libtommath/bn_mp_prime_miller_rabin.c

107 lines
2.5 KiB
C
Raw Normal View History

#include <tommath_private.h>
2004-10-29 22:07:18 +00:00
#ifdef BN_MP_PRIME_MILLER_RABIN_C
2003-03-22 15:10:20 +00:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
2003-08-05 01:24:44 +00:00
* LibTomMath is a library that provides multiple-precision
2003-03-22 15:10:20 +00:00
* integer arithmetic as well as number theoretic functionality.
*
2003-08-05 01:24:44 +00:00
* The library was designed directly after the MPI library by
2003-03-22 15:10:20 +00:00
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
2003-03-22 15:10:20 +00:00
*/
2017-08-30 03:51:11 +00:00
/* Miller-Rabin test of "a" to the base of "b" as described in
2003-03-22 15:10:20 +00:00
* HAC pp. 139 Algorithm 4.24
*
* Sets result to 0 if definitely composite or 1 if probably prime.
2017-08-30 03:51:11 +00:00
* Randomly the chance of error is no more than 1/4 and often
2003-03-22 15:10:20 +00:00
* very much lower.
*/
2017-09-20 14:59:43 +00:00
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
2003-03-22 15:10:20 +00:00
{
2017-08-30 18:23:46 +00:00
mp_int n1, y, r;
int s, j, err;
2003-03-22 15:10:20 +00:00
2017-08-30 18:23:46 +00:00
/* default */
*result = MP_NO;
2003-03-22 15:10:20 +00:00
2017-08-30 18:23:46 +00:00
/* ensure b > 1 */
if (mp_cmp_d(b, 1) != MP_GT) {
return MP_VAL;
}
2003-07-12 14:31:43 +00:00
2017-08-30 18:23:46 +00:00
/* get n1 = a - 1 */
if ((err = mp_init_copy(&n1, a)) != MP_OKAY) {
return err;
}
if ((err = mp_sub_d(&n1, 1, &n1)) != MP_OKAY) {
goto LBL_N1;
}
2003-03-22 15:10:20 +00:00
2017-08-30 18:23:46 +00:00
/* set 2**s * r = n1 */
if ((err = mp_init_copy(&r, &n1)) != MP_OKAY) {
goto LBL_N1;
}
2003-07-12 14:31:43 +00:00
2017-08-30 18:23:46 +00:00
/* count the number of least significant bits
* which are zero
*/
s = mp_cnt_lsb(&r);
2003-07-12 14:31:43 +00:00
2017-08-30 18:23:46 +00:00
/* now divide n - 1 by 2**s */
if ((err = mp_div_2d(&r, s, &r, NULL)) != MP_OKAY) {
goto LBL_R;
}
2003-03-22 15:10:20 +00:00
2017-08-30 18:23:46 +00:00
/* compute y = b**r mod a */
if ((err = mp_init(&y)) != MP_OKAY) {
goto LBL_R;
}
if ((err = mp_exptmod(b, &r, a, &y)) != MP_OKAY) {
goto LBL_Y;
}
2003-03-22 15:10:20 +00:00
2017-08-30 18:23:46 +00:00
/* if y != 1 and y != n1 do */
if ((mp_cmp_d(&y, 1) != MP_EQ) && (mp_cmp(&y, &n1) != MP_EQ)) {
j = 1;
/* while j <= s-1 and y != n1 */
while ((j <= (s - 1)) && (mp_cmp(&y, &n1) != MP_EQ)) {
if ((err = mp_sqrmod(&y, a, &y)) != MP_OKAY) {
goto LBL_Y;
}
/* if y == 1 then composite */
if (mp_cmp_d(&y, 1) == MP_EQ) {
goto LBL_Y;
}
++j;
2003-03-22 15:10:20 +00:00
}
2017-08-30 18:23:46 +00:00
/* if y != n1 then composite */
if (mp_cmp(&y, &n1) != MP_EQ) {
2004-12-23 02:40:37 +00:00
goto LBL_Y;
2003-03-22 15:10:20 +00:00
}
2017-08-30 18:23:46 +00:00
}
2003-03-22 15:10:20 +00:00
2017-08-30 18:23:46 +00:00
/* probably prime now */
*result = MP_YES;
2017-08-28 20:34:46 +00:00
LBL_Y:
2017-08-30 18:23:46 +00:00
mp_clear(&y);
2017-08-28 20:34:46 +00:00
LBL_R:
2017-08-30 18:23:46 +00:00
mp_clear(&r);
2017-08-28 20:34:46 +00:00
LBL_N1:
2017-08-30 18:23:46 +00:00
mp_clear(&n1);
return err;
2003-03-22 15:10:20 +00:00
}
2004-10-29 22:07:18 +00:00
#endif
2005-08-01 16:37:28 +00:00
2017-08-28 14:27:26 +00:00
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */