gtk/gsk/gl/gskglrenderer.c
2020-11-18 20:16:40 -08:00

4472 lines
155 KiB
C

#include "config.h"
#include "gskglrendererprivate.h"
#include "gskdebugprivate.h"
#include "gskenums.h"
#include "gskgldriverprivate.h"
#include "gskglprofilerprivate.h"
#include "gskprofilerprivate.h"
#include "gskrendererprivate.h"
#include "gskrendernodeprivate.h"
#include "gsktransformprivate.h"
#include "gskglshaderbuilderprivate.h"
#include "gskglglyphcacheprivate.h"
#include "gskgliconcacheprivate.h"
#include "gskglrenderopsprivate.h"
#include "gskcairoblurprivate.h"
#include "gskglshadowcacheprivate.h"
#include "gskglnodesampleprivate.h"
#include "gsktransform.h"
#include "glutilsprivate.h"
#include "gskglshaderprivate.h"
#include "gskprivate.h"
#include "gdk/gdkgltextureprivate.h"
#include "gdk/gdkglcontextprivate.h"
#include "gdk/gdkprofilerprivate.h"
#include "gdk/gdkrgbaprivate.h"
#include <epoxy/gl.h>
#define SHADER_VERSION_GLES 100
#define SHADER_VERSION_GL2_LEGACY 110
#define SHADER_VERSION_GL3_LEGACY 130
#define SHADER_VERSION_GL3 150
#define ORTHO_NEAR_PLANE -10000
#define ORTHO_FAR_PLANE 10000
#define DEBUG_OPS 0
#define SHADOW_EXTRA_SIZE 4
#if DEBUG_OPS
#define OP_PRINT(format, ...) g_print(format, ## __VA_ARGS__)
#else
#define OP_PRINT(format, ...)
#endif
#define INIT_PROGRAM_UNIFORM_LOCATION(program_name, uniform_basename) \
G_STMT_START{\
programs->program_name ## _program.program_name.uniform_basename ## _location = \
glGetUniformLocation(programs->program_name ## _program.id, "u_" #uniform_basename);\
if (programs->program_name ## _program.program_name.uniform_basename ## _location == -1) \
{ \
g_clear_pointer (&programs, gsk_gl_renderer_programs_unref); \
goto out; \
} \
}G_STMT_END
#define INIT_COMMON_UNIFORM_LOCATION(program_ptr, uniform_basename) \
G_STMT_START{\
program_ptr->uniform_basename ## _location = \
glGetUniformLocation(program_ptr->id, "u_" #uniform_basename);\
}G_STMT_END
static Program *gsk_gl_renderer_lookup_custom_program (GskGLRenderer *self,
GskGLShader *shader);
static Program *gsk_gl_renderer_create_custom_program (GskGLRenderer *self,
GskGLShader *shader);
typedef enum
{
FORCE_OFFSCREEN = 1 << 0,
RESET_CLIP = 1 << 1,
RESET_OPACITY = 1 << 2,
DUMP_FRAMEBUFFER = 1 << 3,
NO_CACHE_PLZ = 1 << 5,
LINEAR_FILTER = 1 << 6,
} OffscreenFlags;
static inline void
init_full_texture_region (TextureRegion *r,
int texture_id)
{
r->texture_id = texture_id;
r->x = 0;
r->y = 0;
r->x2 = 1;
r->y2 = 1;
}
static void G_GNUC_UNUSED
print_render_node_tree (GskRenderNode *root, int level)
{
#define INDENT 4
const guint type = gsk_render_node_get_node_type (root);
guint i;
switch (type)
{
case GSK_CONTAINER_NODE:
g_print ("%*s Container\n", level * INDENT, " ");
for (i = 0; i < gsk_container_node_get_n_children (root); i++)
print_render_node_tree (gsk_container_node_get_child (root, i), level + 1);
break;
case GSK_TRANSFORM_NODE:
g_print ("%*s Transform\n", level * INDENT, " ");
print_render_node_tree (gsk_transform_node_get_child (root), level + 1);
break;
case GSK_COLOR_MATRIX_NODE:
g_print ("%*s Color Matrix\n", level * INDENT, " ");
print_render_node_tree (gsk_color_matrix_node_get_child (root), level + 1);
break;
case GSK_CROSS_FADE_NODE:
g_print ("%*s Crossfade(%.2f)\n", level * INDENT, " ",
gsk_cross_fade_node_get_progress (root));
print_render_node_tree (gsk_cross_fade_node_get_start_child (root), level + 1);
print_render_node_tree (gsk_cross_fade_node_get_end_child (root), level + 1);
break;
case GSK_TEXT_NODE:
g_print ("%*s Text\n", level * INDENT, " ");
break;
case GSK_COLOR_NODE:
g_print ("%*s Color %s\n", level * INDENT, " ", gdk_rgba_to_string (gsk_color_node_get_color (root)));
break;
case GSK_SHADOW_NODE:
g_print ("%*s Shadow\n", level * INDENT, " ");
print_render_node_tree (gsk_shadow_node_get_child (root), level + 1);
break;
case GSK_GL_SHADER_NODE:
g_print ("%*s GL Shader\n", level * INDENT, " ");
for (i = 0; i < gsk_gl_shader_node_get_n_children (root); i++)
print_render_node_tree (gsk_gl_shader_node_get_child (root, i), level + 1);
break;
case GSK_TEXTURE_NODE:
g_print ("%*s Texture %p\n", level * INDENT, " ", gsk_texture_node_get_texture (root));
break;
case GSK_DEBUG_NODE:
g_print ("%*s Debug: %s\n", level * INDENT, " ", gsk_debug_node_get_message (root));
print_render_node_tree (gsk_debug_node_get_child (root), level + 1);
break;
case GSK_CLIP_NODE:
g_print ("%*s Clip (%f, %f, %f, %f):\n", level * INDENT, " ",
root->bounds.origin.x, root->bounds.origin.y, root->bounds.size.width, root->bounds.size.height);
print_render_node_tree (gsk_clip_node_get_child (root), level + 1);
break;
default:
g_print ("%*s %s\n", level * INDENT, " ", g_type_name_from_instance ((GTypeInstance *) root));
}
#undef INDENT
}
static void G_GNUC_UNUSED
dump_framebuffer (const char *filename, int w, int h)
{
int stride = cairo_format_stride_for_width (CAIRO_FORMAT_ARGB32, w);
guchar *data = g_malloc (h * stride);
cairo_surface_t *s;
glReadPixels (0, 0, w, h, GL_BGRA, GL_UNSIGNED_BYTE, data);
s = cairo_image_surface_create_for_data (data, CAIRO_FORMAT_ARGB32, w, h, stride);
cairo_surface_write_to_png (s, filename);
cairo_surface_destroy (s);
g_free (data);
}
static void G_GNUC_UNUSED
dump_node (GskRenderNode *node,
const char *filename)
{
const int surface_width = ceilf (node->bounds.size.width);
const int surface_height = ceilf (node->bounds.size.height);
cairo_surface_t *surface;
cairo_t *cr;
surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32,
surface_width,
surface_height);
cr = cairo_create (surface);
cairo_save (cr);
cairo_translate (cr, -node->bounds.origin.x, -node->bounds.origin.y);
gsk_render_node_draw (node, cr);
cairo_restore (cr);
cairo_destroy (cr);
cairo_surface_write_to_png (surface, filename);
cairo_surface_destroy (surface);
}
static inline bool G_GNUC_PURE
node_is_invisible (const GskRenderNode *node)
{
return node->bounds.size.width == 0.0f ||
node->bounds.size.height == 0.0f ||
isnan (node->bounds.size.width) ||
isnan (node->bounds.size.height);
}
static inline bool G_GNUC_PURE
graphene_rect_intersects (const graphene_rect_t *r1,
const graphene_rect_t *r2)
{
/* Assume both rects are already normalized, as they usually are */
if (r1->origin.x > (r2->origin.x + r2->size.width) ||
(r1->origin.x + r1->size.width) < r2->origin.x)
return false;
if (r1->origin.y > (r2->origin.y + r2->size.height) ||
(r1->origin.y + r1->size.height) < r2->origin.y)
return false;
return true;
}
static inline bool G_GNUC_PURE
_graphene_rect_contains_rect (const graphene_rect_t *r1,
const graphene_rect_t *r2)
{
if (r2->origin.x >= r1->origin.x &&
(r2->origin.x + r2->size.width) <= (r1->origin.x + r1->size.width) &&
r2->origin.y >= r1->origin.y &&
(r2->origin.y + r2->size.height) <= (r1->origin.y + r1->size.height))
return true;
return false;
}
static inline void
sort_border_sides (const GdkRGBA *colors,
int *indices)
{
gboolean done[4] = {0, 0, 0, 0};
int i, k;
int cur = 0;
for (i = 0; i < 3; i ++)
{
if (done[i])
continue;
indices[cur] = i;
done[i] = TRUE;
cur ++;
for (k = i + 1; k < 4; k ++)
{
if (gdk_rgba_equal (&colors[k], &colors[i]))
{
indices[cur] = k;
done[k] = TRUE;
cur ++;
}
}
if (cur >= 4)
break;
}
}
static inline void
init_projection_matrix (graphene_matrix_t *out_proj,
const graphene_rect_t *viewport)
{
graphene_matrix_init_ortho (out_proj,
viewport->origin.x,
viewport->origin.x + viewport->size.width,
viewport->origin.y,
viewport->origin.y + viewport->size.height,
ORTHO_NEAR_PLANE,
ORTHO_FAR_PLANE);
graphene_matrix_scale (out_proj, 1, -1, 1);
}
static inline gboolean G_GNUC_PURE
color_matrix_modifies_alpha (GskRenderNode *node)
{
const graphene_matrix_t *matrix = gsk_color_matrix_node_get_color_matrix (node);
const graphene_vec4_t *offset = gsk_color_matrix_node_get_color_offset (node);
graphene_vec4_t row3;
if (graphene_vec4_get_w (offset) != 0.0f)
return TRUE;
graphene_matrix_get_row (matrix, 3, &row3);
return !graphene_vec4_equal (graphene_vec4_w_axis (), &row3);
}
static inline void
gsk_rounded_rect_shrink_to_minimum (GskRoundedRect *self)
{
self->bounds.size.width = ceilf (MAX (MAX (self->corner[0].width, self->corner[1].width),
MAX (self->corner[2].width, self->corner[3].width)) * 2);
self->bounds.size.height = ceilf (MAX (MAX (self->corner[0].height, self->corner[1].height),
MAX (self->corner[2].height, self->corner[3].height)) * 2);
}
static inline gboolean G_GNUC_PURE
node_supports_transform (GskRenderNode *node)
{
/* Some nodes can't handle non-trivial transforms without being
* rendered to a texture (e.g. rotated clips, etc.). Some however
* work just fine, mostly because they already draw their child
* to a texture and just render the texture manipulated in some
* way, think opacity or color matrix. */
const guint node_type = gsk_render_node_get_node_type (node);
switch (node_type)
{
case GSK_COLOR_NODE:
case GSK_OPACITY_NODE:
case GSK_COLOR_MATRIX_NODE:
case GSK_TEXTURE_NODE:
case GSK_CROSS_FADE_NODE:
case GSK_LINEAR_GRADIENT_NODE:
case GSK_DEBUG_NODE:
case GSK_TEXT_NODE:
return TRUE;
case GSK_TRANSFORM_NODE:
return node_supports_transform (gsk_transform_node_get_child (node));
default:
return FALSE;
}
return FALSE;
}
static inline void
load_vertex_data_with_region (GskQuadVertex vertex_data[GL_N_VERTICES],
const graphene_rect_t *bounds,
RenderOpBuilder *builder,
const TextureRegion *r,
gboolean flip_y)
{
const float min_x = builder->dx + bounds->origin.x;
const float min_y = builder->dy + bounds->origin.y;
const float max_x = min_x + bounds->size.width;
const float max_y = min_y + bounds->size.height;
const float y1 = flip_y ? r->y2 : r->y;
const float y2 = flip_y ? r->y : r->y2;
vertex_data[0].position[0] = min_x;
vertex_data[0].position[1] = min_y;
vertex_data[0].uv[0] = r->x;
vertex_data[0].uv[1] = y1;
vertex_data[1].position[0] = min_x;
vertex_data[1].position[1] = max_y;
vertex_data[1].uv[0] = r->x;
vertex_data[1].uv[1] = y2;
vertex_data[2].position[0] = max_x;
vertex_data[2].position[1] = min_y;
vertex_data[2].uv[0] = r->x2;
vertex_data[2].uv[1] = y1;
vertex_data[3].position[0] = max_x;
vertex_data[3].position[1] = max_y;
vertex_data[3].uv[0] = r->x2;
vertex_data[3].uv[1] = y2;
vertex_data[4].position[0] = min_x;
vertex_data[4].position[1] = max_y;
vertex_data[4].uv[0] = r->x;
vertex_data[4].uv[1] = y2;
vertex_data[5].position[0] = max_x;
vertex_data[5].position[1] = min_y;
vertex_data[5].uv[0] = r->x2;
vertex_data[5].uv[1] = y1;
}
static inline void
load_float_vertex_data (GskQuadVertex vertex_data[GL_N_VERTICES],
RenderOpBuilder *builder,
float x,
float y,
float width,
float height)
{
const float min_x = builder->dx + x;
const float min_y = builder->dy + y;
const float max_x = min_x + width;
const float max_y = min_y + height;
vertex_data[0].position[0] = min_x;
vertex_data[0].position[1] = min_y;
vertex_data[0].uv[0] = 0;
vertex_data[0].uv[1] = 0;
vertex_data[1].position[0] = min_x;
vertex_data[1].position[1] = max_y;
vertex_data[1].uv[0] = 0;
vertex_data[1].uv[1] = 1;
vertex_data[2].position[0] = max_x;
vertex_data[2].position[1] = min_y;
vertex_data[2].uv[0] = 1;
vertex_data[2].uv[1] = 0;
vertex_data[3].position[0] = max_x;
vertex_data[3].position[1] = max_y;
vertex_data[3].uv[0] = 1;
vertex_data[3].uv[1] = 1;
vertex_data[4].position[0] = min_x;
vertex_data[4].position[1] = max_y;
vertex_data[4].uv[0] = 0;
vertex_data[4].uv[1] = 1;
vertex_data[5].position[0] = max_x;
vertex_data[5].position[1] = min_y;
vertex_data[5].uv[0] = 1;
vertex_data[5].uv[1] = 0;
}
static void
load_vertex_data (GskQuadVertex vertex_data[GL_N_VERTICES],
const graphene_rect_t *bounds,
RenderOpBuilder *builder)
{
load_float_vertex_data (vertex_data, builder,
bounds->origin.x, bounds->origin.y,
bounds->size.width, bounds->size.height);
}
static void
fill_vertex_data (GskQuadVertex vertex_data[GL_N_VERTICES],
const float min_x,
const float min_y,
const float max_x,
const float max_y)
{
vertex_data[0].position[0] = min_x;
vertex_data[0].position[1] = min_y;
vertex_data[0].uv[0] = 0;
vertex_data[0].uv[1] = 1;
vertex_data[1].position[0] = min_x;
vertex_data[1].position[1] = max_y;
vertex_data[1].uv[0] = 0;
vertex_data[1].uv[1] = 0;
vertex_data[2].position[0] = max_x;
vertex_data[2].position[1] = min_y;
vertex_data[2].uv[0] = 1;
vertex_data[2].uv[1] = 1;
vertex_data[3].position[0] = max_x;
vertex_data[3].position[1] = max_y;
vertex_data[3].uv[0] = 1;
vertex_data[3].uv[1] = 0;
vertex_data[4].position[0] = min_x;
vertex_data[4].position[1] = max_y;
vertex_data[4].uv[0] = 0;
vertex_data[4].uv[1] = 0;
vertex_data[5].position[0] = max_x;
vertex_data[5].position[1] = min_y;
vertex_data[5].uv[0] = 1;
vertex_data[5].uv[1] = 1;
}
static void
load_offscreen_vertex_data (GskQuadVertex vertex_data[GL_N_VERTICES],
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
fill_vertex_data (vertex_data,
min_x, min_y,
max_x, max_y);
}
static void gsk_gl_renderer_setup_render_mode (GskGLRenderer *self);
static gboolean add_offscreen_ops (GskGLRenderer *self,
RenderOpBuilder *builder,
const graphene_rect_t *bounds,
GskRenderNode *child_node,
TextureRegion *region_out,
gboolean *is_offscreen,
guint flags) G_GNUC_WARN_UNUSED_RESULT;
static void gsk_gl_renderer_add_render_ops (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder);
struct _GskGLRenderer
{
GskRenderer parent_instance;
int scale_factor;
GdkGLContext *gl_context;
GskGLDriver *gl_driver;
GskGLProfiler *gl_profiler;
GskGLRendererPrograms *programs;
RenderOpBuilder op_builder;
GskGLTextureAtlases *atlases;
GskGLGlyphCache *glyph_cache;
GskGLIconCache *icon_cache;
GskGLShadowCache shadow_cache;
#ifdef G_ENABLE_DEBUG
struct {
GQuark frames;
} profile_counters;
struct {
GQuark cpu_time;
GQuark gpu_time;
} profile_timers;
#endif
cairo_region_t *render_region;
};
struct _GskGLRendererClass
{
GskRendererClass parent_class;
};
G_DEFINE_TYPE (GskGLRenderer, gsk_gl_renderer, GSK_TYPE_RENDERER)
static void
init_shader_builder (GskGLRenderer *self,
GskGLShaderBuilder *shader_builder)
{
#ifdef G_ENABLE_DEBUG
if (GSK_RENDERER_DEBUG_CHECK (GSK_RENDERER (self), SHADERS))
shader_builder->debugging = TRUE;
#endif
if (gdk_gl_context_get_use_es (self->gl_context))
{
gsk_gl_shader_builder_set_glsl_version (shader_builder, SHADER_VERSION_GLES);
shader_builder->gles = TRUE;
}
else if (gdk_gl_context_is_legacy (self->gl_context))
{
int maj, min;
gdk_gl_context_get_version (self->gl_context, &maj, &min);
if (maj == 3)
gsk_gl_shader_builder_set_glsl_version (shader_builder, SHADER_VERSION_GL3_LEGACY);
else
gsk_gl_shader_builder_set_glsl_version (shader_builder, SHADER_VERSION_GL2_LEGACY);
shader_builder->legacy = TRUE;
}
else
{
gsk_gl_shader_builder_set_glsl_version (shader_builder, SHADER_VERSION_GL3);
shader_builder->gl3 = TRUE;
}
}
static GdkRGBA BLACK = {0, 0, 0, 1};
static void G_GNUC_UNUSED
add_rect_outline_ops (GskGLRenderer *self,
RenderOpBuilder *builder,
const graphene_rect_t *rect)
{
ops_set_program (builder, &self->programs->color_program);
ops_set_color (builder, &BLACK);
load_vertex_data (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (rect->origin.x, rect->origin.y, 1, rect->size.height),
builder);
load_vertex_data (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (rect->origin.x, rect->origin.y, rect->size.width, 1),
builder);
