The new renderers don't support them due to the required complexity of
integrating them with Vulkan and the assumptions those nodes make about
the renderer (the GL renderer exports its internal APIs into the
GLShader).
There haven't been any complaints that I'm aware of since 4.14 was
released where the default renderer does not support the nodes, so usage
in public seems to be close to nonexistant.
The 2 uses I know of were workarounds about missing features in GTK that
have stopped since GTK now supports them:
1. GStreamer used in to do premultiplication when the old GL renderer
did not do so in hardware but on the CPU.
2. Adwaita used it for masking before the mask node wa added in 4.10.
It started out as busywork, but it does many separate things. If I could
start over, I'd take them apart into multiple commits:
1. Remove G_ENABLE_DEBUG around GDK_DEBUG_*() calls
This is not needed at all, the calls themselves take care of it.
2. Remove G_ENABLE_DEBUG around profiling code
This now enables profiling support in release builds.
3. Stop poking _gdk_debug_flags and use GDK_DEBUG_CHECK()
This was old code that was never updated.
4. Make !G_ENABLE_DEBUG turn off GDK_DEBUG_CHECK()
The code used to
#define GDK_DEBUG_CHECK(...) false
#define GDK_DEBUG(...)
which would compile away all the code inside those macros. This
means a lot of variable definitions and debug utility functions
would suddenly no longer be used and cause compiler errors.
Those property features don't seem to be in use anywhere.
They are redundant since the docs cover the same information
and more. They also created unnecessary translation work.
Closes#4904
Remove a boatload of "or %NULL" from nullable parameters
and return values. gi-docgen generates suitable text from
the annotation that we don't need to duplicate.
This adds a few missing nullable annotations too.
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
A GskGLShader is an abstraction of a GLSL fragment shader that
can produce pixel values given inputs:
* N (currently max 4) textures
* Current arguments for the shader uniform
Uniform types are: float,(u)int,bool,vec234)
There is also a builder for the uniform arguments which are
passed around as immutable GBytes in the built form.
A GskGLShaderNode is a render node that renders a GskGLShader inside a
specified rectangular bounds. It renders its child nodes as textures
and passes those as texture arguments to the shader. You also pass it
a uniform arguments object.