It started out as busywork, but it does many separate things. If I could
start over, I'd take them apart into multiple commits:
1. Remove G_ENABLE_DEBUG around GDK_DEBUG_*() calls
This is not needed at all, the calls themselves take care of it.
2. Remove G_ENABLE_DEBUG around profiling code
This now enables profiling support in release builds.
3. Stop poking _gdk_debug_flags and use GDK_DEBUG_CHECK()
This was old code that was never updated.
4. Make !G_ENABLE_DEBUG turn off GDK_DEBUG_CHECK()
The code used to
#define GDK_DEBUG_CHECK(...) false
#define GDK_DEBUG(...)
which would compile away all the code inside those macros. This
means a lot of variable definitions and debug utility functions
would suddenly no longer be used and cause compiler errors.
This is implemented using a new xdg_toplevel `suspended` state, and is
meant for allowing applications to know when they can stop doing
unnecessary work and thus save power.
In the other backends, the `suspended` state is set at the same time as
`minimized` as it's the closest there is to traditional windowing
systems.
That way, it doesn't need a specific init function.
Also chain up last, so that the generic initialization code in
GdkSurface::constructed can access a fully initialized macos surface.
... and use this check in gdk_gl_context_make_current() and
gdk_gl_context_get_current() to make sure the context really is still
current.
The context no longer being current can happen when external GL
implementations make their own contexts current in the same threads GDK
contexts are used in.
And that can happen for example by WebKit.
Theoretically, this should also allow external EGL code to run in X11
applications when GDK chooses to use GLX, but I didn't try it.
Fixes#5392
Instead of adding events to the application event queue, dispatch
them directly to the right display. We know this when the event is
to be dispatched.
This is the same as used for the `sendEvent` method in `GdkMacosWindow`.
To achieve this I factored out the generic NSEvent to GdkEvent translation.
We can send an event directly, when we receive it in the GdkMacosWindow
directly from the OS.
By passing the events during a (midal-ish) drag operation to the main loop,
we're able to keep up with what's happening. This allows the internal
drag state (GtkDragSource) to be updated and be done when the drag is
done.
The Drag data should pass through the macos pasteboard system.
We need to provide some pasteboard type. Let's make it a "URL",
which is a pretty generic type anyway.
The handling is done similar to drag targets.
Note that dragging is a modal action on macos: no events
are sent to the main window. This could cause trouble when
we finish the drag, and not finish the gesture in GTK.