load_vertex_data (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (rect->origin.x + rect->size.width - 1,rect->origin.y,
1, rect->size.height),
builder);
load_vertex_data (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (rect->origin.x, rect->origin.y + rect->size.height - 1,
rect->size.width, 1),
builder);
}
static inline GskRoundedRect
transform_rect (GskGLRenderer *self,
RenderOpBuilder *builder,
const GskRoundedRect *rect)
{
GskRoundedRect r;
r.bounds.origin.x = builder->dx + rect->bounds.origin.x;
r.bounds.origin.y = builder->dy + rect->bounds.origin.y;
r.bounds.size = rect->bounds.size;
r.corner[0] = rect->corner[0];
r.corner[1] = rect->corner[1];
r.corner[2] = rect->corner[2];
r.corner[3] = rect->corner[3];
return r;
}
static inline void
render_fallback_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GdkTexture *texture;
const float scale = ops_get_scale (builder);
const int surface_width = ceilf (node->bounds.size.width * scale);
const int surface_height = ceilf (node->bounds.size.height * scale);
cairo_surface_t *surface;
cairo_surface_t *rendered_surface;
cairo_t *cr;
int cached_id;
int texture_id;
GskTextureKey key;
if (surface_width <= 0 ||
surface_height <= 0)
return;
key.pointer = node;
key.pointer_is_child = FALSE;
key.scale = scale;
key.filter = GL_NEAREST;
cached_id = gsk_gl_driver_get_texture_for_key (self->gl_driver, &key);
if (cached_id != 0)
{
ops_set_program (builder, &self->programs->blit_program);
ops_set_texture (builder, cached_id);
load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder);
return;
}
/* We first draw the recording surface on an image surface,
* just because the scaleY(-1) later otherwise screws up the
* rendering... */
{
rendered_surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32,
surface_width,
surface_height);
cairo_surface_set_device_scale (rendered_surface, scale, scale);
cr = cairo_create (rendered_surface);
cairo_save (cr);
cairo_translate (cr, - floorf (node->bounds.origin.x), - floorf (node->bounds.origin.y));
gsk_render_node_draw (node, cr);
cairo_restore (cr);
cairo_destroy (cr);
}
surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32,
surface_width,
surface_height);
cairo_surface_set_device_scale (surface, scale, scale);
cr = cairo_create (surface);
/* We draw upside down here, so it matches what GL does. */
cairo_save (cr);
cairo_scale (cr, 1, -1);
cairo_translate (cr, 0, - surface_height / scale);
cairo_set_source_surface (cr, rendered_surface, 0, 0);
cairo_rectangle (cr, 0, 0, surface_width / scale, surface_height / scale);
cairo_fill (cr);
cairo_restore (cr);
#ifdef G_ENABLE_DEBUG
if (GSK_RENDERER_DEBUG_CHECK (GSK_RENDERER (self), FALLBACK))
{
cairo_move_to (cr, 0, 0);
cairo_rectangle (cr, 0, 0, node->bounds.size.width, node->bounds.size.height);
if (gsk_render_node_get_node_type (node) == GSK_CAIRO_NODE)
cairo_set_source_rgba (cr, 0.3, 0, 1, 0.25);
else
cairo_set_source_rgba (cr, 1, 0, 0, 0.25);
cairo_fill_preserve (cr);
if (gsk_render_node_get_node_type (node) == GSK_CAIRO_NODE)
cairo_set_source_rgba (cr, 0.3, 0, 1, 1);
else
cairo_set_source_rgba (cr, 1, 0, 0, 1);
cairo_stroke (cr);
}
#endif
cairo_destroy (cr);
/* Upload the Cairo surface to a GL texture */
texture_id = gsk_gl_driver_create_texture (self->gl_driver,
surface_width,
surface_height);
gsk_gl_driver_bind_source_texture (self->gl_driver, texture_id);
texture = gdk_texture_new_for_surface (surface);
gsk_gl_driver_init_texture (self->gl_driver,
texture_id,
texture,
GL_NEAREST, GL_NEAREST);
if (gdk_gl_context_has_debug (self->gl_context))
gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id,
"Fallback %s %d",
g_type_name_from_instance ((GTypeInstance *) node),
texture_id);
g_object_unref (texture);
cairo_surface_destroy (surface);
cairo_surface_destroy (rendered_surface);
gsk_gl_driver_set_texture_for_key (self->gl_driver, &key, texture_id);
ops_set_program (builder, &self->programs->blit_program);
ops_set_texture (builder, texture_id);
load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder);
}
static inline void
render_text_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder,
const GdkRGBA *color,
gboolean force_color)
{
const PangoFont *font = gsk_text_node_get_font (node);
const PangoGlyphInfo *glyphs = gsk_text_node_get_glyphs (node, NULL);
const float text_scale = ops_get_scale (builder);
const graphene_point_t *offset = gsk_text_node_get_offset (node);
const guint num_glyphs = gsk_text_node_get_num_glyphs (node);
const float x = offset->x + builder->dx;
const float y = offset->y + builder->dy;
int i;
int x_position = 0;
GlyphCacheKey lookup;
/* If the font has color glyphs, we don't need to recolor anything */
if (!force_color && gsk_text_node_has_color_glyphs (node))
{
ops_set_program (builder, &self->programs->blit_program);
}
else
{
ops_set_program (builder, &self->programs->coloring_program);
ops_set_color (builder, color);
}
memset (&lookup, 0, sizeof (CacheKeyData));
lookup.data.font = (PangoFont *)font;
lookup.data.scale = (guint) (text_scale * 1024);
/* We use one quad per character */
for (i = 0; i < num_glyphs; i++)
{
const PangoGlyphInfo *gi = &glyphs[i];
const GskGLCachedGlyph *glyph;
float glyph_x, glyph_y, glyph_x2, glyph_y2;
float tx, ty, tx2, ty2;
float cx;
float cy;
if (gi->glyph == PANGO_GLYPH_EMPTY)
continue;
cx = (float)(x_position + gi->geometry.x_offset) / PANGO_SCALE;
cy = (float)(gi->geometry.y_offset) / PANGO_SCALE;
glyph_cache_key_set_glyph_and_shift (&lookup, gi->glyph, x + cx, y + cy);
gsk_gl_glyph_cache_lookup_or_add (self->glyph_cache,
&lookup,
self->gl_driver,
&glyph);
if (glyph->texture_id == 0)
goto next;
ops_set_texture (builder, glyph->texture_id);
tx = glyph->tx;
ty = glyph->ty;
tx2 = tx + glyph->tw;
ty2 = ty + glyph->th;
glyph_x = floor (x + cx + 0.125) + glyph->draw_x;
glyph_y = floor (y + cy + 0.125) + glyph->draw_y;
glyph_x2 = glyph_x + glyph->draw_width;
glyph_y2 = glyph_y + glyph->draw_height;
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { glyph_x, glyph_y }, { tx, ty }, },
{ { glyph_x, glyph_y2 }, { tx, ty2 }, },
{ { glyph_x2, glyph_y }, { tx2, ty }, },
{ { glyph_x2, glyph_y2 }, { tx2, ty2 }, },
{ { glyph_x, glyph_y2 }, { tx, ty2 }, },
{ { glyph_x2, glyph_y }, { tx2, ty }, },
});
next:
x_position += gi->geometry.width;
}
}
static inline void
render_border_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const GdkRGBA *colors = gsk_border_node_get_colors (node);
const GskRoundedRect *rounded_outline = gsk_border_node_get_outline (node);
const float *widths = gsk_border_node_get_widths (node);
int i;
struct {
float w;
float h;
} sizes[4];
if (gsk_border_node_get_uniform (node))
{
ops_set_program (builder, &self->programs->inset_shadow_program);
ops_set_inset_shadow (builder, transform_rect (self, builder, rounded_outline),
widths[0], &colors[0], 0, 0);
load_vertex_data (ops_draw (builder, NULL), &node->bounds, builder);
return;
}
/* Top left */
if (widths[3] > 0)
sizes[0].w = MAX (widths[3], rounded_outline->corner[0].width);
else
sizes[0].w = 0;
if (widths[0] > 0)
sizes[0].h = MAX (widths[0], rounded_outline->corner[0].height);
else
sizes[0].h = 0;
/* Top right */
if (widths[1] > 0)
sizes[1].w = MAX (widths[1], rounded_outline->corner[1].width);
else
sizes[1].w = 0;
if (widths[0] > 0)
sizes[1].h = MAX (widths[0], rounded_outline->corner[1].height);
else
sizes[1].h = 0;
/* Bottom right */
if (widths[1] > 0)
sizes[2].w = MAX (widths[1], rounded_outline->corner[2].width);
else
sizes[2].w = 0;
if (widths[2] > 0)
sizes[2].h = MAX (widths[2], rounded_outline->corner[2].height);
else
sizes[2].h = 0;
/* Bottom left */
if (widths[3] > 0)
sizes[3].w = MAX (widths[3], rounded_outline->corner[3].width);
else
sizes[3].w = 0;
if (widths[2] > 0)
sizes[3].h = MAX (widths[2], rounded_outline->corner[3].height);
else
sizes[3].h = 0;
{
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
const GskQuadVertex side_data[4][6] = {
/* Top */
{
{ { min_x, min_y }, { 0, 1 }, }, /* Upper left */
{ { min_x + sizes[0].w, min_y + sizes[0].h }, { 0, 0 }, }, /* Lower left */
{ { max_x, min_y }, { 1, 1 }, }, /* Upper right */
{ { max_x - sizes[1].w, min_y + sizes[1].h }, { 1, 0 }, }, /* Lower right */
{ { min_x + sizes[0].w, min_y + sizes[0].h }, { 0, 0 }, }, /* Lower left */
{ { max_x, min_y }, { 1, 1 }, }, /* Upper right */
},
/* Right */
{
{ { max_x - sizes[1].w, min_y + sizes[1].h }, { 0, 1 }, }, /* Upper left */
{ { max_x - sizes[2].w, max_y - sizes[2].h }, { 0, 0 }, }, /* Lower left */
{ { max_x, min_y }, { 1, 1 }, }, /* Upper right */
{ { max_x, max_y }, { 1, 0 }, }, /* Lower right */
{ { max_x - sizes[2].w, max_y - sizes[2].h }, { 0, 0 }, }, /* Lower left */
{ { max_x, min_y }, { 1, 1 }, }, /* Upper right */
},
/* Bottom */
{
{ { min_x + sizes[3].w, max_y - sizes[3].h }, { 0, 1 }, }, /* Upper left */
{ { min_x, max_y }, { 0, 0 }, }, /* Lower left */
{ { max_x - sizes[2].w, max_y - sizes[2].h }, { 1, 1 }, }, /* Upper right */
{ { max_x, max_y }, { 1, 0 }, }, /* Lower right */
{ { min_x , max_y }, { 0, 0 }, }, /* Lower left */
{ { max_x - sizes[2].w, max_y - sizes[2].h }, { 1, 1 }, }, /* Upper right */
},
/* Left */
{
{ { min_x, min_y }, { 0, 1 }, }, /* Upper left */
{ { min_x, max_y }, { 0, 0 }, }, /* Lower left */
{ { min_x + sizes[0].w, min_y + sizes[0].h }, { 1, 1 }, }, /* Upper right */
{ { min_x + sizes[3].w, max_y - sizes[3].h }, { 1, 0 }, }, /* Lower right */
{ { min_x, max_y }, { 0, 0 }, }, /* Lower left */
{ { min_x + sizes[0].w, min_y + sizes[0].h }, { 1, 1 }, }, /* Upper right */
}
};
int indices[4] = { 0, 1, 2, 3 };
GskRoundedRect outline;
/* We sort them by color */
sort_border_sides (colors, indices);
/* Prepare outline */
outline = transform_rect (self, builder, rounded_outline);
ops_set_program (builder, &self->programs->border_program);
ops_set_border_width (builder, widths);
ops_set_border (builder, &outline);
for (i = 0; i < 4; i ++)
{
if (widths[indices[i]] > 0)
{
ops_set_border_color (builder, &colors[indices[i]]);
ops_draw (builder, side_data[indices[i]]);
}
}
}
}
static inline void
render_color_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
ops_set_program (builder, &self->programs->color_program);
ops_set_color (builder, gsk_color_node_get_color (node));
load_vertex_data (ops_draw (builder, NULL), &node->bounds, builder);
}
static inline void
upload_texture (GskGLRenderer *self,
GdkTexture *texture,
TextureRegion *out_region)
{
if (texture->width <= 128 &&
texture->height <= 128 &&
!GDK_IS_GL_TEXTURE (texture))
{
const IconData *icon_data;
gsk_gl_icon_cache_lookup_or_add (self->icon_cache,
texture,
&icon_data);
out_region->texture_id = icon_data->texture_id;
out_region->x = icon_data->x;
out_region->y = icon_data->y;
out_region->x2 = icon_data->x2;
out_region->y2 = icon_data->y2;
}
else
{
out_region->texture_id =
gsk_gl_driver_get_texture_for_texture (self->gl_driver,
texture,
GL_LINEAR,
GL_LINEAR);
out_region->x = 0;
out_region->y = 0;
out_region->x2 = 1;
out_region->y2 = 1;
}
}
static inline void
render_texture_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GdkTexture *texture = gsk_texture_node_get_texture (node);
const int max_texture_size = gsk_gl_driver_get_max_texture_size (self->gl_driver);
if (texture->width > max_texture_size || texture->height > max_texture_size)
{
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
const float scale_x = (max_x - min_x) / texture->width;
const float scale_y = (max_y - min_y) / texture->height;
TextureSlice *slices;
guint n_slices;
guint i;
gsk_gl_driver_slice_texture (self->gl_driver, texture, &slices, &n_slices);
ops_set_program (builder, &self->programs->blit_program);
for (i = 0; i < n_slices; i ++)
{
const TextureSlice *slice = &slices[i];
float x1, x2, y1, y2;
x1 = min_x + (scale_x * slice->rect.x);
x2 = x1 + (slice->rect.width * scale_x);
y1 = min_y + (scale_y * slice->rect.y);
y2 = y1 + (slice->rect.height * scale_y);
ops_set_texture (builder, slice->texture_id);
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { 0, 0 }, },
{ { x1, y2 }, { 0, 1 }, },
{ { x2, y1 }, { 1, 0 }, },
{ { x2, y2 }, { 1, 1 }, },
{ { x1, y2 }, { 0, 1 }, },
{ { x2, y1 }, { 1, 0 }, },
});
}
}
else
{
TextureRegion r;
upload_texture (self, texture, &r);
ops_set_program (builder, &self->programs->blit_program);
ops_set_texture (builder, r.texture_id);
load_vertex_data_with_region (ops_draw (builder, NULL),
&node->bounds, builder,
&r,
FALSE);
}
}
static Program *
compile_glshader (GskGLRenderer *self,
GskGLShader *shader,
GError **error)
{
GskGLShaderBuilder shader_builder;
const char *shader_source;
gsize shader_source_len;
int n_uniforms;
const GskGLUniform *uniforms;
GBytes *bytes;
int n_required_textures = gsk_gl_shader_get_n_textures (shader);
int program_id;
Program *program;
bytes = gsk_gl_shader_get_source (shader);
shader_source = g_bytes_get_data (bytes, &shader_source_len);
uniforms = gsk_gl_shader_get_uniforms (shader, &n_uniforms);
if (n_uniforms > G_N_ELEMENTS (program->glshader.args_locations))
{
g_set_error (error, GDK_GL_ERROR, GDK_GL_ERROR_UNSUPPORTED_FORMAT,
"GLShaderNode supports max %d custom uniforms", (int)G_N_ELEMENTS (program->glshader.args_locations));
return NULL;
}
if (n_required_textures > G_N_ELEMENTS (program->glshader.texture_locations))
{
g_set_error (error, GDK_GL_ERROR, GDK_GL_ERROR_UNSUPPORTED_FORMAT,
"GLShaderNode supports max %d texture sources", (int)(G_N_ELEMENTS (program->glshader.texture_locations)));
return NULL;
}
gsk_gl_shader_builder_init (&shader_builder,
"/org/gtk/libgsk/glsl/preamble.glsl",
"/org/gtk/libgsk/glsl/preamble.vs.glsl",
"/org/gtk/libgsk/glsl/preamble.fs.glsl");
init_shader_builder (self, &shader_builder);
program_id = gsk_gl_shader_builder_create_program (&shader_builder,
"/org/gtk/libgsk/glsl/custom.glsl",
shader_source, shader_source_len,
error);
gsk_gl_shader_builder_finish (&shader_builder);
if (program_id < 0)
return NULL;
program = gsk_gl_renderer_create_custom_program (self, shader);
program->id = program_id;
INIT_COMMON_UNIFORM_LOCATION (program, alpha);
INIT_COMMON_UNIFORM_LOCATION (program, clip_rect);
INIT_COMMON_UNIFORM_LOCATION (program, viewport);
INIT_COMMON_UNIFORM_LOCATION (program, projection);
INIT_COMMON_UNIFORM_LOCATION (program, modelview);
program->glshader.size_location = glGetUniformLocation(program->id, "u_size");
program->glshader.texture_locations[0] = glGetUniformLocation(program->id, "u_texture1");
program->glshader.texture_locations[1] = glGetUniformLocation(program->id, "u_texture2");
program->glshader.texture_locations[2] = glGetUniformLocation(program->id, "u_texture3");
program->glshader.texture_locations[3] = glGetUniformLocation(program->id, "u_texture4");
/* We use u_texture1 for the texture 0 in the glshaders, so alias it here so we can use the regular setters */
program->source_location = program->glshader.texture_locations[0];
for (int i = 0; i < G_N_ELEMENTS (program->glshader.args_locations); i++)
{
if (i < n_uniforms)
{
program->glshader.args_locations[i] = glGetUniformLocation(program->id, uniforms[i].name);
/* This isn't necessary a hard error, you might declare uniforms that are not actually
always used, for instance if you have an "API" in uniforms for multiple shaders. */
if (program->glshader.args_locations[i] == -1)
