t is defined to 64 bit, but no __time64_t is added. This makes
sense as we don't have the time64 support for other 32-bit
architectures yet, and it will be easy to change when that happens.
- __suseconds_t is 64-bit. This matches what we use the kernel ABI for
the few drivers that are relying on 'struct timeval' input arguments
in ioctl, as well as the adjtimex system call. It means that timeval
has to be defined without the padding, unlike timespec, which needs
padding.
Reviewed-by: Maciej W. Rozycki <macro@wdc.com>
With arch-syscall.h it can now assumes the existance of either
__NR_utimensat or __NR_utimensat_time64. The 32-bit time_t
support is now only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
With arch-syscall.h it can now assumes the existance of either
__NR_timer_settime or __NR_time_settime_time64. The 32-bit time_t
support is now only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
With arch-syscall.h it can now assumes the existance of either
__NR_timer_gettime or __NR_time_gettime_time64. The 32-bit time_t
support is now only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
With arch-syscall.h it can now assumes the existance of either
__NR_sched_rr_get_interval or __NR_sched_rr_get_interval_time64.
The 32-bit time_t support is now only build for
!__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
With arch-syscall.h it can now assumes the existance of either
__NR_ppoll or __NR_ppoll_time64. The 32-bit time_t support is now
only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
With arch-syscall.h it can now assumes the existance of either
__NR_mq_timedsend or __NR_mq_timedsend_time64. The 32-bit
time_t support is now only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
With arch-syscall.h it can now assumes the existance of either
__NR_mq_timedreceive or __NR_mq_timedreceive_time64. The 32-bit
time_t support is now only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
With arch-syscall.h it can now assumes the existance of either
__NR_clock_settime or __NR_clock_settime_time64. The 32-bit
time_t support is now only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
With arch-syscall.h it can now assumes the existance of either
__NR_clock_nanosleep or __NR_clock_nanosleep_time64. The 32-bit
time_t support is now only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Lukasz Majewski <lukma@denx.de>
With arch-syscall.h it can now assumes the existance of either
__NR_clock_gettime or __NR_clock_gettime_time64. The 32-bit time_t
support is now only build for !__ASSUME_TIME64_SYSCALLS.
It also uses the time64-support functions to simplify it further.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
With arch-syscall.h it can now assumes the existance of either
__NR_clock_adjtime or __NR_clock_adjtime_time64. The 32-bit time_t
support is now only build for !__ASSUME_TIME64_SYSCALLS.
Checked on x86_64-linux-gnu and i686-linux-gnu (on 5.4 and on 4.15
kernel).
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Lukasz Majewski <lukma@denx.de>
These helper functions are used to optimize the 64-bit time_t support on
configurations that requires support for 32-bit time_t fallback
(!__ASSUME_TIME64_SYSCALLS). The idea is once the kernel advertises that
it does not have 64-bit time_t support, glibc will stop to try issue the
64-bit time_t syscall altogether.
For instance:
#ifndef __NR_symbol_time64
# define __NR_symbol_time64 __NR_symbol
#endif
int r;
if (supports_time64 ())
{
r = INLINE_SYSCALL_CALL (symbol, ...);
if (r == 0 || errno != ENOSYS)
return r;
mark_time64_unsupported ();
}
#ifndef __ASSUME_TIME64_SYSCALLS
<32-bit fallback syscall>
#endif
return r;
On configuration with default 64-bit time_t this optimization should be
optimized away by the compiler resulting in no overhead.
Unfortunately some HWCAP names like HWCAP_S390_VX differs between
kernel (see <kernel>/arch/s390/include/asm/elf.h) and glibc.
Therefore, those HWCAP names from kernel are now introduced as alias
This patch updates the kernel version in the test tst-mman-consts.py
to 5.8. (There are no new MAP_* constants covered by this test in 5.8
that need any other header changes.)
Tested with build-many-glibcs.py.
This provides correct AT_EACCESS handling and also takes
Linux security modules into account.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Linux 5.8 has one new syscall, faccessat2. Update syscall-names.list
and regenerate the arch-syscall.h headers with build-many-glibcs.py
update-syscalls.
