glibc/nscd/hstcache.c
Adhemerval Zanella 8c78faa9ef Fix concurrent changes on nscd aware files (BZ #23178)
As indicated by BZ#23178, concurrent access on some files read by nscd
may result non expected data send through service requisition.  This is
due 'sendfile' Linux implementation where for sockets with zero-copy
support, callers must ensure the transferred portions of the the file
reffered by input file descriptor remain unmodified until the reader
on the other end of socket has consumed the transferred data.

I could not find any explicit documentation stating this behaviour on
Linux kernel documentation.  However man-pages sendfile entry [1] states
in NOTES the aforementioned remark.  It was initially pushed on man-pages
with an explicit testcase [2] that shows changing the file used in
'sendfile' call prior the socket input data consumption results in
previous data being lost.

From commit message it stated on tested Linux version (3.15) only TCP
socket showed this issues, however on recent kernels (4.4) I noticed the
same behaviour for local sockets as well.

Since sendfile on HURD is a read/write operation and the underlying
issue on Linux, the straightforward fix is just remove sendfile use
altogether.  I am really skeptical it is hitting some hotstop (there
are indication over internet that sendfile is helpfull only for large
files, more than 10kb) here to justify that extra code complexity or
to pursuit other possible fix (through memory or file locks for
instance, which I am not sure it is doable).

Checked on x86_64-linux-gnu.

	[BZ #23178]
	* nscd/nscd-client.h (sendfileall): Remove prototype.
	* nscd/connections.c [HAVE_SENDFILE] (sendfileall): Remove function.
	(handle_request): Use writeall instead of sendfileall.
	* nscd/aicache.c (addhstaiX): Likewise.
	* nscd/grpcache.c (cache_addgr): Likewise.
	* nscd/hstcache.c (cache_addhst): Likewise.
	* nscd/initgrcache.c (addinitgroupsX): Likewise.
	* nscd/netgroupcache.c (addgetnetgrentX, addinnetgrX): Likewise.
	* nscd/pwdcache.c (cache_addpw): Likewise.
	* nscd/servicescache.c (cache_addserv): Likewise.
	* sysdeps/unix/sysv/linux/Makefile [$(subdir) == nscd]
	(sysdep-CFLAGS): Remove -DHAVE_SENDFILE.
	* sysdeps/unix/sysv/linux/kernel-features.h (__ASSUME_SENDFILE):
	Remove define.

[1] http://man7.org/linux/man-pages/man2/sendfile.2.html
[2] 7b6a329977 (diff-efd6af3a70f0f07c578e85b51e83b3c3)
2018-05-16 13:44:53 -03:00

589 lines
17 KiB
C

/* Cache handling for host lookup.
Copyright (C) 1998-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1998.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>. */
#include <alloca.h>
#include <assert.h>
#include <errno.h>
#include <error.h>
#include <libintl.h>
#include <netdb.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <stdint.h>
#include <arpa/inet.h>
#include <arpa/nameser.h>
#include <sys/mman.h>
#include <stackinfo.h>
#include "nscd.h"
#include "dbg_log.h"
/* This is the standard reply in case the service is disabled. */