g_debug ("Declared uniform `%s` not found in GskGLShader", uniforms[i].name);
}
else
program->glshader.args_locations[i] = -1;
}
return program;
}
gboolean
gsk_gl_renderer_try_compile_gl_shader (GskGLRenderer *self,
GskGLShader *shader,
GError **error)
{
Program *program;
gdk_gl_context_make_current (self->gl_context);
/* Maybe we tried to compile it already? */
program = gsk_gl_renderer_lookup_custom_program (self, shader);
if (program != NULL)
{
if (program->id > 0)
return TRUE;
else
{
g_propagate_error (error, g_error_copy (program->glshader.compile_error));
return FALSE;
}
}
program = compile_glshader (self, shader, error);
return program != NULL;
}
static inline void
render_gl_shader_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GskGLShader *shader = gsk_gl_shader_node_get_shader (node);
Program *program = gsk_gl_renderer_lookup_custom_program (self, shader);
int n_children = gsk_gl_shader_node_get_n_children (node);
if (program == NULL)
{
GError *error = NULL;
program = compile_glshader (self, shader, &error);
if (program == NULL)
{
/* We create the program anyway (in a failed state), so that any compiler warnings or other are only reported once */
program = gsk_gl_renderer_create_custom_program (self, shader);
program->id = -1;
program->glshader.compile_error = error;
g_warning ("Failed to compile gl shader: %s", error->message);
}
}
if (program->id >= 0 && n_children <= G_N_ELEMENTS (program->glshader.texture_locations))
{
GBytes *args;
TextureRegion regions[4];
gboolean is_offscreen[4];
for (guint i = 0; i < n_children; i++)
{
GskRenderNode *child = gsk_gl_shader_node_get_child (node, i);
if (!add_offscreen_ops (self, builder,
&node->bounds,
child,
&regions[i], &is_offscreen[i],
FORCE_OFFSCREEN | RESET_CLIP | RESET_OPACITY))
return;
}
args = gsk_gl_shader_node_get_args (node);
ops_set_program (builder, program);
ops_set_gl_shader_args (builder, shader, node->bounds.size.width, node->bounds.size.height, g_bytes_get_data (args, NULL));
for (guint i = 0; i < n_children; i++)
{
if (i == 0)
ops_set_texture (builder, regions[i].texture_id);
else
ops_set_extra_texture (builder, regions[i].texture_id, i);
}
load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder);
}
else
{
static GdkRGBA pink = { 255 / 255., 105 / 255., 180 / 255., 1.0 };
ops_set_program (builder, &self->programs->color_program);
ops_set_color (builder, &pink);
load_vertex_data (ops_draw (builder, NULL), &node->bounds, builder);
}
}
/* Returns TRUE if applying @transform to @bounds
* yields an axis-aligned rectangle
*/
static gboolean
result_is_axis_aligned (GskTransform *transform,
const graphene_rect_t *bounds)
{
graphene_matrix_t m;
graphene_quad_t q;
graphene_rect_t b;
graphene_point_t b1, b2;
const graphene_point_t *p;
int i;
gsk_transform_to_matrix (transform, &m);
gsk_matrix_transform_rect (&m, bounds, &q);
graphene_quad_bounds (&q, &b);
graphene_rect_get_top_left (&b, &b1);
graphene_rect_get_bottom_right (&b, &b2);
for (i = 0; i < 4; i++)
{
p = graphene_quad_get_point (&q, i);
if (fabs (p->x - b1.x) > FLT_EPSILON && fabs (p->x - b2.x) > FLT_EPSILON)
return FALSE;
if (fabs (p->y - b1.y) > FLT_EPSILON && fabs (p->y - b2.y) > FLT_EPSILON)
return FALSE;
}
return TRUE;
}
static inline void
render_transform_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GskTransform *node_transform = gsk_transform_node_get_transform (node);
const GskTransformCategory category = gsk_transform_get_category (node_transform);
GskRenderNode *child = gsk_transform_node_get_child (node);
switch (category)
{
case GSK_TRANSFORM_CATEGORY_IDENTITY:
gsk_gl_renderer_add_render_ops (self, child, builder);
break;
case GSK_TRANSFORM_CATEGORY_2D_TRANSLATE:
{
float dx, dy;
gsk_transform_to_translate (node_transform, &dx, &dy);
ops_offset (builder, dx, dy);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_offset (builder, -dx, -dy);
}
break;
case GSK_TRANSFORM_CATEGORY_2D_AFFINE:
{
ops_push_modelview (builder, node_transform);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_pop_modelview (builder);
}
break;
case GSK_TRANSFORM_CATEGORY_2D:
case GSK_TRANSFORM_CATEGORY_3D:
case GSK_TRANSFORM_CATEGORY_ANY:
case GSK_TRANSFORM_CATEGORY_UNKNOWN:
{
TextureRegion region;
gboolean is_offscreen;
if (node_supports_transform (child))
{
ops_push_modelview (builder, node_transform);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_pop_modelview (builder);
}
else
{
int filter_flag = 0;
if (!result_is_axis_aligned (node_transform, &child->bounds))
filter_flag = LINEAR_FILTER;
if (add_offscreen_ops (self, builder,
&child->bounds,
child,
&region, &is_offscreen,
RESET_CLIP | RESET_OPACITY | filter_flag))
{
/* For non-trivial transforms, we draw everything on a texture and then
* draw the texture transformed. */
/* TODO: We should compute a modelview containing only the "non-trivial"
* part (e.g. the rotation) and use that. We want to keep the scale
* for the texture.
*/
ops_push_modelview (builder, node_transform);
ops_set_texture (builder, region.texture_id);
ops_set_program (builder, &self->programs->blit_program);
load_vertex_data_with_region (ops_draw (builder, NULL),
&child->bounds, builder,
&region,
is_offscreen);
ops_pop_modelview (builder);
}
}
}
break;
default:
g_assert_not_reached ();
break;
}
}
static inline void
render_opacity_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GskRenderNode *child = gsk_opacity_node_get_child (node);
const float opacity = gsk_opacity_node_get_opacity (node);
float prev_opacity;
if (gsk_render_node_get_node_type (child) == GSK_CONTAINER_NODE)
{
gboolean is_offscreen;
TextureRegion region;
/* The semantics of an opacity node mandate that when, e.g., two color nodes overlap,
* there may not be any blending between them */
if (!add_offscreen_ops (self, builder, &child->bounds,
child,
&region, &is_offscreen,
FORCE_OFFSCREEN | RESET_OPACITY | RESET_CLIP))
return;
prev_opacity = ops_set_opacity (builder,
builder->current_opacity * opacity);
if (builder->current_opacity >= ((float) 0x00ff / (float) 0xffff))
{
ops_set_program (builder, &self->programs->blit_program);
ops_set_texture (builder, region.texture_id);
load_vertex_data_with_region (ops_draw (builder, NULL),
&node->bounds, builder,
&region,
is_offscreen);
}
}
else
{
prev_opacity = ops_set_opacity (builder,
builder->current_opacity * opacity);
if (builder->current_opacity >= ((float) 0x00ff / (float) 0xffff))
gsk_gl_renderer_add_render_ops (self, child, builder);
}
ops_set_opacity (builder, prev_opacity);
}
static inline void
render_linear_gradient_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const int n_color_stops = gsk_linear_gradient_node_get_n_color_stops (node);
if (n_color_stops < GL_MAX_GRADIENT_STOPS)
{
const GskColorStop *stops = gsk_linear_gradient_node_get_color_stops (node, NULL);
const graphene_point_t *start = gsk_linear_gradient_node_get_start (node);
const graphene_point_t *end = gsk_linear_gradient_node_get_end (node);
ops_set_program (builder, &self->programs->linear_gradient_program);
ops_set_linear_gradient (builder,
n_color_stops,
stops,
builder->dx + start->x,
builder->dy + start->y,
builder->dx + end->x,
builder->dy + end->y);
load_vertex_data (ops_draw (builder, NULL), &node->bounds, builder);
}
else
{
render_fallback_node (self, node, builder);
}
}
static inline void
render_radial_gradient_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const int n_color_stops = gsk_radial_gradient_node_get_n_color_stops (node);
if (n_color_stops < GL_MAX_GRADIENT_STOPS)
{
const GskColorStop *stops = gsk_radial_gradient_node_get_color_stops (node, NULL);
const graphene_point_t *center = gsk_radial_gradient_node_get_center (node);
const float start = gsk_radial_gradient_node_get_start (node);
const float end = gsk_radial_gradient_node_get_end (node);
const float hradius = gsk_radial_gradient_node_get_hradius (node);
const float vradius = gsk_radial_gradient_node_get_vradius (node);
ops_set_program (builder, &self->programs->radial_gradient_program);
ops_set_radial_gradient (builder,
n_color_stops,
stops,
builder->dx + center->x,
builder->dy + center->y,
start, end,
hradius * builder->scale_x,
vradius * builder->scale_y);
load_vertex_data (ops_draw (builder, NULL), &node->bounds, builder);
}
else
{
render_fallback_node (self, node, builder);
}
}
static inline gboolean
rounded_inner_rect_contains_rect (const GskRoundedRect *rounded,
const graphene_rect_t *rect)
{
const graphene_rect_t *rounded_bounds = &rounded->bounds;
graphene_rect_t inner;
float offset_x, offset_y;
/* TODO: This is pretty conservative and we could to further, more
* fine-grained checks to avoid offscreen drawing. */
offset_x = MAX (rounded->corner[GSK_CORNER_TOP_LEFT].width,
rounded->corner[GSK_CORNER_BOTTOM_LEFT].width);
offset_y = MAX (rounded->corner[GSK_CORNER_TOP_LEFT].height,
rounded->corner[GSK_CORNER_TOP_RIGHT].height);
inner.origin.x = rounded_bounds->origin.x + offset_x;
inner.origin.y = rounded_bounds->origin.y + offset_y;
inner.size.width = rounded_bounds->size.width - offset_x -
MAX (rounded->corner[GSK_CORNER_TOP_RIGHT].width,
rounded->corner[GSK_CORNER_BOTTOM_RIGHT].width);
inner.size.height = rounded_bounds->size.height - offset_y -
MAX (rounded->corner[GSK_CORNER_BOTTOM_LEFT].height,
rounded->corner[GSK_CORNER_BOTTOM_RIGHT].height);
return graphene_rect_contains_rect (&inner, rect);
}
/* Current clip is NOT rounded but new one is definitely! */
static inline bool
intersect_rounded_rectilinear (const graphene_rect_t *non_rounded,
const GskRoundedRect *rounded,
GskRoundedRect *result)
{
bool corners[4];
/* Intersects with top left corner? */
corners[0] = rounded_rect_has_corner (rounded, 0) &&
graphene_rect_intersects (non_rounded,
&rounded_rect_corner (rounded, 0));
/* top right? */
corners[1] = rounded_rect_has_corner (rounded, 1) &&
graphene_rect_intersects (non_rounded,
&rounded_rect_corner (rounded, 1));
/* bottom right? */
corners[2] = rounded_rect_has_corner (rounded, 2) &&
graphene_rect_intersects (non_rounded,
&rounded_rect_corner (rounded, 2));
/* bottom left */
corners[3] = rounded_rect_has_corner (rounded, 3) &&
graphene_rect_intersects (non_rounded,
&rounded_rect_corner (rounded, 3));
if (corners[0] && !_graphene_rect_contains_rect (non_rounded, &rounded_rect_corner (rounded, 0)))
return false;
if (corners[1] && !_graphene_rect_contains_rect (non_rounded, &rounded_rect_corner (rounded, 1)))
return false;
if (corners[2] && !_graphene_rect_contains_rect (non_rounded, &rounded_rect_corner (rounded, 2)))
return false;
if (corners[3] && !_graphene_rect_contains_rect (non_rounded, &rounded_rect_corner (rounded, 3)))
return false;
/* We do intersect with at least one of the corners, but in such a way that the
* intersection between the two clips can still be represented by a single rounded
* rect in a trivial way. do that. */
graphene_rect_intersection (non_rounded, &rounded->bounds, &result->bounds);
for (int i = 0; i < 4; i++)
{
if (corners[i])
result->corner[i] = rounded->corner[i];
else
result->corner[i].width = result->corner[i].height = 0;
}
return true;
}
/* This code intersects the current (maybe rounded) clip with the new
* non-rounded clip */
static inline void
render_clipped_child (GskGLRenderer *self,
RenderOpBuilder *builder,
const graphene_rect_t *clip,
GskRenderNode *child)
{
graphene_rect_t transformed_clip;
GskRoundedRect intersection;
ops_transform_bounds_modelview (builder, clip, &transformed_clip);
if (builder->clip_is_rectilinear)
{
memset (&intersection, 0, sizeof (GskRoundedRect));
graphene_rect_intersection (&transformed_clip,
&builder->current_clip->bounds,
&intersection.bounds);
ops_push_clip (builder, &intersection);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_pop_clip (builder);
}
else if (intersect_rounded_rectilinear (&transformed_clip,
builder->current_clip,
&intersection))
{
ops_push_clip (builder, &intersection);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_pop_clip (builder);
}
else
{
/* well fuck */
const float scale_x = builder->scale_x;
const float scale_y = builder->scale_y;
gboolean is_offscreen;
TextureRegion region;
GskRoundedRect scaled_clip;
memset (&scaled_clip, 0, sizeof (GskRoundedRect));
scaled_clip.bounds.origin.x = clip->origin.x * scale_x;
scaled_clip.bounds.origin.y = clip->origin.y * scale_y;
scaled_clip.bounds.size.width = clip->size.width * scale_x;
scaled_clip.bounds.size.height = clip->size.height * scale_y;
ops_push_clip (builder, &scaled_clip);
if (!add_offscreen_ops (self, builder, &child->bounds,
child,
&region, &is_offscreen,
RESET_OPACITY | FORCE_OFFSCREEN))
g_assert_not_reached ();
ops_pop_clip (builder);
ops_set_program (builder, &self->programs->blit_program);
ops_set_texture (builder, region.texture_id);
load_offscreen_vertex_data (ops_draw (builder, NULL), child, builder);
}
}
static inline void
render_clip_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const graphene_rect_t *clip = gsk_clip_node_get_clip (node);
GskRenderNode *child = gsk_clip_node_get_child (node);
render_clipped_child (self, builder, clip, child);
}
static inline void
render_rounded_clip_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float scale_x = builder->scale_x;
const float scale_y = builder->scale_y;
const GskRoundedRect *clip = gsk_rounded_clip_node_get_clip (node);
GskRenderNode *child = gsk_rounded_clip_node_get_child (node);
GskRoundedRect transformed_clip;
gboolean need_offscreen;
int i;
if (node_is_invisible (child))
return;
ops_transform_bounds_modelview (builder, &clip->bounds, &transformed_clip.bounds);
for (i = 0; i < 4; i ++)
{
transformed_clip.corner[i].width = clip->corner[i].width * scale_x;
transformed_clip.corner[i].height = clip->corner[i].height * scale_y;
}
if (builder->clip_is_rectilinear)
{
GskRoundedRect intersected_clip;
if (intersect_rounded_rectilinear (&builder->current_clip->bounds,
&transformed_clip,
&intersected_clip))
{
ops_push_clip (builder, &intersected_clip);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_pop_clip (builder);
return;
}
}
/* After this point we are really working with a new and a current clip
* which both have rounded corners. */
if (!ops_has_clip (builder))
need_offscreen = FALSE;
else if (rounded_inner_rect_contains_rect (builder->current_clip,
&transformed_clip.bounds))
need_offscreen = FALSE;
else
need_offscreen = TRUE;
if (!need_offscreen)
{
/* If they don't intersect at all, we can simply set
* the new clip and add the render ops */
/* If the new clip entirely contains the current clip, the intersection is simply
* the current clip, so we can ignore the new one */
if (rounded_inner_rect_contains_rect (&transformed_clip, &builder->current_clip->bounds))
{
gsk_gl_renderer_add_render_ops (self, child, builder);
return;
}
/* TODO: Intersect current and new clip */
ops_push_clip (builder, &transformed_clip);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_pop_clip (builder);
}
else
{
GskRoundedRect scaled_clip;
gboolean is_offscreen;
TextureRegion region;
/* NOTE: We are *not* transforming the clip by the current modelview here.
* We instead draw the untransformed clip to a texture and then transform
* that texture.
*
* We do, however, apply the scale factor to the child clip of course.