Tested with build-many-glibcs.py.
The kernel ABI is not finalized, and there are now various proposals
to change the size of struct rseq, which would make the glibc ABI
dependent on the version of the kernels used for building glibc.
This is of course not acceptable.
This reverts commit 48699da1c4 ("elf:
Support at least 32-byte alignment in static dlopen"), commit
8f4632deb3 ("Linux: rseq registration
tests"), commit 6e29cb3f61 ("Linux: Use
rseq in sched_getcpu if available"), and commit
0c76fc3c2b ("Linux: Perform rseq
registration at C startup and thread creation"), resolving the conflicts
introduced by the ARC port and the TLS static surplus changes.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Sun RPC was removed from glibc. This includes rpcgen program, librpcsvc,
and Sun RPC headers. Also test for bug #20790 was removed
(test for rpcgen).
Backward compatibility for old programs is kept only for architectures
and ABIs that have been added in or before version 2.28.
libtirpc is mature enough, librpcsvc and rpcgen are provided in
rpcsvc-proto project.
NOTE: libnsl code depends on Sun RPC (installed libnsl headers use
installed Sun RPC headers), thus --enable-obsolete-rpc was a dependency
for --enable-obsolete-nsl (removed in a previous commit).
The arc ABI list file has to be updated because the port was added
with the sunrpc symbols
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Support usable check for all CPU features with the following changes:
1. Change struct cpu_features to
struct cpuid_features
{
struct cpuid_registers cpuid;
struct cpuid_registers usable;
};
struct cpu_features
{
struct cpu_features_basic basic;
struct cpuid_features features[COMMON_CPUID_INDEX_MAX];
unsigned int preferred[PREFERRED_FEATURE_INDEX_MAX];
...
};
so that there is a usable bit for each cpuid bit.
2. After the cpuid bits have been initialized, copy the known bits to the
usable bits. EAX/EBX from INDEX_1 and EAX from INDEX_7 aren't used for
CPU feature detection.
3. Clear the usable bits which require OS support.
4. If the feature is supported by OS, copy its cpuid bit to its usable
bit.
5. Replace HAS_CPU_FEATURE and CPU_FEATURES_CPU_P with CPU_FEATURE_USABLE
and CPU_FEATURE_USABLE_P to check if a feature is usable.
6. Add DEPR_FPU_CS_DS for INDEX_7_EBX_13.
7. Unset MPX feature since it has been deprecated.
The results are
1. If the feature is known and doesn't requre OS support, its usable bit
is copied from the cpuid bit.
2. Otherwise, its usable bit is copied from the cpuid bit only if the
feature is known to supported by OS.
3. CPU_FEATURE_USABLE/CPU_FEATURE_USABLE_P are used to check if the
feature can be used.
4. HAS_CPU_FEATURE/CPU_FEATURE_CPU_P are used to check if CPU supports
the feature.
A big shoutout to Cupertino Miranda <cmiranda@synopsys.com> for his
valuable contribution in initial bringup and debugging on Linux and
later in solving pesky unwinding/cancelation failures in testsuite.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Teach the linker that __mcount_internal, __sigjmp_save_symbol,
__syscall_error and __GI_exit do not use r2, so that it does not need to
recover r2 after the call.
Test at configure time if the assembler supports @notoc and define
USE_PPC64_NOTOC.
Make the instructions for syscall list generation match Makefile and
refer to `update-syscall-lists'; there has been no `update-arch-syscall'
target. Also use single quotes around the command to stick to the ASCII
character set.
Fixes 4cf0d22305 ("Linux: Add tables with system call numbers").
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
To provide a y2038 safe interface a new symbol __shmctl64 is added
and __shmctl is change to call it instead (it adds some extra buffer
copying for the 32 bit time_t implementation).
Two new structures are added:
1. kernel_shmid64_ds: used internally only on 32-bit architectures
to issue the syscall. A handful of architectures (hppa, i386,
mips, powerpc32, and sparc32) require specific implementations
due to their kernel ABI.
