gtk2/gsk/gl/gskgldriver.c

1385 lines
48 KiB
C
Raw Normal View History

/* gskgldriver.c
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
*
* Copyright 2017 Timm Bäder <mail@baedert.org>
* Copyright 2018 Matthias Clasen <mclasen@redhat.com>
* Copyright 2018 Alexander Larsson <alexl@redhat.com>
* Copyright 2020 Christian Hergert <chergert@redhat.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*/
#include "config.h"
#include "gskgldriverprivate.h"
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
#include <gsk/gskdebugprivate.h>
#include <gsk/gskglshaderprivate.h>
#include <gsk/gskrendererprivate.h>
#include "gskglcommandqueueprivate.h"
#include "gskglcompilerprivate.h"
#include "gskglglyphlibraryprivate.h"
#include "gskgliconlibraryprivate.h"
#include "gskglprogramprivate.h"
#include "gskglshadowlibraryprivate.h"
#include "gskgltextureprivate.h"
#include "fp16private.h"
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
#include <gdk/gdkglcontextprivate.h>
#include <gdk/gdkdisplayprivate.h>
#include <gdk/gdkmemorytextureprivate.h>
#include <gdk/gdkprofilerprivate.h>
#include <gdk/gdktextureprivate.h>
G_DEFINE_TYPE (GskGLDriver, gsk_gl_driver, G_TYPE_OBJECT)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
static guint
texture_key_hash (gconstpointer v)
{
const GskTextureKey *k = (const GskTextureKey *)v;
/* Optimize for 0..3 where 0 is the scaled out case. Usually
* we'll be squarely on 1 or 2 for standard vs HiDPI. When rendering
* to a texture scaled out like in node-editor, we might be < 1.
*/
guint scale_x = floorf (k->scale_x);
guint scale_y = floorf (k->scale_y);
return GPOINTER_TO_SIZE (k->pointer) ^
((scale_x << 8) |
(scale_y << 6) |
(k->filter << 1) |
k->pointer_is_child);
}
static gboolean
texture_key_equal (gconstpointer v1,
gconstpointer v2)
{
const GskTextureKey *k1 = (const GskTextureKey *)v1;
const GskTextureKey *k2 = (const GskTextureKey *)v2;
return k1->pointer == k2->pointer &&
k1->scale_x == k2->scale_x &&
k1->scale_y == k2->scale_y &&
k1->filter == k2->filter &&
k1->pointer_is_child == k2->pointer_is_child &&
(!k1->pointer_is_child || memcmp (&k1->parent_rect, &k2->parent_rect, sizeof k1->parent_rect) == 0);
}
static void
remove_texture_key_for_id (GskGLDriver *self,
guint texture_id)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskTextureKey *key;
g_assert (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (texture_id > 0);
/* g_hash_table_remove() will cause @key to be freed */
if (g_hash_table_steal_extended (self->texture_id_to_key,
GUINT_TO_POINTER (texture_id),
NULL,
(gpointer *)&key))
g_hash_table_remove (self->key_to_texture_id, key);
}
static void
gsk_gl_texture_destroyed (gpointer data)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
((GskGLTexture *)data)->user = NULL;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
static void
gsk_gl_driver_autorelease_texture (GskGLDriver *self,
guint texture_id)
{
g_assert (GSK_IS_GL_DRIVER (self));
g_array_append_val (self->texture_pool, texture_id);
}
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
static guint
gsk_gl_driver_collect_unused_textures (GskGLDriver *self,
gint64 watermark)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GHashTableIter iter;
gpointer k, v;
guint old_size;
guint collected;
g_assert (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
old_size = g_hash_table_size (self->textures);
g_hash_table_iter_init (&iter, self->textures);
while (g_hash_table_iter_next (&iter, &k, &v))
{
GskGLTexture *t = v;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (t->user || t->permanent)
continue;
if (t->last_used_in_frame <= watermark)
{
g_hash_table_iter_steal (&iter);
g_assert (t->link.prev == NULL);
g_assert (t->link.next == NULL);
g_assert (t->link.data == t);
remove_texture_key_for_id (self, t->texture_id);
gsk_gl_driver_autorelease_texture (self, t->texture_id);
t->texture_id = 0;
gsk_gl_texture_free (t);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
}
collected = old_size - g_hash_table_size (self->textures);
return collected;
}
static void
remove_program (gpointer data)
{
GskGLProgram *program = data;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (!program || GSK_IS_GL_PROGRAM (program));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (program != NULL)
{
gsk_gl_program_delete (program);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_object_unref (program);
}
}
static void
gsk_gl_driver_shader_weak_cb (gpointer data,
GObject *where_object_was)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskGLDriver *self = data;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (self->shader_cache != NULL)
{
if (self->command_queue != NULL)
gsk_gl_command_queue_make_current (self->command_queue);
g_hash_table_remove (self->shader_cache, where_object_was);
}
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
G_GNUC_UNUSED G_GNUC_NULL_TERMINATED static inline GBytes *
join_sources (GBytes *first_bytes,
...)
{
GByteArray *byte_array = g_byte_array_new ();
GBytes *bytes = first_bytes;
va_list args;
va_start (args, first_bytes);
while (bytes != NULL)
{
gsize len;
const guint8 *data = g_bytes_get_data (bytes, &len);
if (len > 0)
g_byte_array_append (byte_array, data, len);
g_bytes_unref (bytes);
bytes = va_arg (args, GBytes *);
}
va_end (args);
return g_byte_array_free_to_bytes (byte_array);
}
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
static void
gsk_gl_driver_dispose (GObject *object)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskGLDriver *self = (GskGLDriver *)object;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (self->in_frame == FALSE);
#define GSK_GL_NO_UNIFORMS
#define GSK_GL_SHADER_RESOURCE(name)
#define GSK_GL_SHADER_STRING(str)
#define GSK_GL_SHADER_SINGLE(name)
#define GSK_GL_SHADER_JOINED(kind, ...)
