These complicate a lot of GdkWindow internals to implement features
that not a lot of apps use, and will be better achieved using gsk.
So, we just drop it all.
The update tracking code was ugly and using deprecated drawing APIs. It
was also in the wrong place.
So instead of trying to keep it working, I'll remove it. We need to find
a better way to put it and make it work there.
Instead of giving out Cairo contexts, GdkWindow should provide a
"drawing context", which can then create Cairo contexts on demand; this
allows us to future proof the API for when we're going to use a
different rendering pipeline, like OpenGL.
https://bugzilla.gnome.org/show_bug.cgi?id=766675
This allows us to decide when the R and B color channels should be
flipped with a much better granularity.
For instance, when using GLX_EXT_texture_from_pixmap to create a GL
texture from a surface we don't need to swap the R and B channels, as
the internal representation of the texture data will already have the
appropriate colors.
We also don't need to flip color channels when blitting from a texture.
Windows save in hardware_keycode an information which is not so low
level and some application require the hardware scancode.
As Windows provides this information save it in GdkEventPrivate
and provide a function to get this information.
For no Windows system the function return the hardware_keycode instead.
Signed-off-by: Frediano Ziglio <fziglio@redhat.com>
https://bugzilla.gnome.org/show_bug.cgi?id=765259
If there are already a window state event for a given window queued
when the window state is changed, drop that event and queue a new event
with a changed_mask based on the state before last event that was queue
without compression.
https://bugzilla.gnome.org/show_bug.cgi?id=762468
This avoids a bunch of allocations, and additionally it has better
cache behaviour, as we don't follow pointers to the separate GList
node memory areas during traversal.
From Christian Hergert:
This machine is a Retina mac book pro so I've been working on getting
GtkTextView (GtkPixelCache) up to our performance level on
X11/Wayland. I'm seeing a jump from about 43 FPS to about 50 FPS.
https://bugzilla.gnome.org/show_bug.cgi?id=754687
An pass_through window is something you can draw in but does not
affect event handling. Normally if a window has with no event mask set
for a particular event then input events in it go to its parent window
(X11 semantics), whereas if pass_through is enabled the window below
the window will get the event. The later mode is useful when the
window is partially transparent. Note that an pass-through windows can
have child windows that are not pass-through so they can still get events
on some parts.
Semantically, this behaves the same as an regular window with
gdk_window_set_child_input_shapes() called on it (and re-called any
time a child is changed), but its far more efficient and easy to use.
This allows us to fix the testoverlay input stacking test.
https://bugzilla.gnome.org/show_bug.cgi?id=750568https://bugs.freedesktop.org/show_bug.cgi?id=90917
If we are disconnecting from a frame clock that has paused event
processing and hasn't issued a resume yet make sure we resume the
events or they will stay blocked forever.
https://bugzilla.gnome.org/show_bug.cgi?id=742636
This is required for the X backend GL integration. If the
window has a height that is not a multiple of the window scale
we can't properly do the y coordinate flipping that GL needs.
Other backends can ignore this and use the default implementation.
https://bugzilla.gnome.org/show_bug.cgi?id=739750
We need to export the symbols so they can be used in the
inspector, but we don't really want to make this supported
public API, so keep them out of installed headers.
This moves the GDK_ALWAYS_USE_GL env var to GDK_GL=always.
It also changes GDK_DEBUG=nogl to GDK_GL=disable, as GDK_DEBUG
is really only about debug loggin.
It also adds some completely new flags:
software-draw-gl:
Always use software fallback for drawing gl content to a cairo_t.
This disables the fastpaths that exist for drawing directly to
a window and instead reads back the pixels into a cairo image
surface.
software-draw-surface:
Always use software fallback for drawing cairo surfaces onto a
gl-using window. This disables e.g. texture-from-pixmap on X11.
software-draw:
Enables both the above.
This is mostly useful for fallback testing.
I suppose if people want finer grained GL ability testing, they can use
Mesa environment variables to tune things.
This adds the new type GdkGLContext that wraps an OpenGL context for a
particular native window. It also adds support for the gdk paint
machinery to use OpenGL to draw everything. As soon as anyone creates
a GL context for a native window we create a "paint context" for that
GdkWindow and switch to using GL for painting it.
This commit contains only an implementation for X11 (using GLX).
The way painting works is that all client gl contexts draw into
offscreen buffers rather than directly to the back buffer, and the
way something gets onto the window is by using gdk_cairo_draw_from_gl()
to draw part of that buffer onto the draw cairo context.
As a fallback (if we're doing redirected drawing or some effect like a
cairo_push_group()) we read back the gl buffer into memory and composite
using cairo. This means that GL rendering works in all cases, including
rendering to a PDF. However, this is not particularly fast.
In the *typical* case, where we're drawing directly to the window in
the regular paint loop we hit the fast path. The fast path uses opengl
to draw the buffer to the window back buffer, either by blitting or
texturing. Then we track the region that was drawn, and when the draw
ends we paint the normal cairo surface to the window (using
texture-from-pixmap in the X11 case, or texture from cairo image
otherwise) in the regions where there is no gl painted.
There are some complexities wrt layering of gl and cairo areas though:
* We track via gdk_window_mark_paint_from_clip() whenever gtk is
painting over a region we previously rendered with opengl
(flushed_region). This area (needs_blend_region) is blended
rather than copied at the end of the frame.
* If we're drawing a gl texture with alpha we first copy the current
cairo_surface inside the target region to the back buffer before
we blend over it.
These two operations allow us full stacking of transparent gl and cairo
regions.
First of all we track the current update area during an
update in window->active_update_area. This will be used later
in end_paint to know the damaged area.
Secondly we keep track of old update areas for the last 2
frames. This will later allow us to reuse old framebuffer
contents in double or tripple buffer setups, only painting
what has changed since then.