*/
scaled_clip.bounds.origin.x = clip->bounds.origin.x * scale_x;
scaled_clip.bounds.origin.y = clip->bounds.origin.y * scale_y;
scaled_clip.bounds.size.width = clip->bounds.size.width * scale_x;
scaled_clip.bounds.size.height = clip->bounds.size.height * scale_y;
/* Increase corner radius size by scale factor */
for (i = 0; i < 4; i ++)
{
scaled_clip.corner[i].width = clip->corner[i].width * scale_x;
scaled_clip.corner[i].height = clip->corner[i].height * scale_y;
}
ops_push_clip (builder, &scaled_clip);
if (!add_offscreen_ops (self, builder, &node->bounds,
child,
&region, &is_offscreen,
FORCE_OFFSCREEN | RESET_OPACITY))
g_assert_not_reached ();
ops_pop_clip (builder);
ops_set_program (builder, &self->programs->blit_program);
ops_set_texture (builder, region.texture_id);
load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder);
}
}
static inline void
render_color_matrix_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GskRenderNode *child = gsk_color_matrix_node_get_child (node);
TextureRegion region;
gboolean is_offscreen;
if (node_is_invisible (child))
return;
if (!add_offscreen_ops (self, builder,
&node->bounds,
child,
&region, &is_offscreen,
RESET_CLIP | RESET_OPACITY))
g_assert_not_reached ();
ops_set_program (builder, &self->programs->color_matrix_program);
ops_set_color_matrix (builder,
gsk_color_matrix_node_get_color_matrix (node),
gsk_color_matrix_node_get_color_offset (node));
ops_set_texture (builder, region.texture_id);
load_vertex_data_with_region (ops_draw (builder, NULL),
&node->bounds, builder,
&region,
is_offscreen);
}
static inline int
blur_texture (GskGLRenderer *self,
RenderOpBuilder *builder,
const TextureRegion *region,
const int texture_to_blur_width,
const int texture_to_blur_height,
float blur_radius_x,
float blur_radius_y)
{
int pass1_texture_id, pass1_render_target;
int pass2_texture_id, pass2_render_target;
int prev_render_target;
graphene_matrix_t prev_projection;
graphene_rect_t prev_viewport;
graphene_matrix_t item_proj;
OpBlur *op;
g_assert (blur_radius_x > 0);
g_assert (blur_radius_y > 0);
gsk_gl_driver_create_render_target (self->gl_driver,
MAX (texture_to_blur_width, 1), MAX (texture_to_blur_height, 1),
GL_NEAREST, GL_NEAREST,
&pass1_texture_id, &pass1_render_target);
if (texture_to_blur_width <= 0 || texture_to_blur_height <= 0)
{
return pass1_texture_id;
}
gsk_gl_driver_create_render_target (self->gl_driver,
texture_to_blur_width, texture_to_blur_height,
GL_NEAREST, GL_NEAREST,
&pass2_texture_id, &pass2_render_target);
init_projection_matrix (&item_proj,
&GRAPHENE_RECT_INIT (0, 0, texture_to_blur_width, texture_to_blur_height));
prev_projection = ops_set_projection (builder, &item_proj);
ops_set_modelview (builder, NULL);
prev_viewport = ops_set_viewport (builder, &GRAPHENE_RECT_INIT (0, 0, texture_to_blur_width, texture_to_blur_height));
ops_push_clip (builder, &GSK_ROUNDED_RECT_INIT (0, 0, texture_to_blur_width, texture_to_blur_height));
prev_render_target = ops_set_render_target (builder, pass1_render_target);
ops_begin (builder, OP_CLEAR);
ops_set_program (builder, &self->programs->blur_program);
op = ops_begin (builder, OP_CHANGE_BLUR);
op->size.width = texture_to_blur_width;
op->size.height = texture_to_blur_height;
op->radius = blur_radius_x;
op->dir[0] = 1;
op->dir[1] = 0;
ops_set_texture (builder, region->texture_id);
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (0, 0, texture_to_blur_width, texture_to_blur_height),
builder, region,
FALSE);
#if 0
{
static int k;
ops_dump_framebuffer (builder,
g_strdup_printf ("pass1_%d.png", k++),
texture_to_blur_width,
texture_to_blur_height);
}
#endif
op = ops_begin (builder, OP_CHANGE_BLUR);
op->size.width = texture_to_blur_width;
op->size.height = texture_to_blur_height;
op->radius = blur_radius_y;
op->dir[0] = 0;
op->dir[1] = 1;
ops_set_texture (builder, pass1_texture_id);
ops_set_render_target (builder, pass2_render_target);
ops_begin (builder, OP_CLEAR);
load_vertex_data_with_region (ops_draw (builder, NULL), /* render pass 2 */
&GRAPHENE_RECT_INIT (0, 0, texture_to_blur_width, texture_to_blur_height),
builder, region,
FALSE);
#if 0
{
static int k;
ops_dump_framebuffer (builder,
g_strdup_printf ("blurred%d.png", k++),
texture_to_blur_width,
texture_to_blur_height);
}
#endif
ops_set_render_target (builder, prev_render_target);
ops_set_viewport (builder, &prev_viewport);
ops_set_projection (builder, &prev_projection);
ops_pop_modelview (builder);
ops_pop_clip (builder);
return pass2_texture_id;
}
static inline void
blur_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder,
float blur_radius,
guint extra_flags,
TextureRegion *out_region,
float *out_vertex_data[4]) /* min, max, min, max */
{
const float scale_x = builder->scale_x;
const float scale_y = builder->scale_y;
const float blur_extra = blur_radius * 2.0; /* 2.0 = shader radius_multiplier */
float texture_width, texture_height;
gboolean is_offscreen;
TextureRegion region;
int blurred_texture_id;
g_assert (blur_radius > 0);
/* Increase texture size for the given blur radius and scale it */
texture_width = ceilf ((node->bounds.size.width + blur_extra));
texture_height = ceilf ((node->bounds.size.height + blur_extra));
/* Only blur this if the out region has no texture id yet */
if (out_region->texture_id == 0)
{
if (!add_offscreen_ops (self, builder,
&GRAPHENE_RECT_INIT (node->bounds.origin.x - (blur_extra / 2.0),
node->bounds.origin.y - (blur_extra / 2.0),
texture_width, texture_height),
node,
&region, &is_offscreen,
RESET_CLIP | RESET_OPACITY | FORCE_OFFSCREEN | extra_flags))
g_assert_not_reached ();
blurred_texture_id = blur_texture (self, builder,
&region,
texture_width * scale_x, texture_height * scale_y,
blur_radius * scale_x,
blur_radius * scale_y);
init_full_texture_region (out_region, blurred_texture_id);
}
if (out_vertex_data)
{
*out_vertex_data[0] = builder->dx + node->bounds.origin.x - (blur_extra / 2.0);
*out_vertex_data[1] = builder->dx + node->bounds.origin.x + node->bounds.size.width + (blur_extra / 2.0);
*out_vertex_data[2] = builder->dy + node->bounds.origin.y - (blur_extra / 2.0);
*out_vertex_data[3] = builder->dy + node->bounds.origin.y + node->bounds.size.height + (blur_extra / 2.0);
}
}
static inline void
render_blur_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float blur_radius = gsk_blur_node_get_radius (node);
GskRenderNode *child = gsk_blur_node_get_child (node);
TextureRegion blurred_region;
GskTextureKey key;
float min_x, max_x, min_y, max_y;
if (node_is_invisible (child))
return;
if (blur_radius <= 0)
{
gsk_gl_renderer_add_render_ops (self, child, builder);
return;
}
key.pointer = node;
key.pointer_is_child = FALSE;
key.scale = ops_get_scale (builder);
key.filter = GL_NEAREST;
blurred_region.texture_id = gsk_gl_driver_get_texture_for_key (self->gl_driver, &key);
blur_node (self, child, builder, blur_radius, 0, &blurred_region,
(float*[4]){&min_x, &max_x, &min_y, &max_y});
g_assert (blurred_region.texture_id != 0);
/* Draw the result */
ops_set_program (builder, &self->programs->blit_program);
ops_set_texture (builder, blurred_region.texture_id);
fill_vertex_data (ops_draw (builder, NULL), min_x, min_y, max_x, max_y);
/* Add to cache for the blur node */
gsk_gl_driver_set_texture_for_key (self->gl_driver, &key, blurred_region.texture_id);
}
static inline void
render_unblurred_inset_shadow_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float blur_radius = gsk_inset_shadow_node_get_blur_radius (node);
const float dx = gsk_inset_shadow_node_get_dx (node);
const float dy = gsk_inset_shadow_node_get_dy (node);
const float spread = gsk_inset_shadow_node_get_spread (node);
g_assert (blur_radius == 0);
ops_set_program (builder, &self->programs->inset_shadow_program);
ops_set_inset_shadow (builder, transform_rect (self, builder, gsk_inset_shadow_node_get_outline (node)),
spread,
gsk_inset_shadow_node_get_color (node),
dx, dy);
load_vertex_data (ops_draw (builder, NULL), &node->bounds, builder);
}
static inline void
render_inset_shadow_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float scale_x = builder->scale_x;
const float scale_y = builder->scale_y;
const float blur_radius = gsk_inset_shadow_node_get_blur_radius (node);
const float blur_extra = blur_radius * 2.0; /* 2.0 = shader radius_multiplier */
const float dx = gsk_inset_shadow_node_get_dx (node);
const float dy = gsk_inset_shadow_node_get_dy (node);
const GskRoundedRect *node_outline = gsk_inset_shadow_node_get_outline (node);
float texture_width;
float texture_height;
int blurred_texture_id;
GskTextureKey key;
g_assert (blur_radius > 0);
texture_width = ceilf ((node_outline->bounds.size.width + blur_extra) * scale_x);
texture_height = ceilf ((node_outline->bounds.size.height + blur_extra) * scale_y);
key.pointer = node;
key.pointer_is_child = FALSE;
key.scale = MAX (scale_x, scale_y); /* TODO: Use scale_x/scale_y here? */
key.filter = GL_NEAREST;
blurred_texture_id = gsk_gl_driver_get_texture_for_key (self->gl_driver, &key);
if (blurred_texture_id == 0)
{
const float spread = gsk_inset_shadow_node_get_spread (node) + (blur_extra / 2.0);
GskRoundedRect outline_to_blur;
int render_target, texture_id;
int prev_render_target;
graphene_matrix_t prev_projection;
graphene_rect_t prev_viewport;
graphene_matrix_t item_proj;
int i;
/* TODO: In the following code, we have to be careful about where we apply the scale.
* We're manually scaling stuff (e.g. the outline) so we can later use texture_width
* and texture_height (which are already scaled) as the geometry and keep the modelview
* at a scale of 1. That's kinda complicated though... */
/* Outline of what we actually want to blur later.
* Spread grows inside, so we don't need to account for that. But the blur will need
* to read outside of the inset shadow, so we need to draw some color in there. */
outline_to_blur = *node_outline;
gsk_rounded_rect_shrink (&outline_to_blur,
- blur_extra / 2.0, - blur_extra / 2.0,
- blur_extra / 2.0, - blur_extra / 2.0);
/* Fit to our texture */
outline_to_blur.bounds.origin.x = 0;
outline_to_blur.bounds.origin.y = 0;
outline_to_blur.bounds.size.width *= scale_x;
outline_to_blur.bounds.size.height *= scale_y;
for (i = 0; i < 4; i ++)
{
outline_to_blur.corner[i].width *= scale_x;
outline_to_blur.corner[i].height *= scale_y;
}
gsk_gl_driver_create_render_target (self->gl_driver,
texture_width, texture_height,
GL_NEAREST, GL_NEAREST,
&texture_id, &render_target);
init_projection_matrix (&item_proj,
&GRAPHENE_RECT_INIT (0, 0, texture_width, texture_height));
prev_projection = ops_set_projection (builder, &item_proj);
ops_set_modelview (builder, NULL);
prev_viewport = ops_set_viewport (builder, &GRAPHENE_RECT_INIT (0, 0, texture_width, texture_height));
ops_push_clip (builder, &GSK_ROUNDED_RECT_INIT (0, 0, texture_width, texture_height));
prev_render_target = ops_set_render_target (builder, render_target);
ops_begin (builder, OP_CLEAR);
/* Actual inset shadow outline drawing */
ops_set_program (builder, &self->programs->inset_shadow_program);
ops_set_inset_shadow (builder, transform_rect (self, builder, &outline_to_blur),
spread * MAX (scale_x, scale_y),
gsk_inset_shadow_node_get_color (node),
dx * scale_x, dy * scale_y);
load_float_vertex_data (ops_draw (builder, NULL), builder,
0, 0, texture_width, texture_height);
ops_set_render_target (builder, prev_render_target);
ops_set_viewport (builder, &prev_viewport);
ops_set_projection (builder, &prev_projection);
ops_pop_modelview (builder);
ops_pop_clip (builder);
blurred_texture_id = blur_texture (self, builder,
&(TextureRegion) { texture_id, 0, 0, 1, 1 },
texture_width,
texture_height,
blur_radius * scale_x,
blur_radius * scale_y);
}
g_assert (blurred_texture_id != 0);
/* Blur the rendered unblurred inset shadow */
/* Use a clip to cut away the unwanted parts outside of the original outline */
{
const gboolean needs_clip = !gsk_rounded_rect_is_rectilinear (node_outline);
const float tx1 = blur_extra / 2.0 * scale_x / texture_width;
const float tx2 = 1.0 - tx1;
const float ty1 = blur_extra / 2.0 * scale_y / texture_height;
const float ty2 = 1.0 - ty1;
gsk_gl_driver_set_texture_for_key (self->gl_driver, &key, blurred_texture_id);
if (needs_clip)
{
const GskRoundedRect node_clip = transform_rect (self, builder, node_outline);
ops_push_clip (builder, &node_clip);
}
ops_set_program (builder, &self->programs->blit_program);
ops_set_texture (builder, blurred_texture_id);
load_vertex_data_with_region (ops_draw (builder, NULL),
&node->bounds, builder,
&(TextureRegion) { 0, tx1, ty1, tx2, ty2 },
TRUE);
if (needs_clip)
ops_pop_clip (builder);
}
}
/* Spread *grows* the outline. The offset moves the shadow and leaves the
* inner rect where it was */
static inline void
render_unblurred_outset_shadow_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const GskRoundedRect *outline = gsk_outset_shadow_node_get_outline (node);
const float x = node->bounds.origin.x;
const float y = node->bounds.origin.y;
const float w = node->bounds.size.width;
const float h = node->bounds.size.height;
const float spread = gsk_outset_shadow_node_get_spread (node);
const float dx = gsk_outset_shadow_node_get_dx (node);
const float dy = gsk_outset_shadow_node_get_dy (node);
const float edge_sizes[] = { // Top, right, bottom, left
spread - dy, spread + dx, spread + dy, spread - dx
};
const float corner_sizes[][2] = { // top left, top right, bottom right, bottom left
{ outline->corner[0].width + spread - dx, outline->corner[0].height + spread - dy },
{ outline->corner[1].width + spread + dx, outline->corner[1].height + spread - dy },
{ outline->corner[2].width + spread + dx, outline->corner[2].height + spread + dy },
{ outline->corner[3].width + spread - dx, outline->corner[3].height + spread + dy },
};
ops_set_program (builder, &self->programs->unblurred_outset_shadow_program);
ops_set_unblurred_outset_shadow (builder, transform_rect (self, builder, outline),
spread,
gsk_outset_shadow_node_get_color (node),
dx, dy);
/* Corners... */
if (corner_sizes[0][0] > 0 && corner_sizes[0][1] > 0) /* Top left */
load_float_vertex_data (ops_draw (builder, NULL), builder,
x, y,
corner_sizes[0][0], corner_sizes[0][1]);
if (corner_sizes[1][0] > 0 && corner_sizes[1][1] > 0) /* Top right */
load_float_vertex_data (ops_draw (builder, NULL), builder,
x + w - corner_sizes[1][0], y,
corner_sizes[1][0], corner_sizes[1][1]);
if (corner_sizes[2][0] > 0 && corner_sizes[2][1] > 0) /* Bottom right */
load_float_vertex_data (ops_draw (builder, NULL), builder,
x + w - corner_sizes[2][0], y + h - corner_sizes[2][1],
corner_sizes[2][0], corner_sizes[2][1]);
if (corner_sizes[3][0] > 0 && corner_sizes[3][1] > 0) /* Bottom left */
load_float_vertex_data (ops_draw (builder, NULL), builder,
x, y + h - corner_sizes[3][1],
corner_sizes[3][0], corner_sizes[3][1]);
/* Edges... */;
if (edge_sizes[0] > 0) /* Top */
load_float_vertex_data (ops_draw (builder, NULL), builder,
x + corner_sizes[0][0], y,
w - corner_sizes[0][0] - corner_sizes[1][0], edge_sizes[0]);
if (edge_sizes[1] > 0) /* Right */
load_float_vertex_data (ops_draw (builder, NULL), builder,
x + w - edge_sizes[1], y + corner_sizes[1][1],
edge_sizes[1], h - corner_sizes[1][1] - corner_sizes[2][1]);
if (edge_sizes[2] > 0) /* Bottom */
load_float_vertex_data (ops_draw (builder, NULL), builder,
x + corner_sizes[3][0], y + h - edge_sizes[2],
w - corner_sizes[3][0] - corner_sizes[2][0], edge_sizes[2]);
if (edge_sizes[3] > 0) /* Left */
load_float_vertex_data (ops_draw (builder, NULL), builder,
x, y + corner_sizes[0][1],
edge_sizes[3], h - corner_sizes[0][1] - corner_sizes[3][1]);
}
static GdkRGBA COLOR_WHITE = { 1, 1, 1, 1 };
static inline void
render_outset_shadow_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float scale = ops_get_scale (builder);
const float scale_x = builder->scale_x;
const float scale_y = builder->scale_y;
const GskRoundedRect *outline = gsk_outset_shadow_node_get_outline (node);
const GdkRGBA *color = gsk_outset_shadow_node_get_color (node);
const float blur_radius = gsk_outset_shadow_node_get_blur_radius (node);
const float blur_extra = blur_radius * 2.0f; /* 2.0 = shader radius_multiplier */
const int extra_blur_pixels = (int) ceilf(blur_extra / 2.0 * scale);
const float spread = gsk_outset_shadow_node_get_spread (node);
const float dx = gsk_outset_shadow_node_get_dx (node);
const float dy = gsk_outset_shadow_node_get_dy (node);
GskRoundedRect scaled_outline;
int texture_width, texture_height;
OpOutsetShadow *shadow;
int blurred_texture_id;
int cached_tid;