#define GSK_GL_ADD_UNIFORM(pos, KEY, name)
#define GSK_GL_DEFINE_PROGRAM(name, resource, uniforms) \
GSK_GL_DELETE_PROGRAM(name); \
GSK_GL_DELETE_PROGRAM(name ## _no_clip); \
GSK_GL_DELETE_PROGRAM(name ## _rect_clip);
#define GSK_GL_DELETE_PROGRAM(name) \
G_STMT_START { \
if (self->name) \
gsk_gl_program_delete (self->name); \
g_clear_object (&self->name); \
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
} G_STMT_END;
# include "gskglprograms.defs"
#undef GSK_GL_NO_UNIFORMS
#undef GSK_GL_SHADER_RESOURCE
#undef GSK_GL_SHADER_STRING
#undef GSK_GL_SHADER_SINGLE
#undef GSK_GL_SHADER_JOINED
#undef GSK_GL_ADD_UNIFORM
#undef GSK_GL_DEFINE_PROGRAM
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (self->shader_cache != NULL)
{
GHashTableIter iter;
gpointer k, v;
g_hash_table_iter_init (&iter, self->shader_cache);
while (g_hash_table_iter_next (&iter, &k, &v))
{
GskGLShader *shader = k;
g_object_weak_unref (G_OBJECT (shader),
gsk_gl_driver_shader_weak_cb,
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
self);
g_hash_table_iter_remove (&iter);
}
g_clear_pointer (&self->shader_cache, g_hash_table_unref);
}
if (self->command_queue != NULL)
{
gsk_gl_command_queue_make_current (self->command_queue);
gsk_gl_driver_collect_unused_textures (self, 0);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_clear_object (&self->command_queue);
}
if (self->autorelease_framebuffers->len > 0)
{
glDeleteFramebuffers (self->autorelease_framebuffers->len,
(GLuint *)(gpointer)self->autorelease_framebuffers->data);
self->autorelease_framebuffers->len = 0;
}
g_clear_pointer (&self->texture_pool, g_array_unref);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (!self->textures || g_hash_table_size (self->textures) == 0);
g_assert (!self->texture_id_to_key || g_hash_table_size (self->texture_id_to_key) == 0);
g_assert (!self->key_to_texture_id|| g_hash_table_size (self->key_to_texture_id) == 0);
g_clear_object (&self->glyphs_library);
2022-03-18 21:55:13 +00:00
g_clear_object (&self->icons_library);
g_clear_object (&self->shadows_library);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_clear_pointer (&self->autorelease_framebuffers, g_array_unref);
g_clear_pointer (&self->key_to_texture_id, g_hash_table_unref);
g_clear_pointer (&self->textures, g_hash_table_unref);
g_clear_pointer (&self->key_to_texture_id, g_hash_table_unref);
g_clear_pointer (&self->texture_id_to_key, g_hash_table_unref);
g_clear_pointer (&self->render_targets, g_ptr_array_unref);
g_clear_pointer (&self->shader_cache, g_hash_table_unref);
g_clear_object (&self->command_queue);
g_clear_object (&self->shared_command_queue);
G_OBJECT_CLASS (gsk_gl_driver_parent_class)->dispose (object);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
static void
gsk_gl_driver_class_init (GskGLDriverClass *klass)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->dispose = gsk_gl_driver_dispose;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
static void
gsk_gl_driver_init (GskGLDriver *self)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
self->autorelease_framebuffers = g_array_new (FALSE, FALSE, sizeof (guint));
self->textures = g_hash_table_new_full (NULL, NULL, NULL,
(GDestroyNotify)gsk_gl_texture_free);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
self->texture_id_to_key = g_hash_table_new (NULL, NULL);
self->key_to_texture_id = g_hash_table_new_full (texture_key_hash,
texture_key_equal,
g_free,
NULL);
self->shader_cache = g_hash_table_new_full (NULL, NULL, NULL, remove_program);
self->texture_pool = g_array_new (FALSE, FALSE, sizeof (guint));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
self->render_targets = g_ptr_array_new ();
}
static gboolean
gsk_gl_driver_load_programs (GskGLDriver *self,
GError **error)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskGLCompiler *compiler;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
gboolean ret = FALSE;
G_GNUC_UNUSED gint64 start_time = GDK_PROFILER_CURRENT_TIME;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (GSK_IS_GL_DRIVER (self));
g_assert (GSK_IS_GL_COMMAND_QUEUE (self->command_queue));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
compiler = gsk_gl_compiler_new (self, self->debug);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
/* Setup preambles that are shared by all shaders */
gsk_gl_compiler_set_preamble_from_resource (compiler,
GSK_GL_COMPILER_ALL,
"/org/gtk/libgsk/gl/preamble.glsl");
gsk_gl_compiler_set_preamble_from_resource (compiler,
GSK_GL_COMPILER_VERTEX,
"/org/gtk/libgsk/gl/preamble.vs.glsl");
gsk_gl_compiler_set_preamble_from_resource (compiler,
GSK_GL_COMPILER_FRAGMENT,
"/org/gtk/libgsk/gl/preamble.fs.glsl");
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
/* Setup attributes that are provided via VBO */
gsk_gl_compiler_bind_attribute (compiler, "aPosition", 0);
gsk_gl_compiler_bind_attribute (compiler, "aUv", 1);
gsk_gl_compiler_bind_attribute (compiler, "aColor", 2);
gsk_gl_compiler_bind_attribute (compiler, "aColor2", 3);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
/* Use XMacros to register all of our programs and their uniforms */
#define GSK_GL_NO_UNIFORMS
#define GSK_GL_SHADER_RESOURCE(name) \
g_resources_lookup_data("/org/gtk/libgsk/gl/" name, 0, NULL)
#define GSK_GL_SHADER_STRING(str) \
g_bytes_new_static(str, strlen(str))
#define GSK_GL_SHADER_SINGLE(bytes) \
G_STMT_START { \
GBytes *b = bytes; \
gsk_gl_compiler_set_source (compiler, GSK_GL_COMPILER_ALL, b); \
g_bytes_unref (b); \
} G_STMT_END;
#define GSK_GL_SHADER_JOINED(kind, ...) \
G_STMT_START { \
GBytes *bytes = join_sources(__VA_ARGS__); \
gsk_gl_compiler_set_source (compiler, GSK_GL_COMPILER_##kind, bytes); \
