These complicate a lot of GdkWindow internals to implement features
that not a lot of apps use, and will be better achieved using gsk.
So, we just drop it all.
This is an attempt to get rid of gdk_window_new() for more specific use
cases. These 2 are for client-side windows - regular ones and input-only
ones resepectively.
So far all those functions just call into gdk_window_new().
The update tracking code was ugly and using deprecated drawing APIs. It
was also in the wrong place.
So instead of trying to keep it working, I'll remove it. We need to find
a better way to put it and make it work there.
And with it, gtk_widget_get_visual() and gtk_widget_set_visual() are
gone.
We now always use the RGBA visual (if available) and otherwise fall back
to the system visual.
The cursor was set using gdk_window_set_cursor() even in
gdk_window_new().
So instead of having yet another flag, just make the users of that flag
call gdk_window_set_cursor() directly after the window was created.
ClutterEmbed on Wayland uses a subsurface and relocates it on configure
events, but when placed within a scrolled window, no configure event is
emitted and the ClutterEmbed subsurface remains static.
Emit a configure event for native windows in GdkWindow's internal
move_native_children() so that custom widgets relying on configure
events such as ClutterEmbed can relocate their stuff.
Similarly, when switching to/from normal/maximized/fullscreen states
which change the shadows' size and possibly shows/hides a header bar,
we need to emit a configure event even if the abs_x/abs_y haven't
changed to make sure the subsurface is size appropriately.
https://bugzilla.gnome.org/show_bug.cgi?id=771320https://bugzilla.gnome.org/show_bug.cgi?id=767713
We want the same treatment for those, the event will be emitted on the
toplevel, which will then decide what to do with the event.
It just doesn't make much sense to propagate those up/down the hierarchy,
when we want specifically one action being triggered from those.
https://bugzilla.gnome.org/show_bug.cgi?id=770026
GDK_PAD_BUTTON*,RING and STRIP will be emitted respectively when
pad buttons, rings or strips are interacted with. Each of those
pad components belong to a group (a pad can contain several of
those), which may be in a given mode. All this information is
contained in the event.
GDK_PAD_GROUP_MODE is emitted when a group in the pad switches
mode, which will generally result in a different set of actions
being triggered from the same buttons/rings/strips in the group.
https://bugzilla.gnome.org/show_bug.cgi?id=770026
The event code could potentially dereference pointer_info if the
invariant that ENTER_NOTIFY and LEAVE_NOTIFY events are only emitted on
devices which have pointers is violated elsewhere.
Found with scan-build.
https://bugzilla.gnome.org/show_bug.cgi?id=712760
The sizes passed are in device pixels and do not take into account the
scaling factor of the window itself. We cannot change the semantics of
the function, so let's at least add a warning for this trap door.
Instead of associating the GdkWindow that created the GdkDrawingContext
we can directly bind the Cairo context to the GDK drawing context.
Cairo contexts created via gdk_cairo_create() go back to not having a
GdkWindow associated to them, like they did before we introduced the
gdk_window_begin_draw_frame() API.
https://bugzilla.gnome.org/show_bug.cgi?id=766675
Instead of giving out Cairo contexts, GdkWindow should provide a
"drawing context", which can then create Cairo contexts on demand; this
allows us to future proof the API for when we're going to use a
different rendering pipeline, like OpenGL.
https://bugzilla.gnome.org/show_bug.cgi?id=766675
Existing code drawing on a GDK window has to handle the direct drawing
and the buffered drawing by itself, by checking the window type and
whether or not the window is backed by a native windowing surface. After
that, the calling code has to create a Cairo context from the window and
keep an association between the context and the window itself.
This is completely unnecessary: GDK can determine whether or not it
should use a backing store to draw on a GdkWindow as well as create a
Cairo context, and keep track of it.
This allows to simplify the calling code, and enforce some of the
drawing behavior we want to guarantee to users.
https://bugzilla.gnome.org/show_bug.cgi?id=766675
We must emit the cancel event with the same semantics, and towards the GdkWindow
that is currently under the touchpoint, so make proxy_button_event() deal with
GDK_TOUCH_CANCEL.
Fixes the GDK_TOUCH_CANCEL event being emitted only on the toplevel, which is
usually non-sufficient.
When we invalidate a window we need to also invalidate all child windows
that are native (non-native are automatically invalidated as we track
invalidation once per native window only). This was done in a pretty
inefficient way, recursing over the entire tree.
This makes the invalidation much faster by only looking at the native
children of the native window we're in, filtering out those that
are not a descendant of the client side window we're interested in.
Given that there are very few native subwindows this is much faster.
And use it to handle kinetic scrolling in the GtkScrolledWindow.
However, dropping the delta check causes the X11-based kinetic
scroll to break since we don't have the stop event here. Correct handling of
xf86-input-libinput-based scroll events is still being discussed.
https://bugzilla.gnome.org/show_bug.cgi?id=756729
There's places where we still need to deal with floating devices, which are
unseen by seats. Ignore deprecations and keep using GdkDeviceManager until
we can forget about floating devices.