static const hst_response_header disabled =
{
.version = NSCD_VERSION,
.found = -1,
.h_name_len = 0,
.h_aliases_cnt = 0,
.h_addrtype = -1,
.h_length = -1,
.h_addr_list_cnt = 0,
.error = NETDB_INTERNAL
};
/* This is the struct describing how to write this record. */
const struct iovec hst_iov_disabled =
{
.iov_base = (void *) &disabled,
.iov_len = sizeof (disabled)
};
/* This is the standard reply in case we haven't found the dataset. */
static const hst_response_header notfound =
{
.version = NSCD_VERSION,
.found = 0,
.h_name_len = 0,
.h_aliases_cnt = 0,
.h_addrtype = -1,
.h_length = -1,
.h_addr_list_cnt = 0,
.error = HOST_NOT_FOUND
};
/* This is the standard reply in case there are temporary problems. */
static const hst_response_header tryagain =
{
.version = NSCD_VERSION,
.found = 0,
.h_name_len = 0,
.h_aliases_cnt = 0,
.h_addrtype = -1,
.h_length = -1,
.h_addr_list_cnt = 0,
.error = TRY_AGAIN
};
static time_t
cache_addhst (struct database_dyn *db, int fd, request_header *req,
const void *key, struct hostent *hst, uid_t owner,
struct hashentry *const he, struct datahead *dh, int errval,
int32_t ttl)
{
bool all_written = true;
time_t t = time (NULL);
/* We allocate all data in one memory block: the iov vector,
the response header and the dataset itself. */
struct dataset
{
struct datahead head;
hst_response_header resp;
char strdata[0];
} *dataset;
assert (offsetof (struct dataset, resp) == offsetof (struct datahead, data));
time_t timeout = MAX_TIMEOUT_VALUE;
if (hst == NULL)
{
if (he != NULL && errval == EAGAIN)
{
/* If we have an old record available but cannot find one
now because the service is not available we keep the old
record and make sure it does not get removed. */
if (reload_count != UINT_MAX)
/* Do not reset the value if we never not reload the record. */
dh->nreloads = reload_count - 1;
/* Reload with the same time-to-live value. */
timeout = dh->timeout = t + dh->ttl;
}
else
{
/* We have no data. This means we send the standard reply for this
case. Possibly this is only temporary. */
ssize_t total = sizeof (notfound);
assert (sizeof (notfound) == sizeof (tryagain));
const hst_response_header *resp = (errval == EAGAIN
? &tryagain : &notfound);
if (fd != -1 &&
TEMP_FAILURE_RETRY (send (fd, resp, total,
MSG_NOSIGNAL)) != total)
all_written = false;
/* If we have a transient error or cannot permanently store
the result, so be it. */
if (errval == EAGAIN || __builtin_expect (db->negtimeout == 0, 0))
{
/* Mark the old entry as obsolete. */
if (dh != NULL)
dh->usable = false;
}
else if ((dataset = mempool_alloc (db, (sizeof (struct dataset)
+ req->key_len), 1)) != NULL)
{
timeout = datahead_init_neg (&dataset->head,
(sizeof (struct dataset)
+ req->key_len), total,
(ttl == INT32_MAX
? db->negtimeout : ttl));
/* This is the reply. */
memcpy (&dataset->resp, resp, total);
/* Copy the key data. */
memcpy (dataset->strdata, key, req->key_len);
/* If necessary, we also propagate the data to disk. */
if (db->persistent)
{
// XXX async OK?