g_bytes_unref (bytes); \
} G_STMT_END;
#define GSK_GL_ADD_UNIFORM(pos, KEY, name) \
gsk_gl_program_add_uniform (program, #name, UNIFORM_##KEY);
#define GSK_GL_DEFINE_PROGRAM(name, sources, uniforms) \
gsk_gl_compiler_set_source (compiler, GSK_GL_COMPILER_VERTEX, NULL); \
gsk_gl_compiler_set_source (compiler, GSK_GL_COMPILER_FRAGMENT, NULL); \
sources \
GSK_GL_COMPILE_PROGRAM(name ## _no_clip, uniforms, "#define NO_CLIP 1\n"); \
GSK_GL_COMPILE_PROGRAM(name ## _rect_clip, uniforms, "#define RECT_CLIP 1\n"); \
GSK_GL_COMPILE_PROGRAM(name, uniforms, "");
#define GSK_GL_COMPILE_PROGRAM(name, uniforms, clip) \
G_STMT_START { \
GskGLProgram *program; \
gboolean have_alpha; \
gboolean have_source; \
\
if (!(program = gsk_gl_compiler_compile (compiler, #name, clip, error))) \
goto failure; \
\
have_alpha = gsk_gl_program_add_uniform (program, "u_alpha", UNIFORM_SHARED_ALPHA); \
have_source = gsk_gl_program_add_uniform (program, "u_source", UNIFORM_SHARED_SOURCE); \
gsk_gl_program_add_uniform (program, "u_clip_rect", UNIFORM_SHARED_CLIP_RECT); \
gsk_gl_program_add_uniform (program, "u_viewport", UNIFORM_SHARED_VIEWPORT); \
gsk_gl_program_add_uniform (program, "u_projection", UNIFORM_SHARED_PROJECTION); \
gsk_gl_program_add_uniform (program, "u_modelview", UNIFORM_SHARED_MODELVIEW); \
\
uniforms \
\
gsk_gl_program_uniforms_added (program, have_source); \
if (have_alpha) \
gsk_gl_program_set_uniform1f (program, UNIFORM_SHARED_ALPHA, 0, 1.0f); \
\
*(GskGLProgram **)(((guint8 *)self) + G_STRUCT_OFFSET (GskGLDriver, name)) = \
g_steal_pointer (&program); \
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
} G_STMT_END;
# include "gskglprograms.defs"
#undef GSK_GL_DEFINE_PROGRAM_CLIP
#undef GSK_GL_DEFINE_PROGRAM
#undef GSK_GL_ADD_UNIFORM
#undef GSK_GL_SHADER_SINGLE
#undef GSK_GL_SHADER_JOINED
#undef GSK_GL_SHADER_RESOURCE
#undef GSK_GL_SHADER_STRING
#undef GSK_GL_NO_UNIFORMS
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
ret = TRUE;
failure:
g_clear_object (&compiler);
gdk_profiler_end_mark (start_time, "load programs", NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
return ret;
}
/**
* gsk_gl_driver_autorelease_framebuffer:
* @self: a `GskGLDriver`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @framebuffer_id: the id of the OpenGL framebuffer
*
* Marks @framebuffer_id to be deleted when the current frame has cmopleted.
*/
static void
gsk_gl_driver_autorelease_framebuffer (GskGLDriver *self,
guint framebuffer_id)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
g_assert (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_array_append_val (self->autorelease_framebuffers, framebuffer_id);
}
static GskGLDriver *
gsk_gl_driver_new (GskGLCommandQueue *command_queue,
gboolean debug_shaders,
GError **error)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskGLDriver *self;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
GdkGLContext *context;
gint64 before G_GNUC_UNUSED;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (GSK_IS_GL_COMMAND_QUEUE (command_queue), NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
before = GDK_PROFILER_CURRENT_TIME;
context = gsk_gl_command_queue_get_context (command_queue);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
gdk_gl_context_make_current (context);
self = g_object_new (GSK_TYPE_GL_DRIVER, NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
self->command_queue = g_object_ref (command_queue);
self->shared_command_queue = g_object_ref (command_queue);
self->debug = !!debug_shaders;
if (!gsk_gl_driver_load_programs (self, error))
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
g_object_unref (self);
return NULL;
}
self->glyphs_library = gsk_gl_glyph_library_new (self);
2022-03-18 21:55:13 +00:00
self->icons_library = gsk_gl_icon_library_new (self);
self->shadows_library = gsk_gl_shadow_library_new (self);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
gdk_profiler_end_mark (before, "create GskGLDriver", NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
return g_steal_pointer (&self);
}
/**
* gsk_gl_driver_for_display:
* @display: A #GdkDisplay that is known to support GL
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @debug_shaders: if debug information for shaders should be displayed
* @error: location for error information
*
* Retrieves a driver for a shared display. Generally this is shared across all GL
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* contexts for a display so that fewer programs are necessary for driving output.
*
* Returns: (transfer full): a `GskGLDriver` if successful; otherwise %NULL and
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @error is set.
*/
GskGLDriver *
gsk_gl_driver_for_display (GdkDisplay *display,
gboolean debug_shaders,
GError **error)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GdkGLContext *context;
GskGLCommandQueue *command_queue = NULL;
GskGLDriver *driver;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (GDK_IS_DISPLAY (display), NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if ((driver = g_object_get_data (G_OBJECT (display), "GSK_GL_DRIVER")))
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
return g_object_ref (driver);
context = gdk_display_get_gl_context (display);
g_assert (context);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
gdk_gl_context_make_current (context);
/* Initially we create a command queue using the shared context. However,
* as frames are processed this will be replaced with the command queue
* for a given renderer. But since the programs are compiled into the
* shared context, all other contexts sharing with it will have access
* to those programs.
