Basically what GL does, but without any debug or feature flag
to gatekeep it, since the Vulkan backend itself is experimental
already.
Ceil surface sizes, and floor coordinates, to the fractional scale
value.
The rects passed to the clip region are in buffer coordinates, and
must not be scaled. Consider the following scenario: Wayland, with
a 1024x768@2 window. That gives us a 2048x1536 raw image. To setup
the Vulkan render pass code, we'd scale 2048x1536 *again*, to an
unreasonable 4196x3072, which is (1) incorrect and (2) really
incorrect and (3) can lead to crashes at best, full GPU resets
at worst - and a GPU reset is incredibly not fun!
Now that we pass the right clip regions at the right coordinates
at all times, remove the extra scaling from the render pass.
This part of the Vulkan renderer is almost exactly equal to the GL
renderer, and the GL renderer already does that since at least
2a38cecd33. Copy that into the Vulkan renderer.
A nice side effect from this commit is that resizing a window now
actually works again.
Sneak in a trivial cleanup by using a variable to hold the draw
index.
This was a tricky one to figure out, but it's pretty simple to
understand (I hope!).
So, this AMD card I'm using requires buffer memory sizes to be
aligned to 16 bytes. Intel is aligned to 4 bytes I think, but
AMD - or at least this AMD model in particular - uses 16 bytes
for alignment.
When creating a a particular texture (I did not determin which one
specifically!) a buffer of size 1276 bytes is requested.
1276 / 16 = 79.75, which is clearly not aligned to the required
16 bytes.
We request Vulkan to create a buffer of 1276 bytes for us, it
figures out that it's not aligned, and creates a buffer of 1280
bytes, which is aligned. The extra 4 bytes are wasted, but that's
okay. We immediately query this buffer for this exact information,
using vkGetBufferMemoryRequirements(), and proceed to create actual
memory to back this buffer up.
The buffer tells us we must use 1280 bytes, so we pass 1280 bytes
and everyone is happy, right? Of course not. We pass 1276 bytes,
and Vulkan is subtly unhappy at us.
Fix that by passing the value that Vulkan asks us to use, i.e.,
the size returned by vkGetBufferMemoryRequirements().
This is what GL does, and for a reason: it can lead to width or
height for very small glyphs. Also, switch to dividing by a float
(1024.0) instead of an integer (1024).
This doesn't make any difference now, but will allow us to copy
subregions more easily. This is not obvious, but here's a quick
explanation:
Leaving 'bufferRowLength' and 'bufferImageHeight' implies that
Vulkan will assume the size passed in the 'imageExtent' field.
Right now, this assumption is correct - the only user of this
function is the glyph cache, and it only copies and uploads
exact rects. Next commits will change that assumption, so we
must pass 'buffer*' fields, and tell Vulkan, "this part of the
buffer represents an image of width x height, and I want the
subregion (x, y, smallerWidth, smallerHeight) of this image".
When creating an image using gsk_vulkan_image_new_for_framebuffer(),
it passes VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL.
However, this is a mistake. The spec demands that the initial
layout must be either VK_IMAGE_LAYOUT_UNDEFINED or
VK_IMAGE_LAYOUT_PREINITIALIZED.
Apparently this was an oversight from commit b97fb75146, since the
commit message even documents that, and all other calls pass either
VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED.
Create framebuffer images using VK_IMAGE_LAYOUT_UNDEFINED, which is
what was originally expected.
Removing all items from containers is a common use case.
Without this applications needed to implement this manually.
It makes senses to handle it here.