... and plumb the color state through the downloading machinery, where
no matter what path it takes it ends up in
gdk_memory_convert_color_state() or gdk_memory_convert().
The 2nd of those has been expanded to optionally do colorstate
conversion when the 2 colorstates are different.
The GL renderer is using FLOAT32 instead of GL_SRGB, which is screwing
up the node-editor by making it turn on high bit depth unconditionally.
So until someone fixes the GL renderer properly, do this quickfix.
The new renderers don't support them due to the required complexity of
integrating them with Vulkan and the assumptions those nodes make about
the renderer (the GL renderer exports its internal APIs into the
GLShader).
There haven't been any complaints that I'm aware of since 4.14 was
released where the default renderer does not support the nodes, so usage
in public seems to be close to nonexistant.
The 2 uses I know of were workarounds about missing features in GTK that
have stopped since GTK now supports them:
1. GStreamer used in to do premultiplication when the old GL renderer
did not do so in hardware but on the CPU.
2. Adwaita used it for masking before the mask node wa added in 4.10.
For now, it just renders using cairo, uploads the result to the GPU,
blits it onto the framebuffer and then is happy.
But it can do that using Vulkan and using GL (no idea which version).
The most important thing still missing is shaders.
It also has a bunch of copy/paste from the Vulkan renderer that isn't
used yet.
But I didn't want to rip it out and then try to copy it back later
The convert_texture() path only works for the GL renderer, the new
renderers potentially use dmabuf textures as result of render_texture(),
so they need to be smarter here.
This flag must be set when creating the class or offloading
will be disabled for this renderer.
Set that flag for the GL renderer.
Fixes the Cairo and Vulkan renderer not showing Video.
During rendering, restack offloaded subsurfaces below the main
surface, and clear the area so they peek through. After rendering,
raise the last subsurface if we haven't drawn over it.
It started out as busywork, but it does many separate things. If I could
start over, I'd take them apart into multiple commits:
1. Remove G_ENABLE_DEBUG around GDK_DEBUG_*() calls
This is not needed at all, the calls themselves take care of it.
2. Remove G_ENABLE_DEBUG around profiling code
This now enables profiling support in release builds.
3. Stop poking _gdk_debug_flags and use GDK_DEBUG_CHECK()
This was old code that was never updated.
4. Make !G_ENABLE_DEBUG turn off GDK_DEBUG_CHECK()
The code used to
#define GDK_DEBUG_CHECK(...) false
#define GDK_DEBUG(...)
which would compile away all the code inside those macros. This
means a lot of variable definitions and debug utility functions
would suddenly no longer be used and cause compiler errors.
When slicing the texture, the GL renderer was
forgetting to apply the viewport origin. This
shows up when rendering things with negative
scales, leading to negative origins.
Fractional scaling with the GL renderer is
experimental for now, so we disable it unless
GDK_DEBUG=gl-fractional is set.
This will give us time to work out the kinks.
This commit combines changes in the Wayland backend,
the GL context frontend, and the GL renderer to switch
them all to use the fractional scale.
In the Wayland backend, we now use the fractional scale
to size the EGL window.
In the GL frontend code, we use the fractional scale to
scale the damage region and surface in begin/end_frame.
And in the GL renderer, we replace gdk_surface_get_scale_factor()
with gdk_surface_get_scale().
Instead of uploading a texture once per filter, ensure textures are
uploaded as little as possible and use samplers instead to switch
different filters.
Sometimes we have to reupload a texture unfortunately, when it is an
external one and we want to create mipmaps.
Instead of asserting only in debug builds (which are generally not
shipped in distributions) we should deliver a critical log-level message
so that these can be found sooner when not developing with jhbuild,
Flatpak, etc.
Also assert that we've setup the state correctly when realizing the
GskGLRenderer object.
Fixes#4625
When large viewports are passed to gsk_renderer_render_texture(), don't
fail (or even return NULL).
Instead, draw multiple tiles and assemble them into a memory texture.
Tests added to the testsuite for this.
If the rendering operation is over an opaque region, we can potentially
avoid clearing a large section of the framebuffer destination. Some cases
you do want to clear, such as when clearing the whole contents as some
drivers have fast paths for that to avoid bringing data back into the
framebuffer.
But don't call it too early, we only want to call it once we have
prepared the target.
This way, we guarantee that a GL context is always available and that it
is bound to the correct target.
When we are rendering a texture node to an offscreen,
and we have a clip, we must force the offscreen rendering.
Otherwise, the code will notice: Hey, it already is a texture
node, so no need to render it to a texture again. But when
clipping is involved, that is exactly what we want to do.
Testcase included.
Fixes: #3651