*/
command_queue = gsk_gl_command_queue_new (context, NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (!(driver = gsk_gl_driver_new (command_queue, debug_shaders, error)))
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
goto failure;
g_object_set_data_full (G_OBJECT (display),
"GSK_GL_DRIVER",
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_object_ref (driver),
g_object_unref);
failure:
g_clear_object (&command_queue);
return g_steal_pointer (&driver);
}
/**
* gsk_gl_driver_begin_frame:
* @self: a `GskGLDriver`
* @command_queue: A `GskGLCommandQueue` from the renderer
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
*
* Begin a new frame.
*
* Texture atlases, pools, and other resources will be prepared to draw the
* next frame. The command queue should be one that was created for the
* target context to be drawn into (the context of the renderer's surface).
*/
void
gsk_gl_driver_begin_frame (GskGLDriver *self,
GskGLCommandQueue *command_queue)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
gint64 last_frame_id;
g_return_if_fail (GSK_IS_GL_DRIVER (self));
g_return_if_fail (GSK_IS_GL_COMMAND_QUEUE (command_queue));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_if_fail (self->in_frame == FALSE);
last_frame_id = self->current_frame_id;
self->in_frame = TRUE;
self->current_frame_id++;
g_set_object (&self->command_queue, command_queue);
gsk_gl_command_queue_begin_frame (self->command_queue);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
/* Mark unused pixel regions of the atlases */
2022-03-18 21:55:13 +00:00
gsk_gl_texture_library_begin_frame (GSK_GL_TEXTURE_LIBRARY (self->icons_library),
self->current_frame_id);
gsk_gl_texture_library_begin_frame (GSK_GL_TEXTURE_LIBRARY (self->glyphs_library),
self->current_frame_id);
/* Cleanup old shadows */
2022-03-18 21:55:13 +00:00
gsk_gl_shadow_library_begin_frame (self->shadows_library);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
/* Remove all textures that are from a previous frame or are no
* longer used by linked GdkTexture. We do this at the beginning
* of the following frame instead of the end so that we reduce chances
* we block on any resources while delivering our frames.
*/
gsk_gl_driver_collect_unused_textures (self, last_frame_id - 1);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
/**
* gsk_gl_driver_end_frame:
* @self: a `GskGLDriver`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
*
* Clean up resources from drawing the current frame.
*
* Temporary resources used while drawing will be released.
*/
void
gsk_gl_driver_end_frame (GskGLDriver *self)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
g_return_if_fail (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_if_fail (self->in_frame == TRUE);
gsk_gl_command_queue_make_current (self->command_queue);
gsk_gl_command_queue_end_frame (self->command_queue);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
self->in_frame = FALSE;
}
/**
* gsk_gl_driver_after_frame:
* @self: a `GskGLDriver`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
*
* This function does post-frame cleanup operations.
*
* To reduce the chances of blocking on the driver it is performed
* after the frame has swapped buffers.
*/
void
gsk_gl_driver_after_frame (GskGLDriver *self)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
g_return_if_fail (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_if_fail (self->in_frame == FALSE);
/* Release any render targets (possibly adding them to
* self->autorelease_framebuffers) so we can release the FBOs immediately
* afterwards.
*/
while (self->render_targets->len > 0)
{
GskGLRenderTarget *render_target = g_ptr_array_index (self->render_targets, self->render_targets->len - 1);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
gsk_gl_driver_autorelease_framebuffer (self, render_target->framebuffer_id);
gsk_gl_driver_autorelease_texture (self, render_target->texture_id);
g_slice_free (GskGLRenderTarget, render_target);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
self->render_targets->len--;
}
/* Now that we have collected render targets, release all the FBOs */
if (self->autorelease_framebuffers->len > 0)
{
glDeleteFramebuffers (self->autorelease_framebuffers->len,
(GLuint *)(gpointer)self->autorelease_framebuffers->data);
self->autorelease_framebuffers->len = 0;
}
/* Release any cached textures we used during the frame */
if (self->texture_pool->len > 0)
{
glDeleteTextures (self->texture_pool->len,
(GLuint *)(gpointer)self->texture_pool->data);
self->texture_pool->len = 0;
}
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
/* Reset command queue to our shared queue in case we have operations
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* that need to be processed outside of a frame (such as callbacks
* from external systems such as GDK).
*/
g_set_object (&self->command_queue, self->shared_command_queue);
}
GdkGLContext *
gsk_gl_driver_get_context (GskGLDriver *self)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
g_return_val_if_fail (GSK_IS_GL_DRIVER (self), NULL);
g_return_val_if_fail (GSK_IS_GL_COMMAND_QUEUE (self->command_queue), NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
return gsk_gl_command_queue_get_context (self->command_queue);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
/**
* gsk_gl_driver_cache_texture:
* @self: a `GskGLDriver`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @key: the key for the texture
* @texture_id: the id of the texture to be cached
*
* Inserts @texture_id into the texture cache using @key.
*
* Textures can be looked up by @key after calling this function using
* gsk_gl_driver_lookup_texture().
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
*
* Textures that have not been used within a number of frames will be
* purged from the texture cache automatically.