2. shmid_ds64: this is only for __TIMESIZE != 64 to use along with
the 64-bit shmctl. It is different than the kernel struct because
the exported 64-bit time_t might require different alignment
depending on the architecture ABI.
So the resulting implementation does:
1. For 64-bit architectures it assumes shmid_ds already contains
64-bit time_t fields and will result in just the __shmctl symbol
using the __shmctl64 code. The shmid_ds argument is passed as-is
to the syscall.
2. For 32-bit architectures with default 64-bit time_t (newer ABIs
such riscv32 or arc), it will also result in only one exported
symbol but with the required high/low time handling.
3. Finally for 32-bit architecture with both 32-bit and 64-bit time_t
support we follow the already set way to provide one symbol with
64-bit time_t support and implement the 32-bit time_t support
using of the 64-bit one.
The default 32-bit symbol will allocate and copy the shmid_ds
over multiple buffers, but this should be deprecated in favor
of the __shmctl64 anyway.
Checked on i686-linux-gnu and x86_64-linux-gnu. I also did some sniff
tests on powerpc, powerpc64, mips, mips64, armhf, sparcv9, and
sparc64.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Each architecture overrides the struct msqid_ds which its required
kernel ABI one.
Checked on x86_64-linux-gnu and some bases sysvipc tests on hppa,
mips, mipsle, mips64, mips64le, sparc64, sparcv9, powerpc64le,
powerpc64, and powerpc.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This will allow us to have architectures specify their own version.
Not semantic changes expected. Checked with a build against the
all affected ABIs.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
To provide a y2038 safe interface a new symbol __msgctl64 is added
and __msgctl is change to call it instead (it adds some extra buffer
coping for the 32 bit time_t implementation).
Two new structures are added:
1. kernel_msqid64_ds: used internally only on 32-bit architectures
to issue the syscall. A handful of architectures (hppa, i386, mips,
powerpc32, and sparc32) require specific implementations due to
their kernel ABI.
2. msqid_ds64: this is only for __TIMESIZE != 64 to use along with
the 64-bit msgctl. It is different than the kernel struct because
the exported 64-bit time_t might require different alignment
depending on the architecture ABI.
So the resulting implementation does:
1. For 64-bit architectures it assumes msqid_ds already contains
64-bit time_t fields and will result in just the __msgctl symbol
using the __msgctl64 code. The msgid_ds argument is passed as-is
to the syscall.
2. For 32-bit architectures with default 64-bit time_t (newer ABIs
such riscv32 or arc), it will also result in only one exported
symbol but with the required high/low time handling.
3. Finally for 32-bit architecture with both 32-bit and 64-bit time_t
support we follow the already set way to provide one symbol with
64-bit time_t support and implement the 32-bit time_t support using
the 64-bit time_t.
The default 32-bit symbol will allocate and copy the msqid_ds
over multiple buffers, but this should be deprecated in favor
of the __msgctl64 anyway.
Checked on i686-linux-gnu and x86_64-linux-gnu. I also did some sniff
tests on powerpc, powerpc64, mips, mips64, armhf, sparcv9, and
sparc64.
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Each architecture overrides the struct msqid_ds which its required
kernel ABI one.
Checked on x86_64-linux-gnu and some bases sysvipc tests on hppa,
mips, mipsle, mips64, mips64le, sparc64, sparcv9, powerpc64le,
powerpc64, and powerpc.
Tested-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
This will allow us to have architectures specify their own version.
Not semantic changes expected. Checked with a build against the
all affected ABIs.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
Different than others 64-bit time_t syscalls, the SysIPC interface
does not provide a new set of syscall for y2038 safeness. Instead it
uses unused fields in semid_ds structure to return the high bits for
the timestamps.
To provide a y2038 safe interface a new symbol __semctl64 is added
and __semctl is change to call it instead (it adds some extra buffer
copying for the 32 bit time_t implementation).
Two new structures are added:
1. kernel_semid64_ds: used internally only on 32-bit architectures
to issue the syscall. A handful of architectures (hppa, i386,
mips, powerpc32, sparc32) require specific implementations due
their kernel ABI.