bool do_slicing;
/* scaled_outline is the minimal outline we need to draw the given drop shadow,
* enlarged by the spread and offset by the blur radius. */
scaled_outline = *outline;
if (outline->bounds.size.width < blur_extra ||
outline->bounds.size.height < blur_extra)
{
do_slicing = false;
gsk_rounded_rect_shrink (&scaled_outline, -spread, -spread, -spread, -spread);
}
else
{
/* Shrink our outline to the minimum size that can still hold all the border radii */
gsk_rounded_rect_shrink_to_minimum (&scaled_outline);
/* Increase by the spread */
gsk_rounded_rect_shrink (&scaled_outline, -spread, -spread, -spread, -spread);
/* Grow bounds but don't grow corners */
graphene_rect_inset (&scaled_outline.bounds, - blur_extra / 2.0, - blur_extra / 2.0);
/* For the center part, we add a few pixels */
scaled_outline.bounds.size.width += SHADOW_EXTRA_SIZE;
scaled_outline.bounds.size.height += SHADOW_EXTRA_SIZE;
do_slicing = true;
}
texture_width = (int)ceil ((scaled_outline.bounds.size.width + blur_extra) * scale_x);
texture_height = (int)ceil ((scaled_outline.bounds.size.height + blur_extra) * scale_y);
scaled_outline.bounds.origin.x = extra_blur_pixels;
scaled_outline.bounds.origin.y = extra_blur_pixels;
scaled_outline.bounds.size.width = texture_width - (extra_blur_pixels * 2);
scaled_outline.bounds.size.height = texture_height - (extra_blur_pixels * 2);
for (int i = 0; i < 4; i ++)
{
scaled_outline.corner[i].width *= scale_x;
scaled_outline.corner[i].height *= scale_y;
}
cached_tid = gsk_gl_shadow_cache_get_texture_id (&self->shadow_cache,
self->gl_driver,
&scaled_outline,
blur_radius);
if (cached_tid == 0)
{
int texture_id, render_target;
int prev_render_target;
graphene_matrix_t prev_projection;
graphene_rect_t prev_viewport;
graphene_matrix_t item_proj;
gsk_gl_driver_create_render_target (self->gl_driver,
texture_width, texture_height,
GL_NEAREST, GL_NEAREST,
&texture_id, &render_target);
if (gdk_gl_context_has_debug (self->gl_context))
{
gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id,
"Outset Shadow Temp %d", texture_id);
gdk_gl_context_label_object_printf (self->gl_context, GL_FRAMEBUFFER, render_target,
"Outset Shadow FB Temp %d", render_target);
}
ops_set_program (builder, &self->programs->color_program);
init_projection_matrix (&item_proj,
&GRAPHENE_RECT_INIT (0, 0, texture_width, texture_height));
prev_render_target = ops_set_render_target (builder, render_target);
ops_begin (builder, OP_CLEAR);
prev_projection = ops_set_projection (builder, &item_proj);
ops_set_modelview (builder, NULL);
prev_viewport = ops_set_viewport (builder, &GRAPHENE_RECT_INIT (0, 0, texture_width, texture_height));
/* Draw outline */
ops_push_clip (builder, &scaled_outline);
ops_set_color (builder, &COLOR_WHITE);
load_float_vertex_data (ops_draw (builder, NULL), builder,
0, 0, texture_width, texture_height);
ops_pop_clip (builder);
ops_set_viewport (builder, &prev_viewport);
ops_pop_modelview (builder);
ops_set_projection (builder, &prev_projection);
ops_set_render_target (builder, prev_render_target);
/* Now blur the outline */
blurred_texture_id = blur_texture (self, builder,
&(TextureRegion) { texture_id, 0, 0, 1, 1 },
texture_width,
texture_height,
blur_radius * scale_x,
blur_radius * scale_y);
gsk_gl_driver_mark_texture_permanent (self->gl_driver, blurred_texture_id);
gsk_gl_shadow_cache_commit (&self->shadow_cache,
&scaled_outline,
blur_radius,
blurred_texture_id);
}
else
{
blurred_texture_id = cached_tid;
}
if (!do_slicing)
{
const float min_x = floorf (outline->bounds.origin.x - spread - (blur_extra / 2.0) + dx);
const float min_y = floorf (outline->bounds.origin.y - spread - (blur_extra / 2.0) + dy);
ops_set_program (builder, &self->programs->outset_shadow_program);
ops_set_color (builder, color);
ops_set_texture (builder, blurred_texture_id);
shadow = ops_begin (builder, OP_CHANGE_OUTSET_SHADOW);
shadow->outline.value = transform_rect (self, builder, outline);
shadow->outline.send = TRUE;
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (
min_x, min_y,
texture_width / scale_x, texture_height / scale_y
), builder,
&(TextureRegion) { 0, 0, 0, 1, 1 },
FALSE);
return;
}
ops_set_program (builder, &self->programs->outset_shadow_program);
ops_set_color (builder, color);
ops_set_texture (builder, blurred_texture_id);
shadow = ops_begin (builder, OP_CHANGE_OUTSET_SHADOW);
shadow->outline.value = transform_rect (self, builder, outline);
shadow->outline.send = TRUE;
{
const float min_x = floorf (outline->bounds.origin.x - spread - (blur_extra / 2.0) + dx);
const float min_y = floorf (outline->bounds.origin.y - spread - (blur_extra / 2.0) + dy);
const float max_x = ceilf (outline->bounds.origin.x + outline->bounds.size.width +
(blur_extra / 2.0) + dx + spread);
const float max_y = ceilf (outline->bounds.origin.y + outline->bounds.size.height +
(blur_extra / 2.0) + dy + spread);
cairo_rectangle_int_t slices[9];
TextureRegion tregs[9];
/* TODO: The slicing never changes and could just go into the cache */
nine_slice_rounded_rect (&scaled_outline, slices);
nine_slice_grow (slices, extra_blur_pixels);
nine_slice_to_texture_coords (slices, texture_width, texture_height, tregs);
/* Our texture coordinates MUST be scaled, while the actual vertex coords
* MUST NOT be scaled. */
/* Top left */
if (slice_is_visible (&slices[NINE_SLICE_TOP_LEFT]))
{
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (
min_x, min_y,
slices[NINE_SLICE_TOP_LEFT].width / scale_x,
slices[NINE_SLICE_TOP_LEFT].height / scale_y
),
builder,
&tregs[NINE_SLICE_TOP_LEFT], TRUE);
}
/* Top center */
if (slice_is_visible (&slices[NINE_SLICE_TOP_CENTER]))
{
const float width = (max_x - min_x) - (slices[NINE_SLICE_TOP_LEFT].width / scale_x +
slices[NINE_SLICE_TOP_RIGHT].width / scale_x);
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (
min_x + (slices[NINE_SLICE_TOP_LEFT].width / scale_x),
min_y,
width,
slices[NINE_SLICE_TOP_CENTER].height / scale_y
),
builder,
&tregs[NINE_SLICE_TOP_CENTER], TRUE);
}
/* Top right */
if (slice_is_visible (&slices[NINE_SLICE_TOP_RIGHT]))
{
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (
max_x - (slices[NINE_SLICE_TOP_RIGHT].width / scale_x),
min_y,
slices[NINE_SLICE_TOP_RIGHT].width / scale_x,
slices[NINE_SLICE_TOP_RIGHT].height / scale_y
),
builder,
&tregs[NINE_SLICE_TOP_RIGHT], TRUE);
}
/* Bottom right */
if (slice_is_visible (&slices[NINE_SLICE_BOTTOM_RIGHT]))
{
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (
max_x - (slices[NINE_SLICE_BOTTOM_RIGHT].width / scale_x),
max_y - (slices[NINE_SLICE_BOTTOM_RIGHT].height / scale_y),
slices[NINE_SLICE_BOTTOM_RIGHT].width / scale_x,
slices[NINE_SLICE_BOTTOM_RIGHT].height / scale_y
),
builder,
&tregs[NINE_SLICE_BOTTOM_RIGHT], TRUE);
}
/* Bottom left */
if (slice_is_visible (&slices[NINE_SLICE_BOTTOM_LEFT]))
{
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (
min_x,
max_y - (slices[NINE_SLICE_BOTTOM_LEFT].height / scale_y),
slices[NINE_SLICE_BOTTOM_LEFT].width / scale_x,
slices[NINE_SLICE_BOTTOM_LEFT].height / scale_y
),
builder,
&tregs[NINE_SLICE_BOTTOM_LEFT], TRUE);
}
/* Left side */
if (slice_is_visible (&slices[NINE_SLICE_LEFT_CENTER]))
{
const float height = (max_y - min_y) - (slices[NINE_SLICE_TOP_LEFT].height / scale_y +
slices[NINE_SLICE_BOTTOM_LEFT].height / scale_y);
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (
min_x,
min_y + (slices[NINE_SLICE_TOP_LEFT].height / scale_y),
slices[NINE_SLICE_LEFT_CENTER].width / scale_x,
height
),
builder,
&tregs[NINE_SLICE_LEFT_CENTER], TRUE);
}
/* Right side */
if (slice_is_visible (&slices[NINE_SLICE_RIGHT_CENTER]))
{
const float height = (max_y - min_y) - (slices[NINE_SLICE_TOP_RIGHT].height / scale_y +
slices[NINE_SLICE_BOTTOM_RIGHT].height / scale_y);
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (
max_x - (slices[NINE_SLICE_RIGHT_CENTER].width / scale_x),
min_y + (slices[NINE_SLICE_TOP_LEFT].height / scale_y),
slices[NINE_SLICE_RIGHT_CENTER].width / scale_x,
height
),
builder,
&tregs[NINE_SLICE_RIGHT_CENTER], TRUE);
}
/* Bottom side */
if (slice_is_visible (&slices[NINE_SLICE_BOTTOM_CENTER]))
{
const float width = (max_x - min_x) - (slices[NINE_SLICE_BOTTOM_LEFT].width / scale_x +
slices[NINE_SLICE_BOTTOM_RIGHT].width / scale_x);
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (
min_x + (slices[NINE_SLICE_BOTTOM_LEFT].width / scale_x),
max_y - (slices[NINE_SLICE_BOTTOM_CENTER].height / scale_y),
width,
slices[NINE_SLICE_BOTTOM_CENTER].height / scale_y
),
builder,
&tregs[NINE_SLICE_BOTTOM_CENTER], TRUE);
}
/* Middle */
if (slice_is_visible (&slices[NINE_SLICE_CENTER]))
{
const float width = (max_x - min_x) - (slices[NINE_SLICE_LEFT_CENTER].width / scale_x +
slices[NINE_SLICE_RIGHT_CENTER].width / scale_x);
const float height = (max_y - min_y) - (slices[NINE_SLICE_TOP_CENTER].height / scale_y +
slices[NINE_SLICE_BOTTOM_CENTER].height / scale_y);
load_vertex_data_with_region (ops_draw (builder, NULL),
&GRAPHENE_RECT_INIT (
min_x + (slices[NINE_SLICE_LEFT_CENTER].width / scale_x),
min_y + (slices[NINE_SLICE_TOP_CENTER].height / scale_y),
width, height
),
builder,
&tregs[NINE_SLICE_CENTER], TRUE);
}
}
}
static inline void
render_shadow_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const gsize n_shadows = gsk_shadow_node_get_n_shadows (node);
GskRenderNode *original_child = gsk_shadow_node_get_child (node);
GskRenderNode *shadow_child = original_child;
guint i;
/* Shadow nodes recolor every pixel of the source texture, but leave the alpha in tact.
* If the child is a color matrix node that doesn't touch the alpha, we can throw that away. */
if (gsk_render_node_get_node_type (shadow_child) == GSK_COLOR_MATRIX_NODE &&
!color_matrix_modifies_alpha (shadow_child))
{
shadow_child = gsk_color_matrix_node_get_child (shadow_child);
}
for (i = 0; i < n_shadows; i ++)
{
const GskShadow *shadow = gsk_shadow_node_get_shadow (node, i);
const float dx = shadow->dx;
const float dy = shadow->dy;
TextureRegion region;
gboolean is_offscreen;
graphene_rect_t bounds;
if (shadow->radius == 0 &&
gsk_render_node_get_node_type (shadow_child) == GSK_TEXT_NODE)
{
ops_offset (builder, dx, dy);
render_text_node (self, shadow_child, builder, &shadow->color, TRUE);
ops_offset (builder, - dx, - dy);
continue;
}
if (gdk_rgba_is_clear (&shadow->color))
continue;
if (node_is_invisible (shadow_child))
continue;
if (shadow->radius > 0)
{
float min_x;
float min_y;
float max_x;
float max_y;
region.texture_id = 0;
blur_node (self, shadow_child, builder, shadow->radius, NO_CACHE_PLZ, &region,
(float*[4]){&min_x, &max_x, &min_y, &max_y});
bounds.origin.x = min_x - builder->dx;
bounds.origin.y = min_y - builder->dy;
bounds.size.width = max_x - min_x;
bounds.size.height = max_y - min_y;
is_offscreen = TRUE;
}
else if (dx == 0 && dy == 0)
{
continue; /* Invisible anyway */
}
else
{
if (!add_offscreen_ops (self, builder,
&shadow_child->bounds,
shadow_child, &region, &is_offscreen,
RESET_CLIP | RESET_OPACITY | NO_CACHE_PLZ))
g_assert_not_reached ();
bounds = shadow_child->bounds;
}
ops_set_program (builder, &self->programs->coloring_program);
ops_set_color (builder, &shadow->color);
ops_set_texture (builder, region.texture_id);
ops_offset (builder, dx, dy);
load_vertex_data_with_region (ops_draw (builder, NULL),
&bounds, builder,
&region,
is_offscreen);
ops_offset (builder, -dx, -dy);
}
/* Now draw the child normally */
gsk_gl_renderer_add_render_ops (self, original_child, builder);
}
static inline void
render_cross_fade_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GskRenderNode *start_node = gsk_cross_fade_node_get_start_child (node);
GskRenderNode *end_node = gsk_cross_fade_node_get_end_child (node);
const float progress = gsk_cross_fade_node_get_progress (node);
TextureRegion start_region;
TextureRegion end_region;
gboolean is_offscreen1, is_offscreen2;
OpCrossFade *op;
if (progress <= 0)
{
gsk_gl_renderer_add_render_ops (self, start_node, builder);
return;
}
else if (progress >= 1)
{
gsk_gl_renderer_add_render_ops (self, end_node, builder);
return;
}
/* TODO: We create 2 textures here as big as the cross-fade node, but both the
* start and the end node might be a lot smaller than that. */
if (!add_offscreen_ops (self, builder,
&node->bounds,
start_node,
&start_region, &is_offscreen1,
FORCE_OFFSCREEN | RESET_CLIP | RESET_OPACITY))
{
gsk_gl_renderer_add_render_ops (self, end_node, builder);
return;
}
if (!add_offscreen_ops (self, builder,
&node->bounds,
end_node,
&end_region, &is_offscreen2,
FORCE_OFFSCREEN | RESET_CLIP | RESET_OPACITY))
{
const float prev_opacity = ops_set_opacity (builder, builder->current_opacity * progress);
gsk_gl_renderer_add_render_ops (self, start_node, builder);
ops_set_opacity (builder, prev_opacity);
return;
}
ops_set_program (builder, &self->programs->cross_fade_program);
op = ops_begin (builder, OP_CHANGE_CROSS_FADE);
op->progress = progress;
op->source2 = end_region.texture_id;
ops_set_texture (builder, start_region.texture_id);
load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder);
}
static inline void
render_blend_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GskRenderNode *top_child = gsk_blend_node_get_top_child (node);
GskRenderNode *bottom_child = gsk_blend_node_get_bottom_child (node);
TextureRegion top_region;
TextureRegion bottom_region;
gboolean is_offscreen1, is_offscreen2;
OpBlend *op;
/* TODO: We create 2 textures here as big as the blend node, but both the
* start and the end node might be a lot smaller than that. */
if (!add_offscreen_ops (self, builder,
&node->bounds,
bottom_child,
&bottom_region, &is_offscreen1,
FORCE_OFFSCREEN | RESET_CLIP))
{
gsk_gl_renderer_add_render_ops (self, top_child, builder);
return;
}
if (!add_offscreen_ops (self, builder,
&node->bounds,
top_child,
&top_region, &is_offscreen2,
FORCE_OFFSCREEN | RESET_CLIP))
{
load_vertex_data_with_region (ops_draw (builder, NULL),
&node->bounds,
builder,
&bottom_region,
TRUE);
return;
}
ops_set_program (builder, &self->programs->blend_program);
ops_set_texture (builder, bottom_region.texture_id);
op = ops_begin (builder, OP_CHANGE_BLEND);
op->source2 = top_region.texture_id;
op->mode = gsk_blend_node_get_blend_mode (node);
load_offscreen_vertex_data (ops_draw (builder, NULL), node, builder);
}
static inline void
render_repeat_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GskRenderNode *child = gsk_repeat_node_get_child (node);
const graphene_rect_t *child_bounds = gsk_repeat_node_get_child_bounds (node);
TextureRegion region;
gboolean is_offscreen;
OpRepeat *op;
if (node_is_invisible (child))
return;
if (!graphene_rect_equal (child_bounds, &child->bounds))
{
/* TODO: Implement these repeat nodes. */
render_fallback_node (self, node, builder);
return;
}
/* If the size of the repeat node is smaller than the size of the
* child node, we don't repeat at all and can just draw that part
* of the child texture... */
if (graphene_rect_contains_rect (child_bounds, &node->bounds))
{
render_clipped_child (self, builder, &node->bounds, child);
return;
}
/* Draw the entire child on a texture */
if (!add_offscreen_ops (self, builder,
&child->bounds,
child,
&region, &is_offscreen,
RESET_CLIP | RESET_OPACITY))
g_assert_not_reached ();
ops_set_program (builder, &self->programs->repeat_program);
ops_set_texture (builder, region.texture_id);
op = ops_begin (builder, OP_CHANGE_REPEAT);
op->child_bounds[0] = (node->bounds.origin.x - child_bounds->origin.x) / child_bounds->size.width;
op->child_bounds[1] = (node->bounds.origin.y - child_bounds->origin.y) / child_bounds->size.height;
op->child_bounds[2] = node->bounds.size.width / child_bounds->size.width;
op->child_bounds[3] = node->bounds.size.height / child_bounds->size.height;
op->texture_rect[0] = region.x;
op->texture_rect[2] = region.x2;
if (is_offscreen)
{
op->texture_rect[1] = region.y2;
op->texture_rect[3] = region.y;
}
else
{
op->texture_rect[1] = region.y;
op->texture_rect[3] = region.y2;
}
load_vertex_data_with_region (ops_draw (builder, NULL),
&node->bounds, builder,
&region,
is_offscreen);
}
static inline void
apply_viewport_op (const Program *program,
const OpViewport *op)
{
OP_PRINT (" -> New Viewport: %f, %f, %f, %f",
op->viewport.origin.x, op->viewport.origin.y,
op->viewport.size.width, op->viewport.size.height);
glUniform4f (program->viewport_location,
op->viewport.origin.x, op->viewport.origin.y,
op->viewport.size.width, op->viewport.size.height);
glViewport (0, 0, op->viewport.size.width, op->viewport.size.height);
}
static inline void
apply_modelview_op (const Program *program,