*/
void
gsk_gl_driver_cache_texture (GskGLDriver *self,
const GskTextureKey *key,
guint texture_id)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskTextureKey *k;
g_assert (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (key != NULL);
g_assert (texture_id > 0);
g_assert (g_hash_table_contains (self->textures, GUINT_TO_POINTER (texture_id)));
k = g_memdup (key, sizeof *key);
g_hash_table_insert (self->key_to_texture_id, k, GUINT_TO_POINTER (texture_id));
g_hash_table_insert (self->texture_id_to_key, GUINT_TO_POINTER (texture_id), k);
}
/**
* gsk_gl_driver_load_texture:
* @self: a `GdkTexture`
* @texture: a `GdkTexture`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @min_filter: GL_NEAREST or GL_LINEAR
* @mag_filter: GL_NEAREST or GL_LINEAR
*
* Loads a `GdkTexture` by uploading the contents to the GPU when
* necessary. If @texture is a `GdkGLTexture`, it can be used without
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* uploading contents to the GPU.
*
* If the texture has already been uploaded and not yet released
* from cache, this function returns that texture id without further
* work.
*
* If the texture has not been used for a number of frames, it will
* be removed from cache.
*
* There is no need to release the resulting texture identifier after
* using it. It will be released automatically.
*
* Returns: a texture identifier
*/
guint
gsk_gl_driver_load_texture (GskGLDriver *self,
GdkTexture *texture,
int min_filter,
int mag_filter)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GdkGLContext *context;
GdkMemoryTexture *downloaded_texture;
GskGLTexture *t;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
guint texture_id;
int height;
int width;
int format;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (GSK_IS_GL_DRIVER (self), 0);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (GDK_IS_TEXTURE (texture), 0);
g_return_val_if_fail (GSK_IS_GL_COMMAND_QUEUE (self->command_queue), 0);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
context = self->command_queue->context;
format = GL_RGBA8;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (GDK_IS_GL_TEXTURE (texture))
{
GdkGLTexture *gl_texture = (GdkGLTexture *) texture;
GdkGLContext *texture_context = gdk_gl_texture_get_context (gl_texture);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (gdk_gl_context_is_shared (context, texture_context))
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
/* A GL texture from the same GL context is a simple task... */
return gdk_gl_texture_get_id (gl_texture);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
else
{
downloaded_texture = gdk_memory_texture_from_texture (texture, gdk_texture_get_format (texture));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
}
else
{
if ((t = gdk_texture_get_render_data (texture, self)))
{
if (t->min_filter == min_filter && t->mag_filter == mag_filter && t->texture_id)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
return t->texture_id;
}
downloaded_texture = gdk_memory_texture_from_texture (texture, gdk_texture_get_format (texture));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
/* The download_texture() call may have switched the GL context. Make sure
* the right context is at work again. */
gdk_gl_context_make_current (context);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
width = gdk_texture_get_width (texture);
height = gdk_texture_get_height (texture);
texture_id = gsk_gl_command_queue_upload_texture (self->command_queue,
GDK_TEXTURE (downloaded_texture),
min_filter,
mag_filter);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
t = gsk_gl_texture_new (texture_id,
width, height, format, min_filter, mag_filter,
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
self->current_frame_id);
g_hash_table_insert (self->textures, GUINT_TO_POINTER (texture_id), t);
if (gdk_texture_set_render_data (texture, self, t, gsk_gl_texture_destroyed))
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
t->user = texture;
gdk_gl_context_label_object_printf (context, GL_TEXTURE, t->texture_id,
"GdkTexture<%p> %d", texture, t->texture_id);
g_clear_object (&downloaded_texture);
return texture_id;
}
/**
* gsk_gl_driver_create_texture:
* @self: a `GskGLDriver`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @width: the width of the texture
* @height: the height of the texture
* @format: format for the texture
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @min_filter: GL_NEAREST or GL_LINEAR
* @mag_filter: GL_NEAREST or GL_FILTER
*
* Creates a new texture immediately that can be used by the caller
* to upload data, map to a framebuffer, or other uses which may
* modify the texture immediately.
*
2022-04-08 15:18:15 +00:00
* Typical examples for @format are GL_RGBA8, GL_RGBA16F or GL_RGBA32F.
*
* Use gsk_gl_driver_release_texture() to release this texture back into
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* the pool so it may be reused later in the pipeline.
*
* Returns: a `GskGLTexture` which can be returned to the pool with
* gsk_gl_driver_release_texture().
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
*/
GskGLTexture *
gsk_gl_driver_create_texture (GskGLDriver *self,
float width,
float height,
int format,
int min_filter,
int mag_filter)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskGLTexture *texture;
guint texture_id;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (GSK_IS_GL_DRIVER (self), NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
texture_id = gsk_gl_command_queue_create_texture (self->command_queue,
width, height,
format,
min_filter, mag_filter);
texture = gsk_gl_texture_new (texture_id,
width, height,
format,
min_filter, mag_filter,
self->current_frame_id);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_hash_table_insert (self->textures,
GUINT_TO_POINTER (texture->texture_id),
texture);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
return texture;
}
/**
* gsk_gl_driver_release_texture:
* @self: a `GskGLDriver`
* @texture: a `GskGLTexture`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
*
* Releases @texture back into the pool so that it can be used later
* in the command stream by future batches. This helps reduce VRAM
* usage on the GPU.
*
* When the frame has completed, pooled textures will be released
* to free additional VRAM back to the system.
*/
void
gsk_gl_driver_release_texture (GskGLDriver *self,
GskGLTexture *texture)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
guint texture_id;
g_assert (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (texture != NULL);
texture_id = texture->texture_id;
texture->texture_id = 0;
gsk_gl_texture_free (texture);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (texture_id > 0)
remove_texture_key_for_id (self, texture_id);
g_hash_table_steal (self->textures, GUINT_TO_POINTER (texture_id));
gsk_gl_driver_autorelease_texture (self, texture_id);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
/**
* gsk_gl_driver_create_render_target:
* @self: a `GskGLDriver`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @width: the width for the render target
* @height: the height for the render target
* @format: the format to use
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @min_filter: the min filter to use for the texture
* @mag_filter: the mag filter to use for the texture
* @out_render_target: (out): a location for the render target
*
* Creates a new render target which contains a framebuffer and a texture
* bound to that framebuffer of the size @width x @height and using the
* appropriate filters.