2. semid_ds64: this is only for __TIMESIZE != 64 to use along with
the 64-bit semctl. It is different than the kernel struct because
the exported 64-bit time_t might require different alignment
depending on the architecture ABI.
So the resulting implementation does:
1. For 64-bit architectures it assumes semid_ds already contains
64-bit time_t fields and will result in just the __semctl symbol
using the __semctl64 code. The semid_ds argument is passed as-is
to the syscall.
2. For 32-bit architectures with default 64-bit time_t (newer ABIs
such riscv32 or arc), it will also result in only one exported
symbol but with the required high/low handling.
It might be possible to optimize it further to avoid the
kernel_semid64_ds to semun transformation if the exported ABI
for the architectures matches the expected kernel ABI, but the
implementation is already complex enough and don't think this
should be a hotspot in any case.
3. Finally for 32-bit architecture with both 32-bit and 64-bit time_t
support we follow the already set way to provide one symbol with
64-bit time_t support and implement the 32-bit time_t support
using the 64-bit one.
The default 32-bit symbol will allocate and copy the semid_ds
over multiple buffers, but this should be deprecated in favor
of the __semctl64 anyway.
Checked on i686-linux-gnu and x86_64-linux-gnu. I also did some sniff
tests on powerpc, powerpc64, mips, mips64, armhf, sparcv9, and
sparc64.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Vineet Gupta <vgupta@synopsys.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Tested-by: Carlos O'Donell <carlos@redhat.com>
this means that *always* libnsl is only built as shared library for
backward compatibility and the NSS modules libnss_nis and libnss_nisplus
are not built at all, libnsl's headers aren't installed.
This compatibility is kept only for architectures and ABIs that have
been added in or before version 2.28.
Replacement implementations based on TIRPC, which additionally support
IPv6, are available from <https://github.com/thkukuk/>.
This change does not affect libnss_compat which does not depended
on libnsl since 2.27 and thus can be used without NIS.
libnsl code depends on Sun RPC, e.g. on --enable-obsolete-rpc (installed
libnsl headers use installed Sun RPC headers), which will be removed in
the following commit.
Binaries can opt-in to using BTI via an ELF object file marking.
The dynamic linker has to then mprotect the executable segments
with PROT_BTI. In case of static linked executables or in case
of the dynamic linker itself, PROT_BTI protection is done by the
operating system.
On AArch64 glibc uses PT_GNU_PROPERTY instead of PT_NOTE to check
the properties of a binary because PT_NOTE can be unreliable with
old linkers (old linkers just append the notes of input objects
together and add them to the output without checking them for
consistency which means multiple incompatible GNU property notes
can be present in PT_NOTE).
BTI property is handled in the loader even if glibc is not built
with BTI support, so in theory user code can be BTI protected
independently of glibc. In practice though user binaries are not
marked with the BTI property if glibc has no support because the
static linked libc objects (crt files, libc_nonshared.a) are
unmarked.
This patch relies on Linux userspace API that is not yet in a
linux release but in v5.8-rc1 so scheduled to be in Linux 5.8.
Co-authored-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
setcontext returns to the specified context via an indirect jump,
so there should be a BTI j.
In case of getcontext (and all other returns_twice functions) the
compiler adds BTI j at the call site, but swapcontext is a normal
c call that is currently not handled specially by the compiler.
So we change swapcontext such that the saved context returns to a
local address that has BTI j and then swapcontext returns to the
caller via a normal RET. For this we save the original return
address in the slot for x1 of the context because x1 need not be
preserved by swapcontext but it is restored when the context saved
by swapcontext is resumed.
The alternative fix (which is done on x86) would make swapcontext
special in the compiler so BTI j is emitted at call sites, on
x86 there is an indirect_return attribute for this, on AArch64
we would have to use returns_twice. It was decided against because
such fix may need user code updates: the attribute has to be added
when swapcontext is called via a function pointer and it breaks
always_inline functions with swapcontext.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>