This commit takes several steps towards rendering text
like we want to.
The creation of the cairo surface and texture is moved
to the backend (in GskVulkanRenderer). We add a mask
shader that is used in the next text pipeline to use
the texture as a mask, like cairo_mask_surface does.
There is a separate color text pipeline that uses the
already existing blend shaders to use the texture as
a source, like cairo_paint does.
The text node api is simplified to have just a single
offset, which determines the left end of the text baseline,
like all our other text drawing APIs.
Currently, this information is not used since cairo_show_glyphs
deals with color glyphs for us. But when we get to uploading
glyphs to a texture atlas, we will need it to do the right thing.
We don't look at individual glyphs here, but just whether the
font has the has-color flag set. In practice, all glyphs in
such a font will be color glyphs, and we can avoid loading all
the glyphs this way.
This node essentially implements the feColorMatrix SVG filter. I got the
idea yesterday after looking at the opacity implementation.
It can be used for opacity (not sure if we want to) and to implement a
bunch of the CSS filters.
Use g_newa() instead of VLAs, as VLAs may never be supported by some
compilers as it became optional in C11 and there are concerns about their
implementations in compilers that do support it.
https://bugzilla.gnome.org/show_bug.cgi?id=773299
Note: We interpolate premultiplied colors as per the CSS spec. This i
different from Cairo, which interpolates unpremultiplied.
So in testcases with translucent gradients, it's actually Cairo that is
wrong.
This does a conversion to/from GBytes and is intended for writing tests.
It's really crude but it works.
And that probably means Alex will (ab)use it for broadway.
Instead of a separate allocation for any arrays in the render node
we allocate these as part of the render node itself, using C99
flexible arrays.
This leads to less allocations, which is nice, but the major reason
for this is that it allows us to change the allocation scheme further
in the future. For instance, we want to do stack-like allocation so
that all the render-nodes for an entire frame are allocated in one
(or a few) chunks.
Instead of constantly recalculating this (especially recursively for
parents!) we do it only on construction, because everything is
immutable anyway. Also, most nodes had a bounds already and can
use the new parent member instead.
We also do direct access to the node bounds rather than calling
gsk_render_node_get_bounds in various places, which means
we do less copying.
... and make the icon rendering code use it.
This requires moving even more shadow renering code into GSK, but so be
it. At least the "shadows not implemented" warning is now gone!
The node draws a solid CSS border, which can be used to cover everything
but dashed and dotted borders (double, groove, inset, ...).
For different border styles, we overlay multiple nodes and set their
colors to transparent for sides with non-matching styles.
Instead of appending a container node and adding the nodes to it as they
come in, we now collect the nodes until gtk_snapshot_pop() is called and
then hand them out in a container node.
The caller of gtk_snapshot_push() is then responsible for doing whatever
he wants with the created node.
Another addigion is the keep_coordinates flag to gtk_snapshot_push()
which allows callers to keep the current offset and clip region or
discard it. Discarding is useful when doing transforms, keeping it is
useful when inserting effect nodes (like the ones I'm about to add).
Instead of having a setter for the transform, have a GskTransformNode.
Most of the oprations that GTK does do not require a transform, so it
doesn't make sense to have it as a primary attribute.
Also, changing the transform requires updating the uniforms of the GL
renderer, so we're happy if we can avoid that.