*
* Typical examples for @format are GK_RGBA8, GL_RGBA16F or GL_RGBA32F.
*
* Use gsk_gl_driver_release_render_target() when you are finished with
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* the render target to release it. You may steal the texture from the
* render target when releasing it.
*
* Returns: %TRUE if successful; otherwise %FALSE and @out_fbo_id and
* @out_texture_id are undefined.
*/
gboolean
gsk_gl_driver_create_render_target (GskGLDriver *self,
int width,
int height,
int format,
int min_filter,
int mag_filter,
GskGLRenderTarget **out_render_target)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
guint framebuffer_id;
guint texture_id;
g_return_val_if_fail (GSK_IS_GL_DRIVER (self), FALSE);
g_return_val_if_fail (GSK_IS_GL_COMMAND_QUEUE (self->command_queue), FALSE);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (out_render_target != NULL, FALSE);
#if 0
if (self->render_targets->len > 0)
{
for (guint i = self->render_targets->len; i > 0; i--)
{
GskGLRenderTarget *render_target = g_ptr_array_index (self->render_targets, i-1);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (render_target->width == width &&
render_target->height == height &&
render_target->min_filter == min_filter &&
render_target->mag_filter == mag_filter)
{
*out_render_target = g_ptr_array_steal_index_fast (self->render_targets, i-1);
return TRUE;
}
}
}
#endif
if (gsk_gl_command_queue_create_render_target (self->command_queue,
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
width, height,
format,
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
min_filter, mag_filter,
&framebuffer_id, &texture_id))
{
GskGLRenderTarget *render_target;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
render_target = g_slice_new0 (GskGLRenderTarget);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
render_target->min_filter = min_filter;
render_target->mag_filter = mag_filter;
render_target->format = format;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
render_target->width = width;
render_target->height = height;
render_target->framebuffer_id = framebuffer_id;
render_target->texture_id = texture_id;
*out_render_target = render_target;
return TRUE;
}
*out_render_target = NULL;
return FALSE;
}
/**
* gsk_gl_driver_release_render_target:
* @self: a `GskGLDriver`
* @render_target: a `GskGLRenderTarget` created with
* gsk_gl_driver_create_render_target().
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @release_texture: if the texture should also be released
*
* Releases a render target that was previously created. An attempt may
* be made to cache the render target so that future creations of render
* targets are performed faster.
*
* If @release_texture is %FALSE, the backing texture id is returned and
* the framebuffer is released. Otherwise, both the texture and framebuffer
* are released or cached until the end of the frame.
*
* This may be called when building the render job as the texture or
* framebuffer will not be removed immediately.
*
* Returns: a texture id if @release_texture is %FALSE, otherwise zero.
*/
guint
gsk_gl_driver_release_render_target (GskGLDriver *self,
GskGLRenderTarget *render_target,
gboolean release_texture)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
guint texture_id;
g_return_val_if_fail (GSK_IS_GL_DRIVER (self), 0);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (render_target != NULL, 0);
if (release_texture)
{
texture_id = 0;
g_ptr_array_add (self->render_targets, render_target);
}
else
{
GskGLTexture *texture;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
texture_id = render_target->texture_id;
texture = gsk_gl_texture_new (render_target->texture_id,
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
render_target->width,
render_target->height,
render_target->format,
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
render_target->min_filter,
render_target->mag_filter,
self->current_frame_id);
g_hash_table_insert (self->textures,
GUINT_TO_POINTER (texture_id),
g_steal_pointer (&texture));
gsk_gl_driver_autorelease_framebuffer (self, render_target->framebuffer_id);
g_slice_free (GskGLRenderTarget, render_target);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
return texture_id;
}
/**
* gsk_gl_driver_lookup_shader:
* @self: a `GskGLDriver`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
* @shader: the shader to lookup or load
* @error: a location for a `GError`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
*
* Attepts to load @shader from the shader cache.
*
* If it has not been loaded, then it will compile the shader on demand.
*
* Returns: (nullable) (transfer none): a `GskGLShader`
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
*/
GskGLProgram *
gsk_gl_driver_lookup_shader (GskGLDriver *self,
GskGLShader *shader,
GError **error)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskGLProgram *program;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (self != NULL, NULL);
g_return_val_if_fail (shader != NULL, NULL);
program = g_hash_table_lookup (self->shader_cache, shader);
if (program == NULL)
{
const GskGLUniform *uniforms;
GskGLCompiler *compiler;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
GBytes *suffix;
int n_required_textures;
int n_uniforms;
uniforms = gsk_gl_shader_get_uniforms (shader, &n_uniforms);
if (n_uniforms > GSK_GL_PROGRAM_MAX_CUSTOM_ARGS)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
g_set_error (error,
GDK_GL_ERROR,
GDK_GL_ERROR_UNSUPPORTED_FORMAT,
"Tried to use %d uniforms, while only %d is supported",
n_uniforms,
GSK_GL_PROGRAM_MAX_CUSTOM_ARGS);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
return NULL;
}
n_required_textures = gsk_gl_shader_get_n_textures (shader);
if (n_required_textures > GSK_GL_PROGRAM_MAX_CUSTOM_TEXTURES)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
g_set_error (error,
GDK_GL_ERROR,
GDK_GL_ERROR_UNSUPPORTED_FORMAT,
"Tried to use %d textures, while only %d is supported",
n_required_textures,
GSK_GL_PROGRAM_MAX_CUSTOM_TEXTURES);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
return NULL;
}
compiler = gsk_gl_compiler_new (self, FALSE);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
suffix = gsk_gl_shader_get_source (shader);
gsk_gl_compiler_set_preamble_from_resource (compiler,
GSK_GL_COMPILER_ALL,
"/org/gtk/libgsk/gl/preamble.glsl");
gsk_gl_compiler_set_preamble_from_resource (compiler,
GSK_GL_COMPILER_VERTEX,
"/org/gtk/libgsk/gl/preamble.vs.glsl");
gsk_gl_compiler_set_preamble_from_resource (compiler,
GSK_GL_COMPILER_FRAGMENT,
"/org/gtk/libgsk/gl/preamble.fs.glsl");
gsk_gl_compiler_set_source_from_resource (compiler,
GSK_GL_COMPILER_ALL,
"/org/gtk/libgsk/gl/custom.glsl");
gsk_gl_compiler_set_suffix (compiler, GSK_GL_COMPILER_FRAGMENT, suffix);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
/* Setup attributes that are provided via VBO */
gsk_gl_compiler_bind_attribute (compiler, "aPosition", 0);
