This adds machinery to create colorstate objects from cicp
tuples, as well as a function to return a cicp tuple for a
colorstate.
Still missing: a conversion shader for non-default colorstates.
Our conversion machinery supports converting from any color
state to any default color state or back. Direct conversion
between two non-default color states isn't guaranteed. For
converting *to* a cicp color state, we need this function.
Vulkan objects are integers on 32bit and it's failing when it's set to
just NULL.
```
../gdk/gdkvulkancontext.c:677:24: error: assignment to ‘VkSemaphore’ {aka ‘long long unsigned int’} from ‘void *’ makes integer from pointer without a cast [-Wint-conversion]
677 | priv->draw_semaphore = NULL;
```
Now that we don't use the fancy features anymore, we don't need to
enable them.
And that also means we don't need an env var to disable it for testing.
YUV dmabufs are not sRGB.
So instead of making the dmabuf builder have sRGB as the default
colorstate, add a NULL default option that makes the builder choose
the colorstate based on fourcc when build() is called.
If that happens, we pick sRGB usually, but for YUV we pick narrow range
BT601, like we did in versions before colorstates.
* We cannot map with offset, because offsets need to be page-size
aligned. And our code doesn't expect an offset anyway.
* The error return value from mmap() is MAP_FAILED aka -1, not NULL aka
0.
Vulkan requires us waiting on the image acquired from
vkAcquireNextImageKHR() before we start rendering to it, as that
function is allowed to return images that are still in use by the
compositor.
Because of that requirement, vkAcquireNextImageKHR() requires a
semaphore or fence to be passed that it can signal once it's done.
We now use a side channel to begin_frame() - calling
set_draw_semaphore() - to pass that semaphore so that the
vkAcquireNextImageKHR() call inside begin_frame() can use it, and then
we can wait on it later when we submit.
And yes, this is insanely convoluted, the Vulkan developers should
totally have thought about GTK's internal designs before coming up
with that idea.
When loading or saving png files, encode the CICP flags of the color
state into the PNG.
When loading, decode the CICP flags if available and detect the
colorstate they use.
If we do not support the cicp tags, we do not load the image.
So far, we ignore the ICC profiles.
Includes regeneration of nodeparse test *reference* output to include
the new tags we write to PNGs.
The original tests do not include those tags, so we implicitly test that
we read untagged files correctly.
We only download the data when we actually need it for writing into the
PNG stream.
This allows modifying the download parameters (in particular color state
in the next commit) while writing out their settings, so the code for
selecting the right colorstate liives in only one place.
We have to be careful though, because the download now happens after the
setjmp(), so we need to make sure the error path handles both cases
without leaking: Where the download has happened and where it hasn't.
Same thing as dmabuf and GL texture builders. Preparation for adding
color state support to texture constructors.
As a bonus, we can now do update regions with memory textures.
... and plumb the color state through the downloading machinery, where
no matter what path it takes it ends up in
gdk_memory_convert_color_state() or gdk_memory_convert().
The 2nd of those has been expanded to optionally do colorstate
conversion when the 2 colorstates are different.
This happens when buffer creation fails in `get_dmabuf_wl_buffer()` and
we manually call `listener->release (data, NULL)`.
Fixes: 2478dd8322 ("subsurface: Split a function")
This is a still experimental protocol (thus the xx prefix).
We are using it go obtain information about the compositors
preferred color state, and pass that on to our rendering machinery.
The currently supported color states are srgb, srgb-linear, rec2100-pq
and rec2100-linear. We don't have any support for ICC profiles.
Unlike other protocols, keep the support code for this protocol
fairly isolated behind wrapper objects, since the protocol is
still subject to change.
begin_frame is the place where we make decisions about the format,
depth and colorstate for our rendering. Make these calls take the
surface color state into account.
In particular, if the surface colorstate is suitable for GL_SRGB,
and we don't need high depth, set things up for that.
The modern incantation to get validation layers enabled is via
VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_validation
Vulkan has a bunch of environment variables to toggle stuff, let's use
those instead of doing our own.
The settings portal is reporting enums as string values, so
we need to translate this setting back to what we need.
