The code now follows gsk_rounded_rect_shrink() and with it the behavior
of the Cairo renderer and Webkit.
The old code did what the GL renderer and Cairo do, but I consider that
wrong.
I did not test Chrome.
Test attached
The source uniform may or may not point
to a glyph atlas. The optimization we do
for color nodes is only possible if it does,
so check this.
Fixes: #6094
Cairo and the GL renderer have a different idea of how to handle
transitioning of colors outside the defined range.
Consider these stops:
black 50%, white 50%
What color is at 0%?
Cairo would transition between the last and first stop, ie it'd do a
white-to-black transition and end up at rgb(0.5,0.5,0.5) at 0%.
GL would behave as it would for non-repeating gradients and use black
for the range [0%..50%] and white for [50%..100%].
The web would rescale the range so the first stop would be at 0% and
the last stop would be at 100%, so this gradient would be illegal.
Considering that it's possible for code to transition between the
different behaviors by adding explicit stops at 0%/100%, I could choose
any method.
So I chose the simplest one, which is what the GL renderer does and
which treats repeating and non-repeating gradients the same.
Tests attached.
We require folks to include gskglrenderer.h in order
to create a GL renderer. So we be careful to only
include header in gskglrenderer.h that won't trigger
ugly warnings.
See !6363
There is no decomposition going on for any contours,
and the tolerance argument is entirely unused.
Decomposition and tolerance is handled entirely
in gskpath.c by its trampoline.
Make gsk_path_builder_add_rect always
produce a clockwise rectangle. This matches
what we do for circles and rounded rects,
which also go clockwise. Note that we
still need to allow negative widths in
the contour code, to implement reverse().
Add a contour that optimizes some things for
rectangles. Also add rectangle detection to the
path parser, and add tests similar to what we
have for the other special contours.
This special contour takes advantage of its
rounded-rect-ness for speeding up bounding
boxes and winding numbers. It falls back
to the standard contour code for everything
else.
Add a private gsk_path_point_to_string that
can be called in the debugger if you want
to see the contents of a GskPathPoint and
are too lazy to cast it to GskRealPathPoint
yourself.
Only do the work for a curve the first time
we need it. This should greatly speed up
use cases where you only create a measure
to get the length of the path.