const OpMatrix *op)
{
float mat[16];
graphene_matrix_to_float (&op->matrix, mat);
OP_PRINT (" -> Modelview { { %f,%f,%f,%f }, { %f,%f,%f,%f }, { %f,%f,%f,%f }, { %f,%f,%f,%f }",
mat[0], mat[1], mat[2], mat[3],
mat[4], mat[5], mat[6], mat[7],
mat[8], mat[9], mat[10], mat[11],
mat[12], mat[13], mat[14], mat[15]);
glUniformMatrix4fv (program->modelview_location, 1, GL_FALSE, mat);
}
static inline void
apply_projection_op (const Program *program,
const OpMatrix *op)
{
float mat[16];
graphene_matrix_to_float (&op->matrix, mat);
OP_PRINT (" -> Projection { { %f,%f,%f,%f }, { %f,%f,%f,%f }, { %f,%f,%f,%f }, { %f,%f,%f,%f }",
mat[0], mat[1], mat[2], mat[3],
mat[4], mat[5], mat[6], mat[7],
mat[8], mat[9], mat[10], mat[11],
mat[12], mat[13], mat[14], mat[15]);
glUniformMatrix4fv (program->projection_location, 1, GL_FALSE, mat);
}
static inline void
apply_program_op (const Program *program,
const OpProgram *op)
{
OP_PRINT (" -> Program: %d", op->program->index);
glUseProgram (op->program->id);
}
static inline void
apply_render_target_op (GskGLRenderer *self,
const OpRenderTarget *op)
{
OP_PRINT (" -> Render Target: %d", op->render_target_id);
glBindFramebuffer (GL_FRAMEBUFFER, op->render_target_id);
if (op->render_target_id != 0)
glDisable (GL_SCISSOR_TEST);
else
gsk_gl_renderer_setup_render_mode (self); /* Reset glScissor etc. */
}
static inline void
apply_color_op (const Program *program,
const OpColor *op)
{
OP_PRINT (" -> Color: (%f, %f, %f, %f)",
op->rgba->red, op->rgba->green, op->rgba->blue, op->rgba->alpha);
glUniform4fv (program->color.color_location, 1, (float *)op->rgba);
}
static inline void
apply_opacity_op (const Program *program,
const OpOpacity *op)
{
OP_PRINT (" -> Opacity %f", op->opacity);
glUniform1f (program->alpha_location, op->opacity);
}
static inline void
apply_source_texture_op (const Program *program,
const OpTexture *op)
{
g_assert(op->texture_id != 0);
OP_PRINT (" -> New texture: %d", op->texture_id);
/* Use texture unit 0 for the source */
glUniform1i (program->source_location, 0);
glActiveTexture (GL_TEXTURE0);
glBindTexture (GL_TEXTURE_2D, op->texture_id);
}
static inline void
apply_source_extra_texture_op (const Program *program,
const OpExtraTexture *op)
{
g_assert(op->texture_id != 0);
OP_PRINT (" -> New extra texture %d: %d", op->idx, op->texture_id);
glUniform1i (program->glshader.texture_locations[op->idx], op->idx);
glActiveTexture (GL_TEXTURE0 + op->idx);
glBindTexture (GL_TEXTURE_2D, op->texture_id);
}
static inline void
apply_color_matrix_op (const Program *program,
const OpColorMatrix *op)
{
float mat[16];
OP_PRINT (" -> Color Matrix");
graphene_matrix_to_float (op->matrix, mat);
glUniformMatrix4fv (program->color_matrix.color_matrix_location, 1, GL_FALSE, mat);
if (op->offset.send)
{
float vec[4];
graphene_vec4_to_float (op->offset.value, vec);
glUniform4fv (program->color_matrix.color_offset_location, 1, vec);
}
}
static inline void
apply_clip_op (const Program *program,
const OpClip *op)
{
int count;
if (op->send_corners)
{
OP_PRINT (" -> Clip: %s", gsk_rounded_rect_to_string (&op->clip));
count = 3;
}
else
{
OP_PRINT (" -> clip: %f, %f, %f, %f",
op->clip.bounds.origin.x, op->clip.bounds.origin.y,
op->clip.bounds.size.width, op->clip.bounds.size.height);
count = 1;
}
glUniform4fv (program->clip_rect_location, count, (float *)&op->clip.bounds);
}
static inline void
apply_inset_shadow_op (const Program *program,
const OpShadow *op)
{
OP_PRINT (" -> inset shadow. Color: %s, Offset: (%f, %f), Spread: %f, Outline: %s",
op->color.send ? gdk_rgba_to_string (op->color.value) : "don't send",
op->offset.send ? op->offset.value[0] : -1337.0,
op->offset.send ? op->offset.value[1] : -1337.0,
op->spread.send ? op->spread.value : -1337.0,
op->outline.send ? gsk_rounded_rect_to_string (&op->outline.value) : "don't send");
if (op->outline.send)
{
if (op->outline.send_corners)
glUniform4fv (program->inset_shadow.outline_rect_location, 3, (float *)&op->outline.value);
else
glUniform4fv (program->inset_shadow.outline_rect_location, 1, (float *)&op->outline.value);
}
if (op->color.send)
glUniform4fv (program->inset_shadow.color_location, 1, (float *)op->color.value);
if (op->spread.send)
glUniform1f (program->inset_shadow.spread_location, op->spread.value);
if (op->offset.send)
glUniform2fv (program->inset_shadow.offset_location, 1, op->offset.value);
}
static inline void
apply_unblurred_outset_shadow_op (const Program *program,
const OpShadow *op)
{
OP_PRINT (" -> unblurred outset shadow");
if (op->outline.send)
{
if (op->outline.send_corners)
glUniform4fv (program->unblurred_outset_shadow.outline_rect_location, 3, (float *)&op->outline.value);
else
glUniform4fv (program->unblurred_outset_shadow.outline_rect_location, 1, (float *)&op->outline.value);
}
if (op->color.send)
glUniform4fv (program->unblurred_outset_shadow.color_location, 1, (float *)op->color.value);
if (op->spread.send)
glUniform1f (program->unblurred_outset_shadow.spread_location, op->spread.value);
if (op->offset.send)
glUniform2fv (program->unblurred_outset_shadow.offset_location, 1, op->offset.value);
}
static inline void
apply_outset_shadow_op (const Program *program,
const OpOutsetShadow *op)
{
OP_PRINT (" -> outset shadow");
glUniform4fv (program->outset_shadow.outline_rect_location, 3, (float *)&op->outline.value.bounds);
}
static inline void
apply_linear_gradient_op (const Program *program,
const OpLinearGradient *op)
{
OP_PRINT (" -> Linear gradient");
if (op->n_color_stops.send)
glUniform1i (program->linear_gradient.num_color_stops_location, op->n_color_stops.value);
if (op->color_stops.send)
glUniform1fv (program->linear_gradient.color_stops_location,
op->n_color_stops.value * 5,
(float *)op->color_stops.value);
glUniform2f (program->linear_gradient.start_point_location, op->start_point[0], op->start_point[1]);
glUniform2f (program->linear_gradient.end_point_location, op->end_point[0], op->end_point[1]);
}
static inline void
apply_radial_gradient_op (const Program *program,
const OpRadialGradient *op)
{
OP_PRINT (" -> Radial gradient");
if (op->n_color_stops.send)
glUniform1i (program->radial_gradient.num_color_stops_location, op->n_color_stops.value);
if (op->color_stops.send)
glUniform1fv (program->radial_gradient.color_stops_location,
op->n_color_stops.value * 5,
(float *)op->color_stops.value);
glUniform1f (program->radial_gradient.start_location, op->start);
glUniform1f (program->radial_gradient.end_location, op->end);
glUniform2f (program->radial_gradient.radius_location, op->radius[0], op->radius[1]);
glUniform2f (program->radial_gradient.center_location, op->center[0], op->center[1]);
}
static inline void
apply_border_op (const Program *program,
const OpBorder *op)
{
OP_PRINT (" -> Border Outline");
glUniform4fv (program->border.outline_rect_location, 3, (float *)&op->outline.bounds);
}
static inline void
apply_gl_shader_args_op (const Program *program,
const OpGLShader *op)
{
int n_uniforms, i;
const GskGLUniform *uniforms;
OP_PRINT (" -> GL Shader Args");
glUniform2fv (program->glshader.size_location, 1, op->size);
uniforms = gsk_gl_shader_get_uniforms (op->shader, &n_uniforms);
for (i = 0; i < n_uniforms; i++)
{
const GskGLUniform *u = &uniforms[i];
const guchar *data = op->uniform_data + u->offset;
switch (u->type)
{
default:
case GSK_GL_UNIFORM_TYPE_NONE:
break;
case GSK_GL_UNIFORM_TYPE_FLOAT:
glUniform1fv (program->glshader.args_locations[i], 1, (const float *)data);
break;
case GSK_GL_UNIFORM_TYPE_INT:
glUniform1iv (program->glshader.args_locations[i], 1, (const gint32 *)data);
break;
case GSK_GL_UNIFORM_TYPE_UINT:
case GSK_GL_UNIFORM_TYPE_BOOL:
glUniform1uiv (program->glshader.args_locations[i], 1, (const guint32 *) data);
break;
case GSK_GL_UNIFORM_TYPE_VEC2:
glUniform2fv (program->glshader.args_locations[i], 1, (const float *)data);
break;
case GSK_GL_UNIFORM_TYPE_VEC3:
glUniform3fv (program->glshader.args_locations[i], 1, (const float *)data);
break;
case GSK_GL_UNIFORM_TYPE_VEC4:
glUniform4fv (program->glshader.args_locations[i], 1, (const float *)data);
break;
}
}
}
static inline void
apply_border_width_op (const Program *program,
const OpBorder *op)
{
OP_PRINT (" -> Border width (%f, %f, %f, %f)",
op->widths[0], op->widths[1], op->widths[2], op->widths[3]);
glUniform4fv (program->border.widths_location, 1, op->widths);
}
static inline void
apply_border_color_op (const Program *program,
const OpBorder *op)
{
OP_PRINT (" -> Border color: %s", gdk_rgba_to_string (op->color));
glUniform4fv (program->border.color_location, 1, (float *)op->color);
}
static inline void
apply_blur_op (const Program *program,
const OpBlur *op)
{
OP_PRINT (" -> Blur");
glUniform1f (program->blur.blur_radius_location, op->radius);
glUniform2f (program->blur.blur_size_location, op->size.width, op->size.height);
glUniform2f (program->blur.blur_dir_location, op->dir[0], op->dir[1]);
}
static inline void
apply_cross_fade_op (const Program *program,
const OpCrossFade *op)
{
OP_PRINT (" -> Cross fade");
/* End texture id */
glUniform1i (program->cross_fade.source2_location, 1);
glActiveTexture (GL_TEXTURE0 + 1);
glBindTexture (GL_TEXTURE_2D, op->source2);
/* progress */
glUniform1f (program->cross_fade.progress_location, op->progress);
}
static inline void
apply_blend_op (const Program *program,
const OpBlend *op)
{
/* End texture id */
glUniform1i (program->blend.source2_location, 1);
glActiveTexture (GL_TEXTURE0 + 1);
glBindTexture (GL_TEXTURE_2D, op->source2);
/* progress */
glUniform1i (program->blend.mode_location, op->mode);
}
static inline void
apply_repeat_op (const Program *program,
const OpRepeat *op)
{
glUniform4fv (program->repeat.child_bounds_location, 1, op->child_bounds);
glUniform4fv (program->repeat.texture_rect_location, 1, op->texture_rect);
}
static void
gsk_gl_renderer_dispose (GObject *gobject)
{
GskGLRenderer *self = GSK_GL_RENDERER (gobject);
ops_free (&self->op_builder);
G_OBJECT_CLASS (gsk_gl_renderer_parent_class)->dispose (gobject);
}
static void
program_init (Program *program)
{
program->index = -1;
program->state.opacity = 1.0f;
}
static void
program_finalize (Program *program)
{
if (program->id > 0)
glDeleteProgram (program->id);
if (program->index == -1 &&
program->glshader.compile_error != NULL)
g_error_free (program->glshader.compile_error);
gsk_transform_unref (program->state.modelview);
}
static void
program_free (Program *program)
{
program_finalize (program);
g_free (program);
}
static GskGLRendererPrograms *
gsk_gl_renderer_programs_new (void)
{
GskGLRendererPrograms *programs;
int i;
programs = g_new0 (GskGLRendererPrograms, 1);
programs->ref_count = 1;
for (i = 0; i < GL_N_PROGRAMS; i ++)
program_init (&programs->programs[i]);
/* We use direct hash for performance, not string hash on the source, because we assume each caller
* reuses a single GskGLShader for all uses and different callers will use different source content. */
programs->custom_programs = g_hash_table_new_full (g_direct_hash, g_direct_equal, (GDestroyNotify)g_object_unref, (GDestroyNotify)program_free);
return programs;
}
static GskGLRendererPrograms *
gsk_gl_renderer_programs_ref (GskGLRendererPrograms *programs)
{
programs->ref_count++;
return programs;
}
/* Must be called with the context current */
static void
gsk_gl_renderer_programs_unref (GskGLRendererPrograms *programs)
{
int i;
programs->ref_count--;
if (programs->ref_count == 0)
{
for (i = 0; i < GL_N_PROGRAMS; i ++)
program_finalize (&programs->programs[i]);
g_hash_table_destroy (programs->custom_programs);
g_free (programs);
}
}
static Program *
gsk_gl_renderer_lookup_custom_program (GskGLRenderer *self,
GskGLShader *shader)
{
return g_hash_table_lookup (self->programs->custom_programs, shader);
}
static Program *
gsk_gl_renderer_create_custom_program (GskGLRenderer *self,
GskGLShader *shader)
{
Program *program = g_new0 (Program, 1);
program_init (program);
g_hash_table_insert (self->programs->custom_programs, g_object_ref (shader), program);
return program;
}
static GskGLRendererPrograms *
gsk_gl_renderer_create_programs (GskGLRenderer *self,
GError **error)
{
GskGLShaderBuilder shader_builder;
GskGLRendererPrograms *programs = NULL;
int i;
static const struct {
const char *resource_path;
const char *name;
} program_definitions[] = {
{ "/org/gtk/libgsk/glsl/blend.glsl", "blend" },
{ "/org/gtk/libgsk/glsl/blit.glsl", "blit" },
{ "/org/gtk/libgsk/glsl/blur.glsl", "blur" },
{ "/org/gtk/libgsk/glsl/border.glsl", "border" },
{ "/org/gtk/libgsk/glsl/color_matrix.glsl", "color matrix" },
{ "/org/gtk/libgsk/glsl/color.glsl", "color" },
{ "/org/gtk/libgsk/glsl/coloring.glsl", "coloring" },
{ "/org/gtk/libgsk/glsl/cross_fade.glsl", "cross fade" },
{ "/org/gtk/libgsk/glsl/inset_shadow.glsl", "inset shadow" },
{ "/org/gtk/libgsk/glsl/linear_gradient.glsl", "linear gradient" },
{ "/org/gtk/libgsk/glsl/radial_gradient.glsl", "radial gradient" },
{ "/org/gtk/libgsk/glsl/outset_shadow.glsl", "outset shadow" },
{ "/org/gtk/libgsk/glsl/repeat.glsl", "repeat" },
{ "/org/gtk/libgsk/glsl/unblurred_outset_shadow.glsl", "unblurred_outset shadow" },
};
gsk_gl_shader_builder_init (&shader_builder,
"/org/gtk/libgsk/glsl/preamble.glsl",
"/org/gtk/libgsk/glsl/preamble.vs.glsl",
"/org/gtk/libgsk/glsl/preamble.fs.glsl");
g_assert (G_N_ELEMENTS (program_definitions) == GL_N_PROGRAMS);
init_shader_builder (self, &shader_builder);
programs = gsk_gl_renderer_programs_new ();
for (i = 0; i < GL_N_PROGRAMS; i ++)
{
Program *prog = &programs->programs[i];
prog->name = program_definitions[i].name;
prog->index = i;
prog->id = gsk_gl_shader_builder_create_program (&shader_builder,
program_definitions[i].resource_path,
NULL, 0, error);
if (prog->id < 0)
{
g_clear_pointer (&programs, gsk_gl_renderer_programs_unref);
goto out;
}
INIT_COMMON_UNIFORM_LOCATION (prog, alpha);
INIT_COMMON_UNIFORM_LOCATION (prog, source);
INIT_COMMON_UNIFORM_LOCATION (prog, clip_rect);
INIT_COMMON_UNIFORM_LOCATION (prog, viewport);
INIT_COMMON_UNIFORM_LOCATION (prog, projection);
INIT_COMMON_UNIFORM_LOCATION (prog, modelview);
}
/* color */
INIT_PROGRAM_UNIFORM_LOCATION (color, color);
/* coloring */
INIT_PROGRAM_UNIFORM_LOCATION (coloring, color);
/* color matrix */
INIT_PROGRAM_UNIFORM_LOCATION (color_matrix, color_matrix);
INIT_PROGRAM_UNIFORM_LOCATION (color_matrix, color_offset);
/* linear gradient */
INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, color_stops);
INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, num_color_stops);
INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, start_point);
INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, end_point);
/* radial gradient */
INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, color_stops);
INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, num_color_stops);
INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, center);
INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, start);
INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, end);
INIT_PROGRAM_UNIFORM_LOCATION (radial_gradient, radius);
/* blur */
INIT_PROGRAM_UNIFORM_LOCATION (blur, blur_radius);
INIT_PROGRAM_UNIFORM_LOCATION (blur, blur_size);
INIT_PROGRAM_UNIFORM_LOCATION (blur, blur_dir);
/* inset shadow */
INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, color);
INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, spread);
INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, offset);
INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, outline_rect);
/* outset shadow */
INIT_PROGRAM_UNIFORM_LOCATION (outset_shadow, color);
INIT_PROGRAM_UNIFORM_LOCATION (outset_shadow, outline_rect);
/* unblurred outset shadow */
INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, color);
INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, spread);
INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, offset);
INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, outline_rect);
/* border */
INIT_PROGRAM_UNIFORM_LOCATION (border, color);
INIT_PROGRAM_UNIFORM_LOCATION (border, widths);
INIT_PROGRAM_UNIFORM_LOCATION (border, outline_rect);
/* cross fade */
INIT_PROGRAM_UNIFORM_LOCATION (cross_fade, progress);
INIT_PROGRAM_UNIFORM_LOCATION (cross_fade, source2);
/* blend */
INIT_PROGRAM_UNIFORM_LOCATION (blend, source2);
INIT_PROGRAM_UNIFORM_LOCATION (blend, mode);
/* repeat */
INIT_PROGRAM_UNIFORM_LOCATION (repeat, child_bounds);
INIT_PROGRAM_UNIFORM_LOCATION (repeat, texture_rect);
/* We initialize the alpha uniform here, since the default value is important.