Our actions on ::device-removed only actually applied to master
pointers, so listening to GdkDisplay::seat-removed and operating
on the seat pointer is equivalent.
Add a variant of gdk_drag_begin that takes the start position
in addition to the device. All backend implementation have been
updated to accept (and ignore) the new arguments.
Subsequent commits will make use of the data in some backends.
When moving/scrolling a child window we can't use the current clip
region to limit what is invalidated, because there may be a pixel
cache that listens for changes outside the clip region. Instead
invalidate the entire area and rely on the invalidation code to limit
the repaint to the actually visible area.
There is no need to ref the windows we're ignoring, so collect and ref
only the affected child windows. Also, use a on-stack array rather
than allocating a linked list.
Also, we don't need to ref during the event emissions too, as we
already hold a ref.
https://bugzilla.gnome.org/show_bug.cgi?id=754687
This avoids a bunch of allocations, and additionally it has better
cache behaviour, as we don't follow pointers to the separate GList
node memory areas during traversal.
From Christian Hergert:
This machine is a Retina mac book pro so I've been working on getting
GtkTextView (GtkPixelCache) up to our performance level on
X11/Wayland. I'm seeing a jump from about 43 FPS to about 50 FPS.
https://bugzilla.gnome.org/show_bug.cgi?id=754687
Background patterns are often updated when style changes. In many cases,
the new pattern will match the previous. We can optimize out the
invalidation that will occur upon resetting the same pattern.
An pass_through window is something you can draw in but does not
affect event handling. Normally if a window has with no event mask set
for a particular event then input events in it go to its parent window
(X11 semantics), whereas if pass_through is enabled the window below
the window will get the event. The later mode is useful when the
window is partially transparent. Note that an pass-through windows can
have child windows that are not pass-through so they can still get events
on some parts.
Semantically, this behaves the same as an regular window with
gdk_window_set_child_input_shapes() called on it (and re-called any
time a child is changed), but its far more efficient and easy to use.
This allows us to fix the testoverlay input stacking test.
https://bugzilla.gnome.org/show_bug.cgi?id=750568https://bugs.freedesktop.org/show_bug.cgi?id=90917
gdk_window_ensure_native() can end up with a NULL parent pointer, which
it passes to find_native_parent_above()…but that expects a non-NULL
parent.
Found with scan-build.
https://bugzilla.gnome.org/show_bug.cgi?id=712760
Also try and clarify a few things about event propagation. Move
input-handling.xml into gtk-doc’s expand_content_files variable so it
automatically links to widget documentation. Add links from
gtk_widget_add_events() and friends to the new documentation.
https://bugzilla.gnome.org/show_bug.cgi?id=744054
Now that we have a two-stages GL context creation sequence, we can move
the profile to a pre-realize option, like the debug and forward
compatibility bits, or the GL version to use.
We simply don't want to care about legacy OpenGL.
All supported platforms also have support for OpenGL ≥ 3.2; it would
complicate the internal code; and would force us to use legacy GL
contexts internally if the first context created by the user is a legacy
GL context, and disable creation of core-3.2 contexts after that.
We will need to fix all our code examples to use the Core 3.2 profile.
https://bugzilla.gnome.org/show_bug.cgi?id=741946
One of the major requests by OpenGL users has been the ability to
specify settings when creating a GL context, like the version to use
or whether the debug support should be enabled.
We have a couple of requirements in terms of API:
• avoid, if at all possible, the "C arrays of integers with
attribute, value pairs", which are hard to write and hard
to bind in non-C languages.
• allow failing in a recoverable way.
• do not make the GL context creation API a mess of arguments.
Looking at prior art, it seems that a common pattern is to split the
construction phase in two:
• a first phase that creates a GL context wrapper object and
does preliminary checks on the environment.
• a second phase that creates the backend-specific GL object.
We adopted a similar pattern:
• gdk_window_create_gl_context() creates a GdkGLContext
• gdk_gl_context_realize() creates the underlying resources
Calling gdk_gl_context_make_current() also realizes the context, so
simple GL users do not need to care. Advanced users will want to
call gdk_window_create_gl_context(), set up the optional requirements,
and then call gdk_gl_context_realize(). If either of these two steps
fails, it's possible to recover by changing the requirements, or simply
creating a new GdkGLContext instance.
https://bugzilla.gnome.org/show_bug.cgi?id=741946
Commit ff256956b2 introduced a frame_clock_events_paused
flag, but only ever set it to TRUE, instead of unsetting it when
events are resumed. This was leading to assertion failures in
_gdk_display_unpause_events().
If we are disconnecting from a frame clock that has paused event
processing and hasn't issued a resume yet make sure we resume the
events or they will stay blocked forever.
https://bugzilla.gnome.org/show_bug.cgi?id=742636
In some layouts this inconsistency results in crashes in
gdk_gl_texture_from_surface() since it uses gdk_gl_context_get_window() but
the returned window is not the same as the one that is being painted so
"window->current_paint.surface" is NULL. I saw this problem when packing a
GdkGLArea into a GtkPaned.
https://bugzilla.gnome.org/show_bug.cgi?id=743146