Fixes
(gtk4-demo:18902): GLib-CRITICAL **: 19:06:14.783: g_variant_get_int32: assertion 'g_variant_is_of_type (value, G_VARIANT_TYPE_INT32)' failed
that could be seen in recent nightly flatpaks.
Previously, we were always downloading into CAIRO_FORMAT_ARGB32.
Now we check the texture depth and pick a suitable format.
This improves rendering for high depth content, but it's slower.
That's why we're not yet making sure the depth is suitable for the
colorspace conversion. That would force all SRGB textures into float
surfaces as we don't consider conversions suitable for U8 in our generic
code.
This shader converts between two color states, by using the
same functions that we use on the cpu. The conversion to perform
is passed as part of the variation.
As premultiplication is part of color states on the shader, we also
encode the premultiplication in the shader.
And because opacity is a useful optimization, we also allow setting
opacity.
For now, the only possible color states are srgb and srgb-linear.
This adds the following:
- ccs argument to GskRenderNode::draw
This is the compositing color state to use when drawing.
- make implementations use the CCS argument
FIXME: Some implementations are missing
- gsk_render_node_draw_with_color_state()
Draws a node with any color state, by switching to its compositing
color state, drawing in that color state and then converting to the
desired color state.
This does draw the result OVER the previous contents in the passed in
color state, so this function should be called with the target being
empty.
- gsk_render_node_draw_ccs()
This needs to be passed a css and then draws with that ccs.
The main use for this is chaining up in rendernode draw()
implementations.
- split out shared Cairo functions into gdkcairoprivate.h
gskrendernode.c and gskrendernodeimpl.c need the same functions.
Plus, there's various code in GDK that wants to use it, so put it in
gdk/ not in gsk/
gsk_render_node_draw() now calls gsk_render_node_draw_with_color_state()
with GDK_COLOR_STATE_SRGB.
Make begin_frame() set a rendering colorstate and depth, and provide it
to the renderers via gdk_draw_context_get_depth() and
gdk_draw_context_get_color_state().
This allows the draw contexts to define their own values, so that ie the
Cairo and GL renderer can choose different settings for rendering (in
particular, GL can choose GL_SRGB and do the srgb conversion; while
Cairo relies on the renderer).
That's basically the "undefined" value. We need that when drawing
nothing, which so far only happens with empty container nodes.
But empty container nodes can be children of other nodes, and that makes
things propagate. So instead of catching them, force the whole rest of
the code to deal with an undefined depth.
We also can't just set a random depth, because that will cause merging
to fail.
Make our visual selection code prefer fbconfigs that are
'srgb framebuffer capable', and mark the surface as 'is srgb'
in this case.
This arranges things so that GSK knows not to use an offscreen
for converting contents back to srgb in the end.
For GDK_MEMORY_U8_SRGB depth, try to create an SRGB surface.
This requires the EXT_KHR_gl_colorspace extension, which
isn't super-common in the wild (37%), so we fall back to regular U8 if
that fails.
But if we have the extension, create our egl surface with the
srgb colorspace, and report that fact in gdk_surface_gl_is_srgb().
We still only differentiate between high bit depth or not, but we now
choose at the end instead of the start, which makes it easier to adapt
to a different method of choosing.
This is an experiment for now, but it seems that encoding srgb inside
the depth makes sense, as we not just use depth to decide on the
GL fbconfigs/Vulkan formats to pick, depth also encodes how the [0...1]
color values are quantized when stored.
Let's see where this goes.
Returns the linear color state that renderers should render in when
this is the target color state.
We disable this function unless linear compositing is enabled and just
return @self by default.
This function checks if the colorstate uses an sRGB transfer function
as final operation. In that case, it is suitable for use with GL_SRGB
(and the Vulkan equivalents).
We disable this function (by always returning NULL) unless linear
compositing is enabled, because this function is used to transition
textures and framebuffers to their linear counterparts.
This is mostly an empty shell for now. We only have static instances
for srgb and srgb-linear, which we will use as markers during our
node processing.
In the future, this object may grow more instances, as well as the
ability to create them from and save them to icc profiles or cicp
data. And a color conversion API.
This is a temporary solution to allow testing how well linear rendering
already works while refactoring code.
This will be removed once linear rendering is the default.