gsk_gl_compiler_bind_attribute (compiler, "aUv", 1);
gsk_gl_compiler_bind_attribute (compiler, "aColor", 2);
gsk_gl_compiler_bind_attribute (compiler, "aColor2", 3);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if ((program = gsk_gl_compiler_compile (compiler, NULL, "", error)))
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
gboolean have_alpha;
gsk_gl_program_add_uniform (program, "u_source", UNIFORM_SHARED_SOURCE);
gsk_gl_program_add_uniform (program, "u_clip_rect", UNIFORM_SHARED_CLIP_RECT);
gsk_gl_program_add_uniform (program, "u_viewport", UNIFORM_SHARED_VIEWPORT);
gsk_gl_program_add_uniform (program, "u_projection", UNIFORM_SHARED_PROJECTION);
gsk_gl_program_add_uniform (program, "u_modelview", UNIFORM_SHARED_MODELVIEW);
have_alpha = gsk_gl_program_add_uniform (program, "u_alpha", UNIFORM_SHARED_ALPHA);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
gsk_gl_program_add_uniform (program, "u_size", UNIFORM_CUSTOM_SIZE);
gsk_gl_program_add_uniform (program, "u_texture1", UNIFORM_CUSTOM_TEXTURE1);
gsk_gl_program_add_uniform (program, "u_texture2", UNIFORM_CUSTOM_TEXTURE2);
gsk_gl_program_add_uniform (program, "u_texture3", UNIFORM_CUSTOM_TEXTURE3);
gsk_gl_program_add_uniform (program, "u_texture4", UNIFORM_CUSTOM_TEXTURE4);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
/* Custom arguments (max is 8) */
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
for (guint i = 0; i < n_uniforms; i++)
gsk_gl_program_add_uniform (program, uniforms[i].name, UNIFORM_CUSTOM_ARG0+i);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
gsk_gl_program_uniforms_added (program, TRUE);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (have_alpha)
gsk_gl_program_set_uniform1f (program, UNIFORM_SHARED_ALPHA, 0, 1.0f);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_hash_table_insert (self->shader_cache, shader, program);
g_object_weak_ref (G_OBJECT (shader),
gsk_gl_driver_shader_weak_cb,
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
self);
}
g_object_unref (compiler);
}
return program;
}
#ifdef G_ENABLE_DEBUG
static void
write_atlas_to_png (GskGLDriver *driver,
GskGLTextureAtlas *atlas,
const char *filename)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GdkTexture *texture;
texture = gdk_gl_texture_new (gsk_gl_driver_get_context (driver),
atlas->texture_id,
atlas->width, atlas->height,
NULL, NULL);
gdk_texture_save_to_png (texture, filename);
g_object_unref (texture);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
void
gsk_gl_driver_save_atlases_to_png (GskGLDriver *self,
const char *directory)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GPtrArray *atlases;
g_return_if_fail (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if (directory == NULL)
directory = ".";
#define copy_atlases(dst, library) \
g_ptr_array_extend(dst, GSK_GL_TEXTURE_LIBRARY(library)->atlases, NULL, NULL)
atlases = g_ptr_array_new ();
copy_atlases (atlases, self->glyphs_library);
2022-03-18 21:55:13 +00:00
copy_atlases (atlases, self->icons_library);
#undef copy_atlases
for (guint i = 0; i < atlases->len; i++)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskGLTextureAtlas *atlas = g_ptr_array_index (atlases, i);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
char *filename = g_strdup_printf ("%s%sframe-%d-atlas-%d.png",
directory,
G_DIR_SEPARATOR_S,
(int)self->current_frame_id,
atlas->texture_id);
write_atlas_to_png (self, atlas, filename);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_free (filename);
}
g_ptr_array_unref (atlases);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
#endif
GskGLCommandQueue *
gsk_gl_driver_create_command_queue (GskGLDriver *self,
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
GdkGLContext *context)
{
g_return_val_if_fail (GSK_IS_GL_DRIVER (self), NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (GDK_IS_GL_CONTEXT (context), NULL);
return gsk_gl_command_queue_new (context, self->shared_command_queue->uniforms);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
void
gsk_gl_driver_add_texture_slices (GskGLDriver *self,
GdkTexture *texture,
int min_filter,
int mag_filter,
guint min_cols,
guint min_rows,
GskGLTextureSlice **out_slices,
guint *out_n_slices)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
int max_texture_size;
GskGLTextureSlice *slices;
GskGLTexture *t;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
guint n_slices;
guint cols;
guint rows;
int tex_width;
int tex_height;
int x = 0, y = 0;
GdkMemoryTexture *memtex;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (GDK_IS_TEXTURE (texture));
g_assert (out_slices != NULL);
g_assert (out_n_slices != NULL);
/* XXX: Too much? */
max_texture_size = self->command_queue->max_texture_size / 4;
tex_width = texture->width;
tex_height = texture->height;
cols = MAX ((texture->width / max_texture_size) + 1, min_cols);
rows = MAX ((texture->height / max_texture_size) + 1, min_rows);
n_slices = cols * rows;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
if ((t = gdk_texture_get_render_data (texture, self)))
{
if (t->n_slices == n_slices)
{
*out_slices = t->slices;
*out_n_slices = t->n_slices;
return;
}
gdk_texture_clear_render_data (texture);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
slices = g_new0 (GskGLTextureSlice, n_slices);
memtex = gdk_memory_texture_from_texture (texture,
gdk_texture_get_format (texture));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
for (guint col = 0; col < cols; col++)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
int slice_width = col + 1 < cols ? tex_width / cols : tex_width - x;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
for (guint row = 0; row < rows; row++)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
int slice_height = row + 1 < rows ? tex_height / rows : tex_height - y;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
int slice_index = (col * rows) + row;
GdkTexture *subtex;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
guint texture_id;
subtex = gdk_memory_texture_new_subtexture (memtex,
x, y,
slice_width, slice_height);
texture_id = gsk_gl_command_queue_upload_texture (self->command_queue,
subtex,
min_filter, mag_filter);
g_object_unref (subtex);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
slices[slice_index].rect.x = x;
slices[slice_index].rect.y = y;
slices[slice_index].rect.width = slice_width;
slices[slice_index].rect.height = slice_height;
slices[slice_index].texture_id = texture_id;
y += slice_height;
}
y = 0;
x += slice_width;
}
g_object_unref (memtex);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
/* Allocate one Texture for the entire thing. */
t = gsk_gl_texture_new (0,
tex_width, tex_height,
GL_RGBA8,
GL_NEAREST, GL_NEAREST,
self->current_frame_id);
/* Use gsk_gl_texture_free() as destroy notify here since we are
* not inserting this GskGLTexture into self->textures!