* We can't do it in the shader like a reasonable person would because that doesn't
* work in gles. */
for (i = 0; i < GL_N_PROGRAMS; i++)
{
glUseProgram(programs->programs[i].id);
glUniform1f (programs->programs[i].alpha_location, 1.0);
}
out:
gsk_gl_shader_builder_finish (&shader_builder);
if (error && !(*error) && !programs)
g_set_error (error, GDK_GL_ERROR, GDK_GL_ERROR_COMPILATION_FAILED,
"Failed to compile all shader programs"); /* Probably, eh. */
return programs;
}
static GskGLRendererPrograms *
get_programs_for_display (GskGLRenderer *self,
GdkDisplay *display,
GError **error)
{
GskGLRendererPrograms *programs;
if (g_getenv ("GSK_NO_SHARED_PROGRAMS"))
return gsk_gl_renderer_create_programs (self, error);
programs = (GskGLRendererPrograms *)g_object_get_data (G_OBJECT (display), "gsk-gl-programs");
if (programs == NULL)
{
programs = gsk_gl_renderer_create_programs (self, error);
if (programs)
g_object_set_data_full (G_OBJECT (display), "gsk-gl-programs",
programs,
(GDestroyNotify) gsk_gl_renderer_programs_unref);
}
if (programs)
return gsk_gl_renderer_programs_ref (programs);
return NULL;
}
static GskGLTextureAtlases *
get_texture_atlases_for_display (GdkDisplay *display)
{
GskGLTextureAtlases *atlases;
if (g_getenv ("GSK_NO_SHARED_CACHES"))
return gsk_gl_texture_atlases_new ();
atlases = (GskGLTextureAtlases*)g_object_get_data (G_OBJECT (display), "gsk-gl-texture-atlases");
if (atlases == NULL)
{
atlases = gsk_gl_texture_atlases_new ();
g_object_set_data_full (G_OBJECT (display), "gsk-gl-texture-atlases",
atlases,
(GDestroyNotify) gsk_gl_texture_atlases_unref);
}
return gsk_gl_texture_atlases_ref (atlases);
}
static GskGLGlyphCache *
get_glyph_cache_for_display (GdkDisplay *display,
GskGLTextureAtlases *atlases)
{
GskGLGlyphCache *glyph_cache;
if (g_getenv ("GSK_NO_SHARED_CACHES"))
return gsk_gl_glyph_cache_new (display, atlases);
glyph_cache = (GskGLGlyphCache*)g_object_get_data (G_OBJECT (display), "gsk-gl-glyph-cache");
if (glyph_cache == NULL)
{
glyph_cache = gsk_gl_glyph_cache_new (display, atlases);
g_object_set_data_full (G_OBJECT (display), "gsk-gl-glyph-cache",
glyph_cache,
(GDestroyNotify) gsk_gl_glyph_cache_unref);
}
return gsk_gl_glyph_cache_ref (glyph_cache);
}
static GskGLIconCache *
get_icon_cache_for_display (GdkDisplay *display,
GskGLTextureAtlases *atlases)
{
GskGLIconCache *icon_cache;
if (g_getenv ("GSK_NO_SHARED_CACHES"))
return gsk_gl_icon_cache_new (display, atlases);
icon_cache = (GskGLIconCache*)g_object_get_data (G_OBJECT (display), "gsk-gl-icon-cache");
if (icon_cache == NULL)
{
icon_cache = gsk_gl_icon_cache_new (display, atlases);
g_object_set_data_full (G_OBJECT (display), "gsk-gl-icon-cache",
icon_cache,
(GDestroyNotify) gsk_gl_icon_cache_unref);
}
return gsk_gl_icon_cache_ref (icon_cache);
}
static gboolean
gsk_gl_renderer_realize (GskRenderer *renderer,
GdkSurface *surface,
GError **error)
{
GskGLRenderer *self = GSK_GL_RENDERER (renderer);
gint64 before G_GNUC_UNUSED;
before = GDK_PROFILER_CURRENT_TIME;
/* If we didn't get a GdkGLContext before realization, try creating
* one now, for our exclusive use.
*/
if (self->gl_context == NULL)
{
self->gl_context = gdk_surface_create_gl_context (surface, error);
if (self->gl_context == NULL)
return FALSE;
}
if (!gdk_gl_context_realize (self->gl_context, error))
return FALSE;
gdk_gl_context_make_current (self->gl_context);
g_assert (self->gl_driver == NULL);
self->gl_profiler = gsk_gl_profiler_new (self->gl_context);
self->gl_driver = gsk_gl_driver_new (self->gl_context);
GSK_RENDERER_NOTE (renderer, OPENGL, g_message ("Creating buffers and programs"));
self->programs = get_programs_for_display (self, gdk_surface_get_display (surface), error);
if (self->programs == NULL)
return FALSE;
self->op_builder.programs = self->programs;
self->atlases = get_texture_atlases_for_display (gdk_surface_get_display (surface));
self->glyph_cache = get_glyph_cache_for_display (gdk_surface_get_display (surface), self->atlases);
self->icon_cache = get_icon_cache_for_display (gdk_surface_get_display (surface), self->atlases);
gsk_gl_shadow_cache_init (&self->shadow_cache);
gdk_profiler_end_mark (before, "gl renderer realize", NULL);
return TRUE;
}
static void
gsk_gl_renderer_unrealize (GskRenderer *renderer)
{
GskGLRenderer *self = GSK_GL_RENDERER (renderer);
if (self->gl_context == NULL)
return;
gdk_gl_context_make_current (self->gl_context);
/* We don't need to iterate to destroy the associated GL resources,
* as they will be dropped when we finalize the GskGLDriver
*/
ops_reset (&self->op_builder);
self->op_builder.programs = NULL;
g_clear_pointer (&self->programs, gsk_gl_renderer_programs_unref);
g_clear_pointer (&self->glyph_cache, gsk_gl_glyph_cache_unref);
g_clear_pointer (&self->icon_cache, gsk_gl_icon_cache_unref);
g_clear_pointer (&self->atlases, gsk_gl_texture_atlases_unref);
gsk_gl_shadow_cache_free (&self->shadow_cache, self->gl_driver);
g_clear_object (&self->gl_profiler);
g_clear_object (&self->gl_driver);
if (self->gl_context == gdk_gl_context_get_current ())
gdk_gl_context_clear_current ();
g_clear_object (&self->gl_context);
}
static void
gsk_gl_renderer_clear_tree (GskGLRenderer *self)
{
if (self->gl_context == NULL)
return;
gdk_gl_context_make_current (self->gl_context);
ops_reset (&self->op_builder);
#ifdef G_ENABLE_DEBUG
int removed_textures = gsk_gl_driver_collect_textures (self->gl_driver);
GSK_RENDERER_NOTE (GSK_RENDERER (self), OPENGL, g_message ("Collected: %d textures", removed_textures));
#else
gsk_gl_driver_collect_textures (self->gl_driver);
#endif
}
static void
gsk_gl_renderer_clear (GskGLRenderer *self)
{
GSK_RENDERER_NOTE (GSK_RENDERER (self), OPENGL, g_message ("Clearing viewport"));
glClearColor (0, 0, 0, 0);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
}
static void
gsk_gl_renderer_setup_render_mode (GskGLRenderer *self)
{
if (self->render_region == NULL)
{
glDisable (GL_SCISSOR_TEST);
}
else
{
GdkSurface *surface = gsk_renderer_get_surface (GSK_RENDERER (self));
cairo_rectangle_int_t extents;
int surface_height;
g_assert (cairo_region_num_rectangles (self->render_region) == 1);
surface_height = gdk_surface_get_height (surface) * self->scale_factor;
cairo_region_get_rectangle (self->render_region, 0, &extents);
glEnable (GL_SCISSOR_TEST);
glScissor (extents.x * self->scale_factor,
surface_height - (extents.height * self->scale_factor) - (extents.y * self->scale_factor),
extents.width * self->scale_factor,
extents.height * self->scale_factor);
}
}
static void
gsk_gl_renderer_add_render_ops (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
/* This can still happen, even if the render nodes are created using
* GtkSnapshot, so let's just be safe. */
if (node_is_invisible (node))
return;
/* Check whether the render node is entirely out of the current
* already transformed clip region */
{
graphene_rect_t transformed_node_bounds;
ops_transform_bounds_modelview (builder,
&node->bounds,
&transformed_node_bounds);
if (!graphene_rect_intersects (&builder->current_clip->bounds,
&transformed_node_bounds))
return;
}
switch (gsk_render_node_get_node_type (node))
{
case GSK_NOT_A_RENDER_NODE:
g_assert_not_reached ();
case GSK_CONTAINER_NODE:
{
guint i, p;
for (i = 0, p = gsk_container_node_get_n_children (node); i < p; i ++)
{
GskRenderNode *child = gsk_container_node_get_child (node, i);
gsk_gl_renderer_add_render_ops (self, child, builder);
}
}
break;
case GSK_DEBUG_NODE:
{
const char *message = gsk_debug_node_get_message (node);
if (message)
ops_push_debug_group (builder, message);
gsk_gl_renderer_add_render_ops (self,
gsk_debug_node_get_child (node),
builder);
if (message)
ops_pop_debug_group (builder);
}
break;
case GSK_COLOR_NODE:
render_color_node (self, node, builder);
break;
case GSK_TEXTURE_NODE:
render_texture_node (self, node, builder);
break;
case GSK_TRANSFORM_NODE:
render_transform_node (self, node, builder);
break;
case GSK_OPACITY_NODE:
render_opacity_node (self, node, builder);
break;
case GSK_LINEAR_GRADIENT_NODE:
render_linear_gradient_node (self, node, builder);
break;
case GSK_RADIAL_GRADIENT_NODE:
render_radial_gradient_node (self, node, builder);
break;
case GSK_CLIP_NODE:
render_clip_node (self, node, builder);
break;
case GSK_ROUNDED_CLIP_NODE:
render_rounded_clip_node (self, node, builder);
break;
case GSK_TEXT_NODE:
render_text_node (self, node, builder,
gsk_text_node_get_color (node), FALSE);
break;
case GSK_COLOR_MATRIX_NODE:
render_color_matrix_node (self, node, builder);
break;
case GSK_BLUR_NODE:
render_blur_node (self, node, builder);
break;
case GSK_INSET_SHADOW_NODE:
if (gsk_inset_shadow_node_get_blur_radius (node) > 0)
render_inset_shadow_node (self, node, builder);
else
render_unblurred_inset_shadow_node (self, node, builder);
break;
case GSK_OUTSET_SHADOW_NODE:
if (gsk_outset_shadow_node_get_blur_radius (node) > 0)
render_outset_shadow_node (self, node, builder);
else
render_unblurred_outset_shadow_node (self, node, builder);
break;
case GSK_SHADOW_NODE:
render_shadow_node (self, node, builder);
break;
case GSK_BORDER_NODE:
render_border_node (self, node, builder);
break;
case GSK_CROSS_FADE_NODE:
render_cross_fade_node (self, node, builder);
break;
case GSK_BLEND_NODE:
render_blend_node (self, node, builder);
break;
case GSK_REPEAT_NODE:
render_repeat_node (self, node, builder);
break;
case GSK_GL_SHADER_NODE:
render_gl_shader_node (self, node, builder);
break;
case GSK_REPEATING_LINEAR_GRADIENT_NODE:
case GSK_REPEATING_RADIAL_GRADIENT_NODE:
case GSK_CAIRO_NODE:
default:
{
render_fallback_node (self, node, builder);
}
}
}
static gboolean
add_offscreen_ops (GskGLRenderer *self,
RenderOpBuilder *builder,
const graphene_rect_t *bounds,
GskRenderNode *child_node,
TextureRegion *texture_region_out,
gboolean *is_offscreen,
guint flags)
{
float scale, width, height, size, scaled_size;
const float dx = builder->dx;
const float dy = builder->dy;
int render_target;
int prev_render_target;
graphene_matrix_t prev_projection;
graphene_rect_t prev_viewport;
graphene_matrix_t item_proj;
float prev_opacity = 1.0;
int texture_id = 0;
int max_texture_size;
int filter;
GskTextureKey key;
int cached_id;
if (node_is_invisible (child_node))
{
/* Just to be safe */
*is_offscreen = FALSE;
init_full_texture_region (texture_region_out, 0);
return FALSE;
}
/* We need the child node as a texture. If it already is one, we don't need to draw
* it on a framebuffer of course. */
if (gsk_render_node_get_node_type (child_node) == GSK_TEXTURE_NODE &&
(flags & FORCE_OFFSCREEN) == 0)
{
GdkTexture *texture = gsk_texture_node_get_texture (child_node);
upload_texture (self, texture, texture_region_out);
*is_offscreen = FALSE;
return TRUE;
}
if (flags & LINEAR_FILTER)
filter = GL_LINEAR;
else
filter = GL_NEAREST;
/* Check if we've already cached the drawn texture. */
key.pointer = child_node;
key.pointer_is_child = TRUE; /* Don't conflict with the child using the cache too */
key.parent_rect = *bounds;
key.scale = ops_get_scale (builder);
key.filter = filter;
cached_id = gsk_gl_driver_get_texture_for_key (self->gl_driver, &key);
if (cached_id != 0)
{
init_full_texture_region (texture_region_out, cached_id);
/* We didn't render it offscreen, but hand out an offscreen texture id */
*is_offscreen = TRUE;
return TRUE;
}
scale = ops_get_scale (builder);
width = bounds->size.width;
height = bounds->size.height;
/* Tweak the scale factor so that the required texture doesn't
* exceed the max texture limit. This will render with a lower
* resolution, but this is better than clipping.