We have code with proper error handling for dmabuf export, we can just
try to use it.
And if it doesn't work, we don't offload the texture like before.
But it does work - at least for me.
Instead of hardcoding which textures we presumably support, just try
creating a buffer and use the failure of that for the error message.
This makes the error message a bit less obvious, but it makes it
possible to refactor the get_buffer() code without having to deal with
the error path.
If we want to improve the debug message, we can start putting debug
messages into the get_buffer() function.
But I think this is good enough.
This allows handling them without ever needing to offscreen for losing
the clip, because the clip can always be transformed.
Also, all the optimizations keep working, like occlusion culling,
clears, and so on.
The main benefit of this work is the ability for offloading to now
handle dihedral transforms of the video buffer.
The other big advantage is that we can now start our rendering with a
dihedral transform from the compositor.
We are seeing posix_fallocate fail with ENOENT occasionally.
This shouldn't happen according to the docs, but it does. Fall back
to ftruncate if it does. It gives us less guarantees, but it makes
the ci not fail so much.
The unary (closure) annotation is for function pointer types; function
arguments that represent the user data to be passed to the callback are
annotated on the callback argument itself, with (closure arg-name).
The feature was apparently missing, as monitors were always fullscreened at the surface best monitor.
Keep using best monitor if the selected monitor is not specified, otherwise move the window to the selected monitor before going fullscreen.
gdk_vulkan_context_check_swapchain uses priv->current_format,
so we must update it first, and undo that if check_swapchain
falls. This fixes handling of high-depth back buffers in gsk.
This is useful in debugging.
The names I chose are shortened a bit from the enum values. We
use just a single depth, * for premultiplied, and f for float.
VkShaderModule's may or may not be pointers depending on the target
platform, so use pointers to hash those handles to be safe, and retrieve
them from hashes accordingly.
Fixes build on 32-bit Windows at least.
As they are generated by gi-docgen thanks to the newly added async annotations.
It allows bindings that don't expose the _finish
functions to propose less-confusing docs
This protocol lifts some functionality from the gtk-shell protocol,
namely the ability to tag dialogs as modal. Ensure to use this
new protocol if available for the task, instead of the gtk-shell
protocol.
Make the info about the required protocols an array of definitions
again (a dict instead of an array this time) and add a field that
may be used for version checks of the wayland-protocols found.
Also, make it possible to have versioned protocols in-tree. Both
of these things will allow us to ship in-tree copies of wayland-protocols
without necessarily having to bump the version we depend on.
'XPointerUngrabInfo' appears unused since
commit 26cbf87d7d ("New approach for grab tracking code")
Remove it.
Signed-off-by: Dr. David Alan Gilbert <dave@treblig.org>
Copy what gcc's libstdc++ does for vectors to avoid overflows:
1. Define a max size macro and assert against it
Note that we don't assert but actually check, because this needs
to abort even if assertions are disabled.
2. Don't do fancy math to compute new capacity.
Just size *= 2 instead and be careful about overflow.
In case the context's only reference was held by being the current
context, setting the new context would free it.
Resetting it later would then be a use-after-free.
Fixes#6694
Currently, GTK does not check the result of vkAcquireNextImageKHR() and
assumes that it always succeeds. As a result, the vkQueuePresentKHR() is
unconditionally set to wait for the semaphore passed to
vkAcquireNextImageKHR() earlier.
However, if vkAcquireNextImageKHR() fails for some reason, the semaphore
passed to it does not get signalled. This causes the presentation
command to wait for the semaphore to be signalled indefinitely, which
causes GTK to hang.
This change adds error handling around vkAcquireNextImageKHR() to make
GTK recreate the Vulkan swapchain when it is necessary or beneficial and
helps avoiding situations that could cause indefinite waits.
This reverts commit 84a304e66e.
This produces marks that are confusing to me. They don't correlate
with actual gaps in the frame cycle and often overlap with regular
'window presented' marks. Also, the function we are emitting these
marks from is called from the get_frame_time getter, and we
definitely don't want to emit marks from there.
In order for the size change check to make sense, vk_pipeline_cache_size
needs to correspond to the size of the cache we last wrote to disk.
We were forgetting to update it after saving the cache, so the
check was ineffective.