uintptr_t pval = (uintptr_t) dataset & ~pagesize_m1;
msync ((void *) pval,
((uintptr_t) dataset & pagesize_m1)
+ sizeof (struct dataset) + req->key_len, MS_ASYNC);
}
(void) cache_add (req->type, &dataset->strdata, req->key_len,
&dataset->head, true, db, owner, he == NULL);
pthread_rwlock_unlock (&db->lock);
/* Mark the old entry as obsolete. */
if (dh != NULL)
dh->usable = false;
}
}
}
else
{
/* Determine the I/O structure. */
size_t h_name_len = strlen (hst->h_name) + 1;
size_t h_aliases_cnt;
uint32_t *h_aliases_len;
size_t h_addr_list_cnt;
char *addresses;
char *aliases;
char *key_copy = NULL;
char *cp;
size_t cnt;
ssize_t total;
/* Determine the number of aliases. */
h_aliases_cnt = 0;
for (cnt = 0; hst->h_aliases[cnt] != NULL; ++cnt)
++h_aliases_cnt;
/* Determine the length of all aliases. */
h_aliases_len = (uint32_t *) alloca (h_aliases_cnt * sizeof (uint32_t));
total = 0;
for (cnt = 0; cnt < h_aliases_cnt; ++cnt)
{
h_aliases_len[cnt] = strlen (hst->h_aliases[cnt]) + 1;
total += h_aliases_len[cnt];
}
/* Determine the number of addresses. */
h_addr_list_cnt = 0;
while (hst->h_addr_list[h_addr_list_cnt] != NULL)
++h_addr_list_cnt;
if (h_addr_list_cnt == 0)
/* Invalid entry. */
return MAX_TIMEOUT_VALUE;
total += (sizeof (struct dataset)
+ h_name_len
+ h_aliases_cnt * sizeof (uint32_t)
+ h_addr_list_cnt * hst->h_length);
/* If we refill the cache, first assume the reconrd did not
change. Allocate memory on the cache since it is likely
discarded anyway. If it turns out to be necessary to have a
new record we can still allocate real memory. */
bool alloca_used = false;
dataset = NULL;
/* If the record contains more than one IP address (used for
load balancing etc) don't cache the entry. This is something
the current cache handling cannot handle and it is more than
questionable whether it is worthwhile complicating the cache
handling just for handling such a special case. */
if (he == NULL && h_addr_list_cnt == 1)
dataset = (struct dataset *) mempool_alloc (db, total + req->key_len,
1);
if (dataset == NULL)
{
/* We cannot permanently add the result in the moment. But
we can provide the result as is. Store the data in some
temporary memory. */
dataset = (struct dataset *) alloca (total + req->key_len);
/* We cannot add this record to the permanent database. */
alloca_used = true;
}
timeout = datahead_init_pos (&dataset->head, total + req->key_len,
total - offsetof (struct dataset, resp),
he == NULL ? 0 : dh->nreloads + 1,
ttl == INT32_MAX ? db->postimeout : ttl);
dataset->resp.version = NSCD_VERSION;
dataset->resp.found = 1;
dataset->resp.h_name_len = h_name_len;
dataset->resp.h_aliases_cnt = h_aliases_cnt;
dataset->resp.h_addrtype = hst->h_addrtype;
dataset->resp.h_length = hst->h_length;
dataset->resp.h_addr_list_cnt = h_addr_list_cnt;
dataset->resp.error = NETDB_SUCCESS;
/* Make sure there is no gap. */
assert ((char *) (&dataset->resp.error + 1) == dataset->strdata);
cp = dataset->strdata;
cp = mempcpy (cp, hst->h_name, h_name_len);
cp = mempcpy (cp, h_aliases_len, h_aliases_cnt * sizeof (uint32_t));
/* The normal addresses first. */
addresses = cp;
for (cnt = 0; cnt < h_addr_list_cnt; ++cnt)
cp = mempcpy (cp, hst->h_addr_list[cnt], hst->h_length);
/* Then the aliases. */
aliases = cp;
for (cnt = 0; cnt < h_aliases_cnt; ++cnt)
cp = mempcpy (cp, hst->h_aliases[cnt], h_aliases_len[cnt]);
assert (cp
== dataset->strdata + total - offsetof (struct dataset,
strdata));
/* If we are adding a GETHOSTBYNAME{,v6} entry we must be prepared
that the answer we get from the NSS does not contain the key
itself. This is the case if the resolver is used and the name