*/
size = MAX (width, height);
scaled_size = ceilf (size * scale);
max_texture_size = gsk_gl_driver_get_max_texture_size (self->gl_driver);
if (scaled_size > max_texture_size)
scale *= (float) max_texture_size / scaled_size;
width = ceilf (width * scale);
height = ceilf (height * scale);
gsk_gl_driver_create_render_target (self->gl_driver,
width, height,
filter, filter,
&texture_id, &render_target);
if (gdk_gl_context_has_debug (self->gl_context))
{
gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id,
"Offscreen<%s> %d",
g_type_name_from_instance ((GTypeInstance *) child_node),
texture_id);
gdk_gl_context_label_object_printf (self->gl_context, GL_FRAMEBUFFER, render_target,
"Offscreen<%s> FB %d",
g_type_name_from_instance ((GTypeInstance *) child_node),
render_target);
}
init_projection_matrix (&item_proj,
&GRAPHENE_RECT_INIT (
bounds->origin.x * scale,
bounds->origin.y * scale,
width, height
));
prev_render_target = ops_set_render_target (builder, render_target);
/* Clear since we use this rendertarget for the first time */
ops_begin (builder, OP_CLEAR);
prev_projection = ops_set_projection (builder, &item_proj);
ops_set_modelview (builder, gsk_transform_scale (NULL, scale, scale));
prev_viewport = ops_set_viewport (builder,
&GRAPHENE_RECT_INIT (bounds->origin.x * scale,
bounds->origin.y * scale,
width, height));
if (flags & RESET_CLIP)
ops_push_clip (builder,
&GSK_ROUNDED_RECT_INIT (bounds->origin.x * scale,
bounds->origin.y * scale,
width, height));
builder->dx = 0;
builder->dy = 0;
if (flags & RESET_OPACITY)
prev_opacity = ops_set_opacity (builder, 1.0);
gsk_gl_renderer_add_render_ops (self, child_node, builder);
#ifdef G_ENABLE_DEBUG
if (G_UNLIKELY (flags & DUMP_FRAMEBUFFER))
{
static int k;
ops_dump_framebuffer (builder,
g_strdup_printf ("%s_%p_%d.png",
g_type_name_from_instance ((GTypeInstance *) child_node),
child_node,
k ++),
width, height);
}
#endif
if (flags & RESET_OPACITY)
ops_set_opacity (builder, prev_opacity);
builder->dx = dx;
builder->dy = dy;
if (flags & RESET_CLIP)
ops_pop_clip (builder);
ops_set_viewport (builder, &prev_viewport);
ops_pop_modelview (builder);
ops_set_projection (builder, &prev_projection);
ops_set_render_target (builder, prev_render_target);
*is_offscreen = TRUE;
init_full_texture_region (texture_region_out, texture_id);
if ((flags & NO_CACHE_PLZ) == 0)
gsk_gl_driver_set_texture_for_key (self->gl_driver, &key, texture_id);
return TRUE;
}
static void
gsk_gl_renderer_render_ops (GskGLRenderer *self)
{
const Program *program = NULL;
const gsize vertex_data_size = self->op_builder.vertices->len * sizeof (GskQuadVertex);
const float *vertex_data = (float *)self->op_builder.vertices->data;
OpBufferIter iter;
OpKind kind;
gpointer ptr;
GLuint buffer_id, vao_id;
#if DEBUG_OPS
g_print ("============================================\n");
#endif
glGenVertexArrays (1, &vao_id);
glBindVertexArray (vao_id);
glGenBuffers (1, &buffer_id);
glBindBuffer (GL_ARRAY_BUFFER, buffer_id);
glBufferData (GL_ARRAY_BUFFER, vertex_data_size, vertex_data, GL_STATIC_DRAW);
/* 0 = position location */
glEnableVertexAttribArray (0);
glVertexAttribPointer (0, 2, GL_FLOAT, GL_FALSE,
sizeof (GskQuadVertex),
(void *) G_STRUCT_OFFSET (GskQuadVertex, position));
/* 1 = texture coord location */
glEnableVertexAttribArray (1);
glVertexAttribPointer (1, 2, GL_FLOAT, GL_FALSE,
sizeof (GskQuadVertex),
(void *) G_STRUCT_OFFSET (GskQuadVertex, uv));
op_buffer_iter_init (&iter, ops_get_buffer (&self->op_builder));
while ((ptr = op_buffer_iter_next (&iter, &kind)))
{
if (kind == OP_NONE)
continue;
if (program == NULL &&
kind != OP_PUSH_DEBUG_GROUP &&
kind != OP_POP_DEBUG_GROUP &&
kind != OP_CHANGE_PROGRAM &&
kind != OP_CHANGE_RENDER_TARGET &&
kind != OP_CLEAR)
continue;
OP_PRINT ("Op %u: %u", iter.pos - 2, kind);
switch (kind)
{
case OP_CHANGE_PROJECTION:
apply_projection_op (program, ptr);
break;
case OP_CHANGE_MODELVIEW:
apply_modelview_op (program, ptr);
break;
case OP_CHANGE_PROGRAM:
{
const OpProgram *op = ptr;
apply_program_op (program, op);
program = op->program;
break;
}
case OP_CHANGE_RENDER_TARGET:
apply_render_target_op (self, ptr);
break;
case OP_CLEAR:
OP_PRINT ("-> CLEAR");
glClearColor (0, 0, 0, 0);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
break;
case OP_CHANGE_VIEWPORT:
apply_viewport_op (program, ptr);
break;
case OP_CHANGE_OPACITY:
apply_opacity_op (program, ptr);
break;
case OP_CHANGE_COLOR_MATRIX:
apply_color_matrix_op (program, ptr);
break;
case OP_CHANGE_COLOR:
/*g_assert (program == &self->color_program || program == &self->coloring_program ||*/
/*program == &self->shadow_program);*/
apply_color_op (program, ptr);
break;
case OP_CHANGE_BORDER_COLOR:
apply_border_color_op (program, ptr);
break;
case OP_CHANGE_CLIP:
apply_clip_op (program, ptr);
break;
case OP_CHANGE_SOURCE_TEXTURE:
apply_source_texture_op (program, ptr);
break;
case OP_CHANGE_EXTRA_SOURCE_TEXTURE:
apply_source_extra_texture_op (program, ptr);
break;
case OP_CHANGE_CROSS_FADE:
g_assert (program == &self->programs->cross_fade_program);
apply_cross_fade_op (program, ptr);
break;
case OP_CHANGE_BLEND:
g_assert (program == &self->programs->blend_program);
apply_blend_op (program, ptr);
break;
case OP_CHANGE_LINEAR_GRADIENT:
apply_linear_gradient_op (program, ptr);
break;
case OP_CHANGE_RADIAL_GRADIENT:
apply_radial_gradient_op (program, ptr);
break;
case OP_CHANGE_BLUR:
apply_blur_op (program, ptr);
break;
case OP_CHANGE_INSET_SHADOW:
apply_inset_shadow_op (program, ptr);
break;
case OP_CHANGE_OUTSET_SHADOW:
apply_outset_shadow_op (program, ptr);
break;
case OP_CHANGE_BORDER:
apply_border_op (program, ptr);
break;
case OP_CHANGE_BORDER_WIDTH:
apply_border_width_op (program, ptr);
break;
case OP_CHANGE_UNBLURRED_OUTSET_SHADOW:
apply_unblurred_outset_shadow_op (program, ptr);
break;
case OP_CHANGE_REPEAT:
apply_repeat_op (program, ptr);
break;
case OP_CHANGE_GL_SHADER_ARGS:
apply_gl_shader_args_op (program, ptr);
break;
case OP_DRAW:
{
const OpDraw *op = ptr;
OP_PRINT (" -> draw %ld, size %ld and program %d: %s",
op->vao_offset, op->vao_size, program->index,
program->name ?: "");
glDrawArrays (GL_TRIANGLES, op->vao_offset, op->vao_size);
break;
}
case OP_DUMP_FRAMEBUFFER:
{
const OpDumpFrameBuffer *op = ptr;
dump_framebuffer (op->filename, op->width, op->height);
break;
}
case OP_PUSH_DEBUG_GROUP:
{
const OpDebugGroup *op = ptr;
gdk_gl_context_push_debug_group (self->gl_context, op->text);
OP_PRINT (" Debug: %s", op->text);
break;
}
case OP_POP_DEBUG_GROUP:
gdk_gl_context_pop_debug_group (self->gl_context);
break;
case OP_NONE:
case OP_LAST:
default:
g_warn_if_reached ();
}
OP_PRINT ("\n");
}
glDeleteVertexArrays (1, &vao_id);
glDeleteBuffers (1, &buffer_id);
}
static void
gsk_gl_renderer_do_render (GskRenderer *renderer,
GskRenderNode *root,
const graphene_rect_t *viewport,
int fbo_id,
int scale_factor)
{
GskGLRenderer *self = GSK_GL_RENDERER (renderer);
graphene_matrix_t projection;
#ifdef G_ENABLE_DEBUG
GskProfiler *profiler;
gint64 gpu_time, cpu_time;
gint64 start_time G_GNUC_UNUSED;
#endif
GPtrArray *removed;
#ifdef G_ENABLE_DEBUG
profiler = gsk_renderer_get_profiler (renderer);
#endif
if (self->gl_context == NULL)
{
GSK_RENDERER_NOTE (renderer, OPENGL, g_message ("No valid GL context associated to the renderer"));
return;
}
g_assert (gsk_gl_driver_in_frame (self->gl_driver));
removed = g_ptr_array_new ();
gsk_gl_texture_atlases_begin_frame (self->atlases, removed);
gsk_gl_glyph_cache_begin_frame (self->glyph_cache, self->gl_driver, removed);
gsk_gl_icon_cache_begin_frame (self->icon_cache, removed);
gsk_gl_shadow_cache_begin_frame (&self->shadow_cache, self->gl_driver);
g_ptr_array_unref (removed);
/* Set up the modelview and projection matrices to fit our viewport */
init_projection_matrix (&projection, viewport);
ops_set_projection (&self->op_builder, &projection);
ops_set_viewport (&self->op_builder, viewport);
ops_set_modelview (&self->op_builder, gsk_transform_scale (NULL, scale_factor, scale_factor));
/* Initial clip is self->render_region! */
if (self->render_region != NULL)
{
graphene_rect_t transformed_render_region;
cairo_rectangle_int_t render_extents;
cairo_region_get_extents (self->render_region, &render_extents);
ops_transform_bounds_modelview (&self->op_builder,
&GRAPHENE_RECT_INIT (render_extents.x,
render_extents.y,
render_extents.width,
render_extents.height),
&transformed_render_region);
ops_push_clip (&self->op_builder,
&GSK_ROUNDED_RECT_INIT (transformed_render_region.origin.x,
transformed_render_region.origin.y,
transformed_render_region.size.width,
transformed_render_region.size.height));
}
else
{
ops_push_clip (&self->op_builder,
&GSK_ROUNDED_RECT_INIT (viewport->origin.x,
viewport->origin.y,
viewport->size.width,
viewport->size.height));
}
if (fbo_id != 0)
ops_set_render_target (&self->op_builder, fbo_id);
gdk_gl_context_push_debug_group (self->gl_context, "Adding render ops");
gsk_gl_renderer_add_render_ops (self, root, &self->op_builder);
gdk_gl_context_pop_debug_group (self->gl_context);
/* We correctly reset the state everywhere */
g_assert_cmpint (self->op_builder.current_render_target, ==, fbo_id);
ops_pop_modelview (&self->op_builder);
ops_pop_clip (&self->op_builder);
ops_finish (&self->op_builder);
/*g_message ("Ops: %u", self->render_ops->len);*/
/* Now actually draw things... */
#ifdef G_ENABLE_DEBUG
gsk_gl_profiler_begin_gpu_region (self->gl_profiler);
gsk_profiler_timer_begin (profiler, self->profile_timers.cpu_time);
#endif
/* Actually do the rendering */
if (fbo_id != 0)
glBindFramebuffer (GL_FRAMEBUFFER, fbo_id);
glViewport (0, 0, ceilf (viewport->size.width), ceilf (viewport->size.height));
gsk_gl_renderer_setup_render_mode (self);
gsk_gl_renderer_clear (self);
glEnable (GL_DEPTH_TEST);
glDepthFunc (GL_LEQUAL);
/* Pre-multiplied alpha! */
glEnable (GL_BLEND);
glBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
glBlendEquation (GL_FUNC_ADD);
gdk_gl_context_push_debug_group (self->gl_context, "Rendering ops");
gsk_gl_renderer_render_ops (self);
gdk_gl_context_pop_debug_group (self->gl_context);
#ifdef G_ENABLE_DEBUG
gsk_profiler_counter_inc (profiler, self->profile_counters.frames);
start_time = gsk_profiler_timer_get_start (profiler, self->profile_timers.cpu_time);
cpu_time = gsk_profiler_timer_end (profiler, self->profile_timers.cpu_time);
gsk_profiler_timer_set (profiler, self->profile_timers.cpu_time, cpu_time);
gpu_time = gsk_gl_profiler_end_gpu_region (self->gl_profiler);
gsk_profiler_timer_set (profiler, self->profile_timers.gpu_time, gpu_time);
gsk_profiler_push_samples (profiler);
gdk_profiler_add_mark (start_time * 1000, cpu_time * 1000, "GL render", "");
#endif
}
static GdkTexture *
gsk_gl_renderer_render_texture (GskRenderer *renderer,
GskRenderNode *root,
const graphene_rect_t *viewport)
{
GskGLRenderer *self = GSK_GL_RENDERER (renderer);
GdkTexture *texture;
int width, height;
guint texture_id;
guint fbo_id;
g_return_val_if_fail (self->gl_context != NULL, NULL);
gdk_gl_context_make_current (self->gl_context);
gdk_gl_context_push_debug_group_printf (self->gl_context,
"Render %s<%p> to texture",
g_type_name_from_instance ((GTypeInstance *) root),
root);
width = ceilf (viewport->size.width);
height = ceilf (viewport->size.height);
self->scale_factor = gdk_surface_get_scale_factor (gsk_renderer_get_surface (renderer));
/* Prepare our framebuffer */
gsk_gl_driver_begin_frame (self->gl_driver);
glGenTextures (1, &texture_id);
glBindTexture (GL_TEXTURE_2D, texture_id);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
if (gdk_gl_context_has_debug (self->gl_context))
gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id,
"Texture %s<%p> %d",
g_type_name_from_instance ((GTypeInstance *) root),
root,
texture_id);
if (gdk_gl_context_get_use_es (self->gl_context))
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
else
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
glGenFramebuffers (1, &fbo_id);
glBindFramebuffer (GL_FRAMEBUFFER, fbo_id);
if (gdk_gl_context_has_debug (self->gl_context))
gdk_gl_context_label_object_printf (self->gl_context, GL_FRAMEBUFFER, fbo_id,
"FB %s<%p> %d",
g_type_name_from_instance ((GTypeInstance *) root),
root,
fbo_id);
glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_id, 0);
/* Render the actual scene */
gsk_gl_renderer_do_render (renderer, root, viewport, fbo_id, 1);
glDeleteFramebuffers (1, &fbo_id);
/* Render the now drawn framebuffer y-flipped so it's as GdkGLTexture expects it to be */
{
guint final_texture_id, final_fbo_id;
graphene_matrix_t m;
ops_reset (&self->op_builder);
glGenFramebuffers (1, &final_fbo_id);
glBindFramebuffer (GL_FRAMEBUFFER, final_fbo_id);
glGenTextures (1, &final_texture_id);
glBindTexture (GL_TEXTURE_2D, final_texture_id);
if (gdk_gl_context_get_use_es (self->gl_context))
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
else
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, final_texture_id, 0);
g_assert_cmphex (glCheckFramebufferStatus (GL_FRAMEBUFFER), ==, GL_FRAMEBUFFER_COMPLETE);
ops_set_render_target (&self->op_builder, final_fbo_id);
ops_push_clip (&self->op_builder, &GSK_ROUNDED_RECT_INIT (0, 0, width, height));
ops_set_program (&self->op_builder, &self->programs->blit_program);
ops_begin (&self->op_builder, OP_CLEAR);
ops_set_texture (&self->op_builder, texture_id);
ops_set_modelview (&self->op_builder, NULL);
ops_set_viewport (&self->op_builder, &GRAPHENE_RECT_INIT (0, 0, width, height));
init_projection_matrix (&m, &GRAPHENE_RECT_INIT (0, 0, width, height));
graphene_matrix_scale (&m, 1, -1, 1); /* Undo the scale init_projection_matrix() does again */
ops_set_projection (&self->op_builder, &m);
fill_vertex_data (ops_draw (&self->op_builder, NULL),
0, 0, width, height);
ops_pop_clip (&self->op_builder);
gsk_gl_renderer_render_ops (self);
ops_finish (&self->op_builder);
glDeleteTextures (1, &texture_id);
texture_id = final_texture_id;
}
texture = gdk_gl_texture_new (self->gl_context,
texture_id,
width, height,
NULL, NULL);
gsk_gl_driver_end_frame (self->gl_driver);
gdk_gl_context_pop_debug_group (self->gl_context);
gsk_gl_renderer_clear_tree (self);
return texture;
}
static void
gsk_gl_renderer_render (GskRenderer *renderer,
GskRenderNode *root,
const cairo_region_t *update_area)
{
GskGLRenderer *self = GSK_GL_RENDERER (renderer);
graphene_rect_t viewport;
const cairo_region_t *damage;
GdkRectangle whole_surface;
GdkSurface *surface;
if (self->gl_context == NULL)
return;
surface = gsk_renderer_get_surface (renderer);
self->scale_factor = gdk_surface_get_scale_factor (surface);
gdk_gl_context_make_current (self->gl_context);
gdk_gl_context_push_debug_group_printf (self->gl_context,
"Render root node %p", root);
whole_surface = (GdkRectangle) {
0, 0,
gdk_surface_get_width (surface) * self->scale_factor,
gdk_surface_get_height (surface) * self->scale_factor
};
gdk_draw_context_begin_frame (GDK_DRAW_CONTEXT (self->gl_context),
update_area);
damage = gdk_draw_context_get_frame_region (GDK_DRAW_CONTEXT (self->gl_context));
if (cairo_region_contains_rectangle (damage, &whole_surface) == CAIRO_REGION_OVERLAP_IN)
{
self->render_region = NULL;
}
else
{
GdkRectangle extents;
cairo_region_get_extents (damage, &extents);
if (gdk_rectangle_equal (&extents, &whole_surface))
self->render_region = NULL;
else
self->render_region = cairo_region_create_rectangle (&extents);
}
gdk_gl_context_make_current (self->gl_context);
viewport.origin.x = 0;
viewport.origin.y = 0;
viewport.size.width = whole_surface.width;
viewport.size.height = whole_surface.height;
gsk_gl_driver_begin_frame (self->gl_driver);
gsk_gl_renderer_do_render (renderer, root, &viewport, 0, self->scale_factor);
gsk_gl_driver_end_frame (self->gl_driver);
gsk_gl_renderer_clear_tree (self);
gdk_draw_context_end_frame (GDK_DRAW_CONTEXT (self->gl_context));
gdk_gl_context_make_current (self->gl_context);
gdk_gl_context_pop_debug_group (self->gl_context);
g_clear_pointer (&self->render_region, cairo_region_destroy);
}
static void
gsk_gl_renderer_class_init (GskGLRendererClass *klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
GskRendererClass *renderer_class = GSK_RENDERER_CLASS (klass);
gobject_class->dispose = gsk_gl_renderer_dispose;
renderer_class->realize = gsk_gl_renderer_realize;
renderer_class->unrealize = gsk_gl_renderer_unrealize;
renderer_class->render = gsk_gl_renderer_render;
renderer_class->render_texture = gsk_gl_renderer_render_texture;
}
static void
gsk_gl_renderer_init (GskGLRenderer *self)
{
gsk_ensure_resources ();
ops_init (&self->op_builder);
self->op_builder.renderer = self;
#ifdef G_ENABLE_DEBUG
{
GskProfiler *profiler = gsk_renderer_get_profiler (GSK_RENDERER (self));
self->profile_counters.frames = gsk_profiler_add_counter (profiler, "frames", "Frames", FALSE);
self->profile_timers.cpu_time = gsk_profiler_add_timer (profiler, "cpu-time", "CPU time", FALSE, TRUE);
self->profile_timers.gpu_time = gsk_profiler_add_timer (profiler, "gpu-time", "GPU time", FALSE, TRUE);
}
#endif
}
/**
* gsk_gl_renderer_new:
*
* Creates a new #GskRenderer using OpenGL. This is the default renderer
* used by GTK.
*
* Returns: a new GL renderer
**/
GskRenderer *
gsk_gl_renderer_new (void)
{
return g_object_new (GSK_TYPE_GL_RENDERER, NULL);
}