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
*/
gdk_texture_set_render_data (texture, self, t,
(GDestroyNotify)gsk_gl_texture_free);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
t->slices = *out_slices = slices;
t->n_slices = *out_n_slices = n_slices;
}
GskGLTexture *
gsk_gl_driver_mark_texture_permanent (GskGLDriver *self,
guint texture_id)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskGLTexture *t;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (GSK_IS_GL_DRIVER (self), NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (texture_id > 0, NULL);
if ((t = g_hash_table_lookup (self->textures, GUINT_TO_POINTER (texture_id))))
t->permanent = TRUE;
return t;
}
void
gsk_gl_driver_release_texture_by_id (GskGLDriver *self,
guint texture_id)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskGLTexture *texture;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_if_fail (GSK_IS_GL_DRIVER (self));
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_if_fail (texture_id > 0);
remove_texture_key_for_id (self, texture_id);
if ((texture = g_hash_table_lookup (self->textures, GUINT_TO_POINTER (texture_id))))
gsk_gl_driver_release_texture (self, texture);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
typedef struct _GskGLTextureState
{
GdkGLContext *context;
GLuint texture_id;
} GskGLTextureState;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
static void
create_texture_from_texture_destroy (gpointer data)
{
GskGLTextureState *state = data;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_assert (state != NULL);
g_assert (GDK_IS_GL_CONTEXT (state->context));
gdk_gl_context_make_current (state->context);
glDeleteTextures (1, &state->texture_id);
g_clear_object (&state->context);
g_slice_free (GskGLTextureState, state);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
}
GdkTexture *
gsk_gl_driver_create_gdk_texture (GskGLDriver *self,
guint texture_id)
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
{
GskGLTextureState *state;
GskGLTexture *texture;
int width, height;
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (GSK_IS_GL_DRIVER (self), NULL);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
g_return_val_if_fail (self->command_queue != NULL, NULL);
g_return_val_if_fail (GDK_IS_GL_CONTEXT (self->command_queue->context), NULL);
g_return_val_if_fail (texture_id > 0, NULL);
g_return_val_if_fail (!g_hash_table_contains (self->texture_id_to_key, GUINT_TO_POINTER (texture_id)), NULL);
/* We must be tracking this texture_id already to use it */
if (!(texture = g_hash_table_lookup (self->textures, GUINT_TO_POINTER (texture_id))))
g_return_val_if_reached (NULL);
state = g_slice_new0 (GskGLTextureState);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
state->texture_id = texture_id;
state->context = g_object_ref (self->command_queue->context);
g_hash_table_steal (self->textures, GUINT_TO_POINTER (texture_id));
width = texture->width;
height = texture->height;
texture->texture_id = 0;
gsk_gl_texture_free (texture);
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
return gdk_gl_texture_new (self->command_queue->context,
texture_id,
width,
height,
gsk: add OpenGL based GskNglRenderer The primary goal here was to cleanup the current GL renderer to make maintenance easier going forward. Furthermore, it tracks state to allow us to implement more advanced renderer features going forward. Reordering This renderer will reorder batches by render target to reduce the number of times render targets are changed. In the future, we could also reorder by program within the render target if we can determine that vertices do not overlap. Uniform Snapshots To allow for reordering of batches all uniforms need to be tracked for the programs. This allows us to create the full uniform state when the batch has been moved into a new position. Some care was taken as it can be performance sensitive. Attachment Snapshots Similar to uniform snapshots, we need to know all of the texture attachments so that we can rebind them when necessary. Render Jobs To help isolate the process of creating GL commands from the renderer abstraction a render job abstraction was added. This could be extended in the future if we decided to do tiling. Command Queue Render jobs create batches using the command queue. The command queue will snapshot uniform and attachment state so that it can reorder batches right before executing them. Currently, the only reordering done is to ensure that we only visit each render target once. We could extend this by tracking vertices, attachments, and others. This code currently uses an inline array helper to reduce overhead from GArray which was showing up on profiles. It could be changed to use GdkArray without too much work, but had roughly double the instructions. Cycle counts have not yet been determined. GLSL Programs This was simplified to use XMACROS so that we can just extend one file (gskglprograms.defs) instead of multiple places. The programs are added as fields in the driver for easy access. Driver The driver manages textures, render targets, access to atlases, programs, and more. There is one driver per display, by using the shared GL context. Some work could be done here to batch uploads so that we make fewer calls to upload when sending icon theme data to the GPU. We'd need to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
create_texture_from_texture_destroy,
state);
}