is extended by the domainnames from /etc/resolv.conf. Therefore
we explicitly add the name here. */
key_copy = memcpy (cp, key, req->key_len);
assert ((char *) &dataset->resp + dataset->head.recsize == cp);
/* Now we can determine whether on refill we have to create a new
record or not. */
if (he != NULL)
{
assert (fd == -1);
if (total + req->key_len == dh->allocsize
&& total - offsetof (struct dataset, resp) == dh->recsize
&& memcmp (&dataset->resp, dh->data,
dh->allocsize - offsetof (struct dataset, resp)) == 0)
{
/* The data has not changed. We will just bump the
timeout value. Note that the new record has been
allocated on the stack and need not be freed. */
assert (h_addr_list_cnt == 1);
dh->ttl = dataset->head.ttl;
dh->timeout = dataset->head.timeout;
++dh->nreloads;
}
else
{
if (h_addr_list_cnt == 1)
{
/* We have to create a new record. Just allocate
appropriate memory and copy it. */
struct dataset *newp
= (struct dataset *) mempool_alloc (db,
total + req->key_len,
1);
if (newp != NULL)
{
/* Adjust pointers into the memory block. */
addresses = (char *) newp + (addresses
- (char *) dataset);
aliases = (char *) newp + (aliases - (char *) dataset);
assert (key_copy != NULL);
key_copy = (char *) newp + (key_copy - (char *) dataset);
dataset = memcpy (newp, dataset, total + req->key_len);
alloca_used = false;
}
}
/* Mark the old record as obsolete. */
dh->usable = false;
}
}
else
{
/* We write the dataset before inserting it to the database
since while inserting this thread might block and so would
unnecessarily keep the receiver waiting. */
assert (fd != -1);
if (writeall (fd, &dataset->resp, dataset->head.recsize)
!= dataset->head.recsize)
all_written = false;
}
/* Add the record to the database. But only if it has not been
stored on the stack.
If the record contains more than one IP address (used for
load balancing etc) don't cache the entry. This is something
the current cache handling cannot handle and it is more than
questionable whether it is worthwhile complicating the cache
handling just for handling such a special case. */
if (! alloca_used)
{
/* If necessary, we also propagate the data to disk. */
if (db->persistent)
{
// XXX async OK?
uintptr_t pval = (uintptr_t) dataset & ~pagesize_m1;
msync ((void *) pval,
((uintptr_t) dataset & pagesize_m1)
+ total + req->key_len, MS_ASYNC);
}
/* NB: the following code is really complicated. It has
seemlingly duplicated code paths which do the same. The
problem is that we always must add the hash table entry
with the FIRST flag set first. Otherwise we get dangling
pointers in case memory allocation fails. */
assert (hst->h_addr_list[1] == NULL);
/* Avoid adding names if more than one address is available. See
above for more info. */
assert (req->type == GETHOSTBYNAME
|| req->type == GETHOSTBYNAMEv6
|| req->type == GETHOSTBYADDR
|| req->type == GETHOSTBYADDRv6);
(void) cache_add (req->type, key_copy, req->key_len,
&dataset->head, true, db, owner, he == NULL);
pthread_rwlock_unlock (&db->lock);
}
}
if (__builtin_expect (!all_written, 0) && debug_level > 0)
{
char buf[256];
dbg_log (_("short write in %s: %s"), __FUNCTION__,
strerror_r (errno, buf, sizeof (buf)));
}
return timeout;
}
static int
lookup (int type, void *key, struct hostent *resultbufp, char *buffer,
size_t buflen, struct hostent **hst, int32_t *ttlp)
{
if (type == GETHOSTBYNAME)
return __gethostbyname3_r (key, AF_INET, resultbufp, buffer, buflen, hst,
&h_errno, ttlp, NULL);
if (type == GETHOSTBYNAMEv6)
return __gethostbyname3_r (key, AF_INET6, resultbufp, buffer, buflen, hst,
&h_errno, ttlp, NULL);
if (type == GETHOSTBYADDR)
return __gethostbyaddr2_r (key, NS_INADDRSZ, AF_INET, resultbufp, buffer,
