libtommath/bn_mp_gcd.c

108 lines
2.6 KiB
C
Raw Normal View History

#include <tommath_private.h>
2004-10-29 22:07:18 +00:00
#ifdef BN_MP_GCD_C
2003-02-28 16:08:34 +00:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
2003-08-05 01:24:44 +00:00
* LibTomMath is a library that provides multiple-precision
2003-02-28 16:08:34 +00:00
* integer arithmetic as well as number theoretic functionality.
*
2003-08-05 01:24:44 +00:00
* The library was designed directly after the MPI library by
2003-02-28 16:08:34 +00:00
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
2003-02-28 16:08:34 +00:00
*/
2003-07-02 15:39:39 +00:00
/* Greatest Common Divisor using the binary method */
2017-09-20 14:59:43 +00:00
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
2003-02-28 16:08:34 +00:00
{
2017-08-29 20:23:48 +00:00
mp_int u, v;
int k, u_lsb, v_lsb, res;
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
/* either zero than gcd is the largest */
if (mp_iszero(a) == MP_YES) {
return mp_abs(b, c);
}
if (mp_iszero(b) == MP_YES) {
return mp_abs(a, c);
}
2003-08-05 01:24:44 +00:00
2017-08-29 20:23:48 +00:00
/* get copies of a and b we can modify */
if ((res = mp_init_copy(&u, a)) != MP_OKAY) {
return res;
}
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
if ((res = mp_init_copy(&v, b)) != MP_OKAY) {
goto LBL_U;
}
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
/* must be positive for the remainder of the algorithm */
u.sign = v.sign = MP_ZPOS;
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
/* B1. Find the common power of two for u and v */
u_lsb = mp_cnt_lsb(&u);
v_lsb = mp_cnt_lsb(&v);
k = MIN(u_lsb, v_lsb);
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
if (k > 0) {
/* divide the power of two out */
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
goto LBL_V;
}
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
/* divide any remaining factors of two out */
if (u_lsb != k) {
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
2003-02-28 16:08:34 +00:00
2017-08-29 20:23:48 +00:00
if (v_lsb != k) {
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
2003-08-05 01:24:44 +00:00
2017-08-29 20:23:48 +00:00
while (mp_iszero(&v) == MP_NO) {
/* make sure v is the largest */
if (mp_cmp_mag(&u, &v) == MP_GT) {
/* swap u and v to make sure v is >= u */
mp_exch(&u, &v);
}
2017-08-30 03:51:11 +00:00
2017-08-29 20:23:48 +00:00
/* subtract smallest from largest */
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
goto LBL_V;
}
2017-08-30 03:51:11 +00:00
2017-08-29 20:23:48 +00:00
/* Divide out all factors of two */
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
2003-08-05 01:24:44 +00:00
2017-08-29 20:23:48 +00:00
/* multiply by 2**k which we divided out at the beginning */
if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) {
goto LBL_V;
}
c->sign = MP_ZPOS;
res = MP_OKAY;
2017-08-28 20:34:46 +00:00
LBL_V:
2017-08-29 20:23:48 +00:00
mp_clear(&u);
2017-08-28 20:34:46 +00:00
LBL_U:
2017-08-29 20:23:48 +00:00
mp_clear(&v);
return res;
2003-02-28 16:08:34 +00:00
}
2004-10-29 22:07:18 +00:00
#endif
2005-08-01 16:37:28 +00:00
2017-08-28 14:27:26 +00:00
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */