window_type_hint_to_level(): applied patch from Paul Davis which moves
dialogs to NSFloatingWindowLevel. This is not quite the perfect
solution, but it's a pragmatic fix that makes apps which have both
window types much more usable, and prevents dialog from disappearing
under an application's main window.
(cherry picked from commit 59d49e1566)
Include config.h first so that _GDK_EXTERN may be defined once
and only once during the build, so that we do not get warnings/
errors for macro redefinition.
https://bugzilla.gnome.org/show_bug.cgi?id=701251
Include gdkwin32.h (which includes gdkprivate-win32.h and gdkwin32cursor.h
during the build of GDK-Win32) so that
gdk_win32_icon_to_pixbuf_libgtk_only() and
gdk_win32_pixbuf_to_hicon_libgtk_only() get exported, so that the GTK
DLL can link correctly.
Calling XIQueryPointer() on a slave device is going to trigger a
BadDevice X error. So in case we query a slave device state, ask the
master device instead.
https://bugzilla.gnome.org/show_bug.cgi?id=700233
Add missing check in gdk_x11_device_manager_xi2_get_window(), returning
NULL if no valid XI2Event* has been found. Calling code seems to be
prepared to handle NULLs coming from this function, so it should be
safe enough (e.g. check gdk_event_source_get_filter_window()).
https://bugzilla.gnome.org/show_bug.cgi?id=700465
We don't track the full clip for each window anymore, as this
is not useful when no windows are opaque. However, we still
need the full clip for the shape, so its calculated manually.
However, it was previously only recalculated when the clip changes
which doesn't correctly handle the case of a sibling geometry changing.
So, instead of doing this directly when geometry changes we just
set a bit in the toplevel whenever some window geometry changes, and
we then handle this in process_updates, updating the shape for all
native windows. This should be ok performance-wise because we don't
expect a lot of native children.
This is left over from an old effort to bundle gtk and its dependencies
into a Mac OS X Framework. The effort was more or less successful but
proved difficult to maintain and impractical to use because gtk programs
don't use the special Framework include syntax.
In the ancient X days you could have Xservers that had multiple active windows, like
one truecolor and one 8bit palette. Then most apps ran in 8bpp but a single window
would use truecolor. This is done by specifying different visuals for the windows.
To make this work we ensured that a window with a visual different from its parent
gets a native subwindow, so that X can tell the hardware to do its magic.
These days the only real time we get two different visual is when one is a rgba visual
and the other is not. So, the code to check this doesn't really do anything but
get in the way when someone accidentally manages to not get a rgba visual on
a child window (see bb7054b508). So, to avoid
such errors we just remove the "different visual than parent" check.
We need to send exposes for all native windows, even the ones
without an exposure mask set, because otherwise non-native
children of the native window with an exposure mask will
not be drawn.
This removes the typechecks in GDK_WINDOW_TYPE and GDK_WINDOW_DESTROYED. These
are only used internally in gdkwindow.c and gdkdisplay.c anyway, and these
functions check for typesafety of arguments on function entry.
This function returns all the children that has a specific user_data set.
This is used a lot in the new GtkWidget drawing code and doing
it this way is faster than getting every child and calling get_user_data
on each (which was a non-neglible part of the profiles). Additionally it
also allows use to use some kind of hashtable to make this operation even
faster if needed in the future.
This lets you register callbacks for when child widgets invalidate
areas of the window read it and/or change it.
For instance, this lets you do rendering effects and keeping offscreen
caches uptodate.
If we got the release event for the last buffer then we're
fine with writing directly to the window surface, as wayland
will not be looing at it. This saves us from allocating
and copying more data.
First of all, we now only do paints on native windows, as there is
really no reason anymore to do it for subwindows. Secondly, we
keep track of the paints even for GtkPaintable windows, but for
that case we don't create the offscreen surface, but rather
assume the windowing system does the backing store.
In the case where the layout phase queued a layout we don't
want to progress to the paint phase with invalid allocations, so
we loop the layout. This shouldn't normally happen, but it may
happen in some edge cases like if user/wm resizes clash with
natural window size changes from a gtk widget. This should not
generally loop though, so we detect this after 4 cycles and
print a warning.
This was detected because of an issue in GtkWindow where it
seems to incorrectly handle the case of a user interactive resize.
It seems gtk_window_move_resize() believes that configure_request_size_changed
changed due to hitting some corner case so it calls
gtk_widget_queue_resize_no_redraw(), marking the window as need_alloc
after the layout phase. This commit fixes the issue, but we should
also look into if we can fix that.
Now that all windows are non-opaque we can simplify the invalidation
a lot. There is no need to clip the invalidate area to child regions,
because we will always redraw everything under all the children.
We only have to handle native childen specially.
We now only do one expose event per native window, so there will
only be one begin/end_paint() call. This means all the work with
implicit paints to combine the paints on a single double buffer
surface is unnecessary, so we can just delete it.
We now consider non-native windows non-opaque, which means any invalid
area in a subwindow will also be invalid all the way up to the nearest
native windows. We take advantage of this by ignoring all expose events
on non-native windows (which typically means just the toplevel) and instead
propagating down the draw() calls to children directly via
gtk_container_propagate_draw.
This is nice as it means we always draw widgets the same way, and it
will let us do some interesting ways in the future.
We also clean up the GtkWidget opacity handling as we can now always
rely on the draing happening via cairo.
We can't really just draw by walking down the widget hierarchy, as
this doesn't get the clipping right (so e.g. widgets doing cairo_paint
may draw outside the expected gdkwindow subarea) nor does it let
us paint window backgrounds.
So, we now do multiple draws for each widget, once for each GdkWindow,
although we still do it on the same base cairo_t that we get for the
toplevel native window. The difference is only the clipping, the rendering
order, and which other widgets we propagate into.
We also collect all the windows of a widget so we can expose them inside
the same opacity group if needed.
NOTE: This change neuters gtk_widget_set_double_buffered for
widgets without native windows. Its impossible to disable
the double buffering in this model.