buflen, hst, &h_errno, ttlp);
return __gethostbyaddr2_r (key, NS_IN6ADDRSZ, AF_INET6, resultbufp, buffer,
buflen, hst, &h_errno, ttlp);
}
static time_t
addhstbyX (struct database_dyn *db, int fd, request_header *req,
void *key, uid_t uid, struct hashentry *he, struct datahead *dh)
{
/* Search for the entry matching the key. Please note that we don't
look again in the table whether the dataset is now available. We
simply insert it. It does not matter if it is in there twice. The
pruning function only will look at the timestamp. */
int buflen = 1024;
char *buffer = (char *) alloca (buflen);
struct hostent resultbuf;
struct hostent *hst;
bool use_malloc = false;
int errval = 0;
int32_t ttl = INT32_MAX;
if (__glibc_unlikely (debug_level > 0))
{
const char *str;
char buf[INET6_ADDRSTRLEN + 1];
if (req->type == GETHOSTBYNAME || req->type == GETHOSTBYNAMEv6)
str = key;
else
str = inet_ntop (req->type == GETHOSTBYADDR ? AF_INET : AF_INET6,
key, buf, sizeof (buf));
if (he == NULL)
dbg_log (_("Haven't found \"%s\" in hosts cache!"), (char *) str);
else
dbg_log (_("Reloading \"%s\" in hosts cache!"), (char *) str);
}
while (lookup (req->type, key, &resultbuf, buffer, buflen, &hst, &ttl) != 0
&& h_errno == NETDB_INTERNAL
&& (errval = errno) == ERANGE)
{
errno = 0;
if (__glibc_unlikely (buflen > 32768))
{
char *old_buffer = buffer;
buflen *= 2;
buffer = (char *) realloc (use_malloc ? buffer : NULL, buflen);
if (buffer == NULL)
{
/* We ran out of memory. We cannot do anything but
sending a negative response. In reality this should
never happen. */
hst = NULL;
buffer = old_buffer;
/* We set the error to indicate this is (possibly) a
temporary error and that it does not mean the entry
is not available at all. */
h_errno = TRY_AGAIN;
errval = EAGAIN;
break;
}
use_malloc = true;
}
else
/* Allocate a new buffer on the stack. If possible combine it
with the previously allocated buffer. */
buffer = (char *) extend_alloca (buffer, buflen, 2 * buflen);
}
time_t timeout = cache_addhst (db, fd, req, key, hst, uid, he, dh,
h_errno == TRY_AGAIN ? errval : 0, ttl);
if (use_malloc)
free (buffer);
return timeout;
}
void
addhstbyname (struct database_dyn *db, int fd, request_header *req,
void *key, uid_t uid)
{
addhstbyX (db, fd, req, key, uid, NULL, NULL);
}
time_t
readdhstbyname (struct database_dyn *db, struct hashentry *he,
struct datahead *dh)
{
request_header req =
{
.type = GETHOSTBYNAME,
.key_len = he->len
};
return addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
}
void
addhstbyaddr (struct database_dyn *db, int fd, request_header *req,
void *key, uid_t uid)
{
addhstbyX (db, fd, req, key, uid, NULL, NULL);
}
time_t
readdhstbyaddr (struct database_dyn *db, struct hashentry *he,
struct datahead *dh)
{
request_header req =
{
.type = GETHOSTBYADDR,
.key_len = he->len
};
return addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
}
void
addhstbynamev6 (struct database_dyn *db, int fd, request_header *req,
void *key, uid_t uid)
{
addhstbyX (db, fd, req, key, uid, NULL, NULL);
}
time_t
readdhstbynamev6 (struct database_dyn *db, struct hashentry *he,
struct datahead *dh)
{
request_header req =
{
.type = GETHOSTBYNAMEv6,
.key_len = he->len
};
return addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
}
void
addhstbyaddrv6 (struct database_dyn *db, int fd, request_header *req,
void *key, uid_t uid)
{
addhstbyX (db, fd, req, key, uid, NULL, NULL);
}
time_t
readdhstbyaddrv6 (struct database_dyn *db, struct hashentry *he,
struct datahead *dh)
{
request_header req =
{
.type = GETHOSTBYADDRv6,
.key_len = he->len
};
return addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
}