Add support to share the WGL context in GDK with the WGL context in GStreamer,
so that we can also use OpenGL in the gstreamer media backend to playback
videos. For now OpenGL/ES is not supported for this under Windows.
The process of setting this up in Windows is a little bit more involved, as:
* The OpenGL support in GstGL requires a GL 4.1 Core context, but we may just
get the GL version from wglCreateContextAttribsARB() that we pass into the
attributes, which is 3.2 by default. So, try to ask for a 4.1 Core context
first if we are asking for anything less.
* There is only one GstDisplay available for Windows, so we just use
gst_gl_display_new().
* We must explicitly tell libepoxy that we are using wglMakeCurrent() outside
of libepoxy that is being used in GdkGL, otherwise we would end up crashing
as the GL/WGL function pointers would become invalid.
* We must also deactivate temporarily the underlying WGL context that was made
current by gdk_gl_context_make_current() so that when
gst_gl_display_create_context() calls wglShareLists(), we won't get bitten
by error 0xaa (resource busy), as some drivers don't handle this well when
the GL context is current in another thread.
For the last two points we make use of macros defined by the platforms that the
build is done for to help us carry out the necessary tasks as needed.
Thanks to Matthew Waters for the info on integrating GstGL and windowing
toolkits on Windows.
Check that we are indeed running inside an Xorg server before enabling
the workaround.
XWayland or other nested X servers deadlock when that workaround is
applied.
Remove a boatload of "or %NULL" from nullable parameters
and return values. gi-docgen generates suitable text from
the annotation that we don't need to duplicate.
This adds a few missing nullable annotations too.
If we want to add an EGL implementation for the X11 backend, we are
going to need to move the GLX bits into their own class. The first step
is to declare GdkX11GLContext as an abstract type, and then subclass it
into a GdkX11GLContextGLX type, which includes the whole GLX
implementation.
Width and height of a GdkMonitor are derived via wl_output which
talks about physical dimensions of a device and compositors usually
implement this as the untransformed values (e.g. weston, wlroots).
Since the GTK client has no way to figure out if a monitor was rotated,
transform the physical dimensions according to the applied wayland
transform to have the physical dimensions match the logical ones.
Mutter flips the physical dimensions itself but doesn't announce the
transform so this shouldn't break anything there.
Rewrite this in a way that doesn't depend on kernel
header defines at the time the wayland scanner was run.
This was causing the build to break on Centos 8, where
a bunch of fourcc formats are missing.
Some GL drivers such as Mesa-D3D12 do not allow one to call SetPixelFormat() on
a given HDC if one pixel format has been already set for it, so first check the
HDC with GetPixelFormat() to see whether a pixel format has already been set
with the HDC, and only attempt to acquire the pixel format if one has not been
set.
This will fix running with GL/NGL on Windows using the Mesa drivers.
When building for homebrew/linuxbrew on Ubuntu 16.04, memfd_create() is
not available and causes the build to fail.
This adds a proper check for the function.
When reading text, we need to check we terminate the G_TYPE_STRING
string with a null byte, because the clipboard does not guarantee one.
So just append a \0 to the stream.
Fixes#3899
The condition we check for to catch X servers going away
may not be accurate anymore, and the warning shows up in
logs, causing customers to be concerned. So, be quiet by
default, unless the user explicitly asked for a message.
At times (most often when closing subsurfaces that are scheduling
relayouts) the PHASE_PAINT handling gets broken with the following
sequence:
1. Surface receives wl_callback.done for the previous frame.
Surface is thawed.
2. A new update on the surface is scheduled. PHASE_PAINT is
requested directly on the frame clock. priv->pending_phase is
left unset in the surface.
3. Surface gets frozen
4. Frame clock processes the update scheduled at 2. The surface
is frozen, so paint is prevented. PHASE_PAINT is considered
handled.
5. Compositor emits wl_callback.done again. Surface is thawed.
6. At this point the machinery is off
- The surface didn't paint but has pending update regions
- priv->draw_needed is set in the toplevel and other portions
of the widget tree
- So queueing redraws is ineffective at eventually calling
gdk_surface_schedule_update() again on the toplevel surface.
- We don't paint anymore, so this broken state is not flushed
until other subsurface changes manage to schedule the missing
update.
To fix this, always set PHASE_PAINT in priv->pending_phase when
doing gdk_surface_schedule_update(). If the frame clock turns
around before the surface is thawed, it will still be waiting to
be processed the next iteration.
Fixes: https://gitlab.gnome.org/GNOME/gtk/-/issues/3750
When we don't get stettings from the portal, the current
fallback is 'awful fonts'. There is no need for that. Instead,
set the fallback values to grayscale antialiasing with slight
hinting.
