gtk/gsk/gpu/shaders/roundedrect.glsl
Benjamin Otte 334e380d31 gpu: Handle overlapping rounded rect corners
Have a fallback in place for the most egregious abuses of rounded
corners, like
  0 0 50 50 / 50 0
and the like.

Fixes obscure border colors.
2024-01-07 07:22:51 +01:00

239 lines
9.2 KiB
GLSL

#ifndef _ROUNDED_RECT_
#define _ROUNDED_RECT_
#include "ellipse.glsl"
#include "rect.glsl"
struct RoundedRect
{
vec4 bounds;
vec4 corner_widths;
vec4 corner_heights;
};
RoundedRect
rounded_rect_from_gsk (mat3x4 gsk_rounded_rect)
{
return RoundedRect ((gsk_rounded_rect[0].xyxy + vec4 (0.0, 0.0, gsk_rounded_rect[0].zw)) * GSK_GLOBAL_SCALE.xyxy,
gsk_rounded_rect[1] * GSK_GLOBAL_SCALE.xxxx,
gsk_rounded_rect[2] * GSK_GLOBAL_SCALE.yyyy);
}
float
rounded_rect_distance (RoundedRect r, vec2 p)
{
Rect bounds = Rect(vec4(r.bounds));
float bounds_distance = rect_distance (bounds, p);
Ellipse tl = Ellipse (r.bounds.xy + vec2( r.corner_widths.x, r.corner_heights.x),
vec2(r.corner_widths.x, r.corner_heights.x));
Ellipse tr = Ellipse (r.bounds.zy + vec2(-r.corner_widths.y, r.corner_heights.y),
vec2(r.corner_widths.y, r.corner_heights.y));
Ellipse br = Ellipse (r.bounds.zw + vec2(-r.corner_widths.z, -r.corner_heights.z),
vec2(r.corner_widths.z, r.corner_heights.z));
Ellipse bl = Ellipse (r.bounds.xw + vec2( r.corner_widths.w, -r.corner_heights.w),
vec2(r.corner_widths.w, r.corner_heights.w));
vec4 distances = vec4(ellipse_distance (tl, p),
ellipse_distance (tr, p),
ellipse_distance (br, p),
ellipse_distance (bl, p));
bvec4 is_out = bvec4(p.x < tl.center.x && p.y < tl.center.y,
p.x > tr.center.x && p.y < tr.center.y,
p.x > br.center.x && p.y > br.center.y,
p.x < bl.center.x && p.y > bl.center.y);
distances = mix (vec4(bounds_distance), distances, is_out);
vec2 max2 = max (distances.xy, distances.zw);
return max (max2.x, max2.y);
}
RoundedRect
rounded_rect_shrink (RoundedRect r, vec4 amount)
{
vec4 new_bounds = r.bounds + vec4(1.0,1.0,-1.0,-1.0) * amount.wxyz;
vec4 new_widths = max (r.corner_widths - sign (r.corner_widths) * amount.wyyw, 0.0);
vec4 new_heights = max (r.corner_heights - sign (r.corner_heights) * amount.xxzz, 0.0);
new_widths = min (new_widths, new_bounds.z - new_bounds.x);
new_heights = min (new_heights, new_bounds.w - new_bounds.y);
return RoundedRect (new_bounds, new_widths, new_heights);
}
void
rounded_rect_scale (inout RoundedRect r,
vec2 scale)
{
r.bounds *= scale.xyxy;
r.corner_widths *= scale.xxxx;
r.corner_heights *= scale.yyyy;
}
void
rounded_rect_offset (inout RoundedRect r,
vec2 offset)
{
r.bounds += offset.xyxy;
}
bool
rounded_rect_is_slicable (RoundedRect r)
{
vec2 size = rect_size (Rect (r.bounds));
return (r.corner_widths[TOP_LEFT] + r.corner_widths[BOTTOM_RIGHT] <= size.x ||
r.corner_heights[TOP_LEFT] + r.corner_heights[BOTTOM_RIGHT] <= size.y)
&& (r.corner_widths[BOTTOM_LEFT] + r.corner_widths[TOP_RIGHT] <= size.x ||
r.corner_heights[BOTTOM_LEFT] + r.corner_heights[TOP_RIGHT] <= size.y);
}
Rect
rounded_rect_intersection_fallback_slice (RoundedRect outside,
RoundedRect inside,
uint slice)
{
switch (slice)
{
default:
case SLICE_TOP:
case SLICE_RIGHT:
case SLICE_BOTTOM:
case SLICE_LEFT:
return Rect (vec4 (0.0));
case SLICE_TOP_LEFT:
return Rect (vec4 (outside.bounds.xy, 0.5 * (outside.bounds.xy + outside.bounds.zw)));
case SLICE_TOP_RIGHT:
return Rect (vec4 (0.5 * (outside.bounds.x + outside.bounds.z), outside.bounds.y,
outside.bounds.z, 0.5 * (outside.bounds.y + outside.bounds.w)));
case SLICE_BOTTOM_RIGHT:
return Rect (vec4 (0.5 * (outside.bounds.xy + outside.bounds.zw), outside.bounds.zw));
case SLICE_BOTTOM_LEFT:
return Rect (vec4 (outside.bounds.x, 0.5 * (outside.bounds.y + outside.bounds.w),
0.5 * (outside.bounds.x + outside.bounds.z), outside.bounds.w));
}
}
Rect
rounded_rect_intersection_slice (RoundedRect outside,