... until all globals have been received.
The dependency tracking introduced in 4e9be39518 only allows to
specify required globals and processes the closures as soon as
the requirements have been met. There are, however, also optional
dependencies - most notably the primary_selection protocol.
Currently we rely on the fact that compositors like Mutter announce
it before `wl_seat`, even though the order is not specified in
the spec.
Process globals closures only after all globals have been announced,
so optional dependencies can be accommodated.
Closes https://gitlab.gnome.org/GNOME/gtk/-/issues/3791
After iterating all the providers, all of them returning unsupported
error, gdk_content_provider_union_get_value() returns FALSE without
filing the given GError. Then gdk_clipboard_read_value_internal()
assumes there's a GError when FALSE is returned and
g_task_return_error() fails. We can just chain up to parent
implementation to ensure the GError is filled with unsupported error.
The DnD code for X11 adds the composite overlay window (aka COW) to the
cache.
Yet the X11 requests to get and release the COW may trigger XErrors that
we ought to ignore otherwise the client will abort.
Fixes: #3715
This lets the NGL backend be selected instead of the Cairo backend on
devices which expose both GL and GLES, but have better support of GLES.
Tested on a PinePhone.
Apparently, by comparing with the other backends, we should not call
_gdk_win32_append_event() after calling gdk_scroll_event_new() but we should
call it after calling gdk_scroll_event_new_discrete(), which was why we didn't
restore the cursor after we scroll using the mouse wheel and didn't manage to
remove the shade that appears after we scrolled to the very top or very bottom.
Also, as suggested by the reporter, use IDC_SIZEALL for the system cursor that
we fall back to if no cursor theme is installed, as with other Windows
programs.
This should really fix issue #3581.
If cairo is a subproject, it's not necessarily installed when gtk
is built. In the source tree, cairo's headers are not stored in
a directory called 'cairo'.
GTK traditionally lets you activate keyboard shortcuts
even if they are for a non-active layout. But it is meant
to only activate with a keysym from a non-active layout
when that symbol is not present in the current layout.
That last condition was lost when key event handling
was redone for GTK4. Bring it back.
This makes sure that we don't have cursors disappearing on Windows upon
scrolling because we can't find a cursor that exists on the system during
a scroll, and unlike GTK-3.x, we do not default to the arrow pointer on GTK4.
Just mimic what we have on X11 and Wayland: the trusty standard arrow pointer.
Fixes issue #3581.
We were calling _gdk_surface_update_size() every frame, even if the
window size didn't change. This would cause us to discard all cached
buffers and redraw the whole screen.
This was BAD.
We ought to get the coordinates of where the window menu should be
displayed using gdk_win32_surface_get_root_coords(), instead of rounding
the position that we obtained with gdk_event_get_position().
Also rename items a bit in the same function, and call
gdk_event_get_event_type() for consistency with the other backends.
Fixes issue #3704.
We were leaking buffers. This wasn't caught by valgrind and friends
because it was shared memory (with the compositor), but top(1) would
instantly see memory consumption of the app and the shell go through the
roof.
We were calling _gdk_surface_update_size() every frame, even if the
window size didn't change. This would cause us to discard all cached
buffers and redraw the whole screen.
This was BAD.
guint32 is used as part of the protocol in broadway backend.
Memory size declared with it was mistakenly replaced with size_t type
which does not guarantee being 32bit on all platforms, leading to a crash.
These events don't make sense on physical devices (for starters, they
are relative to the logical pointer position). Use this device for
those events, also happens to be what the upper parts expect of them.
Commit 97b5fad131 was a forward port from a gtk3 patch, but the hunk
was applied on the wrong bits of code.
Ensure the initialization paths also do mark settings read from the
portal as valid, so the checks for optional/newer settings actually have
the expected result. It is also desirable to mark settings as valid
after configuration changes (as that patch did effectively do), but not
enough to fix all situations.
If our opaque region is the entire surface, then we can make the OpenGL
context opaque like we do for decorated windows. This improves performance
as the compositor does not need to blend the surface with the contents
behind the window.
Use the infrastructure already available to look up keys, instead.
This does the right thing and looks up the setting across all
sources.
Fixes: https://gitlab.gnome.org/GNOME/gtk/-/issues/3680
The debug spew for printing out supported buffer
formats was missing a bunch, among them the fp16
formats that are interesting for HDR support.
Add them.
Note that we still only support ARGB8888. But
at least we can print out what don't support.
We do not need to translate this on the CPU when we can instead push it
to the GPU in the same format and allow it to swizzle.
This fixes a huge number of memory allocations found while uploading the
GTK animation in widget-factory.