RoundedRect inside,
uint slice)
{
float left, right, top, bottom;
if (!rounded_rect_is_slicable (outside) ||
!rounded_rect_is_slicable (inside))
return rounded_rect_intersection_fallback_slice (outside, inside, slice);
switch (slice)
{
case SLICE_TOP_LEFT:
return Rect (vec4 (outside.bounds.x,
outside.bounds.y,
max (outside.bounds.x + outside.corner_widths[TOP_LEFT],
inside.bounds.x + inside.corner_widths[TOP_LEFT]),
max (outside.bounds.y + outside.corner_heights[TOP_LEFT],
inside.bounds.y + inside.corner_heights[TOP_LEFT])));
case SLICE_TOP:
left = max (outside.bounds.x + outside.corner_widths[TOP_LEFT],
inside.bounds.x + inside.corner_widths[TOP_LEFT]);
right = min (outside.bounds.z - outside.corner_widths[TOP_RIGHT],
inside.bounds.z - inside.corner_widths[TOP_RIGHT]);
return Rect (vec4 (left,
outside.bounds.y,
max (left, right),
max (outside.bounds.y, inside.bounds.y)));
case SLICE_TOP_RIGHT:
left = max (min (outside.bounds.z - outside.corner_widths[TOP_RIGHT],
inside.bounds.z - inside.corner_widths[TOP_RIGHT]),
max (outside.bounds.x + outside.corner_widths[TOP_LEFT],
inside.bounds.x + inside.corner_widths[TOP_LEFT]));
return Rect (vec4 (left,
outside.bounds.y,
outside.bounds.z,
max (outside.bounds.y + outside.corner_heights[TOP_RIGHT],
inside.bounds.y + inside.corner_heights[TOP_RIGHT])));
case SLICE_RIGHT:
top = max (outside.bounds.y + outside.corner_heights[TOP_RIGHT],
inside.bounds.y + inside.corner_heights[TOP_RIGHT]);
bottom = min (outside.bounds.w - outside.corner_heights[BOTTOM_RIGHT],
inside.bounds.w - inside.corner_heights[BOTTOM_RIGHT]);
return Rect (vec4 (min (outside.bounds.z, inside.bounds.z),
top,
outside.bounds.z,
max (bottom, top)));
case SLICE_BOTTOM_RIGHT:
left = max (min (outside.bounds.z - outside.corner_widths[BOTTOM_RIGHT],
inside.bounds.z - inside.corner_widths[BOTTOM_RIGHT]),
max (outside.bounds.x + outside.corner_widths[BOTTOM_LEFT],
inside.bounds.x + inside.corner_widths[BOTTOM_LEFT]));
bottom = max (min (outside.bounds.w - outside.corner_heights[BOTTOM_RIGHT],
inside.bounds.w - inside.corner_heights[BOTTOM_RIGHT]),
max (outside.bounds.y + outside.corner_heights[TOP_RIGHT],
inside.bounds.y + inside.corner_heights[TOP_RIGHT]));
return Rect (vec4 (left,
bottom,
outside.bounds.z,
outside.bounds.w));
case SLICE_BOTTOM:
left = max (outside.bounds.x + outside.corner_widths[BOTTOM_LEFT],
inside.bounds.x + inside.corner_widths[BOTTOM_LEFT]);
right = min (outside.bounds.z - outside.corner_widths[BOTTOM_RIGHT],
inside.bounds.z - inside.corner_widths[BOTTOM_RIGHT]);
return Rect (vec4 (left,
min (outside.bounds.w, inside.bounds.w),
max (left, right),
outside.bounds.w));
case SLICE_BOTTOM_LEFT:
bottom = max (min (outside.bounds.w - outside.corner_heights[BOTTOM_LEFT],
inside.bounds.w - inside.corner_heights[BOTTOM_LEFT]),
max (outside.bounds.y + outside.corner_heights[TOP_LEFT],
inside.bounds.y + inside.corner_heights[TOP_LEFT]));
return Rect (vec4 (outside.bounds.x,
bottom,
max (outside.bounds.x + outside.corner_widths[BOTTOM_LEFT],
inside.bounds.x + inside.corner_widths[BOTTOM_LEFT]),
outside.bounds.w));
case SLICE_LEFT:
top = max (outside.bounds.y + outside.corner_heights[TOP_LEFT],
inside.bounds.y + inside.corner_heights[TOP_LEFT]);
bottom = min (outside.bounds.w - outside.corner_heights[BOTTOM_LEFT],
inside.bounds.w - inside.corner_heights[BOTTOM_LEFT]);
return Rect (vec4 (outside.bounds.x,
top,
max (outside.bounds.x, inside.bounds.x),
max (bottom, top)));
default:
return Rect (vec4 (0.0));
}
}
#ifdef GSK_FRAGMENT_SHADER
float
rounded_rect_coverage (RoundedRect r, vec2 p)
{
vec2 fw = abs (fwidth (p));
float distance_scale = max (fw.x, fw.y);
float distance = rounded_rect_distance (r, p) / distance_scale;
float coverage = 0.5 - distance;
return clamp (coverage, 0.0, 1.0);
}
#endif
#endif