libtommath/bn_mp_exptmod_fast.c

321 lines
8.3 KiB
C
Raw Normal View History

#include "tommath_private.h"
2004-10-29 22:07:18 +00:00
#ifdef BN_MP_EXPTMOD_FAST_C
2003-02-28 16:08:34 +00:00
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
2003-08-05 01:24:44 +00:00
* LibTomMath is a library that provides multiple-precision
2003-02-28 16:08:34 +00:00
* integer arithmetic as well as number theoretic functionality.
*
2003-08-05 01:24:44 +00:00
* The library was designed directly after the MPI library by
2003-02-28 16:08:34 +00:00
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
2003-09-19 22:43:07 +00:00
/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
2003-02-28 16:08:34 +00:00
*
* Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
* The value of k changes based on the size of the exponent.
*
2003-05-17 12:33:54 +00:00
* Uses Montgomery or Diminished Radix reduction [whichever appropriate]
2003-02-28 16:08:34 +00:00
*/
2003-07-02 15:39:39 +00:00
#ifdef MP_LOW_MEM
# define TAB_SIZE 32
2003-07-02 15:39:39 +00:00
#else
# define TAB_SIZE 256
2003-07-02 15:39:39 +00:00
#endif
2017-09-20 14:59:43 +00:00
int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
2003-02-28 16:08:34 +00:00
{
2017-08-30 18:23:46 +00:00
mp_int M[TAB_SIZE], res;
mp_digit buf, mp;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* use a pointer to the reduction algorithm. This allows us to use
* one of many reduction algorithms without modding the guts of
* the code with if statements everywhere.
*/
2016-01-06 19:30:23 +00:00
int (*redux)(mp_int *x, const mp_int *n, mp_digit rho);
2017-08-30 18:23:46 +00:00
/* find window size */
x = mp_count_bits(X);
if (x <= 7) {
winsize = 2;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else if (x <= 1303) {
winsize = 6;
} else if (x <= 3529) {
winsize = 7;
} else {
winsize = 8;
}
2003-02-28 16:08:34 +00:00
2003-05-17 12:33:54 +00:00
#ifdef MP_LOW_MEM
2017-08-30 18:23:46 +00:00
if (winsize > 5) {
winsize = 5;
}
2003-05-17 12:33:54 +00:00
#endif
2017-08-30 18:23:46 +00:00
/* init M array */
/* init first cell */
if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
2003-02-28 16:08:34 +00:00
return err;
2017-08-30 18:23:46 +00:00
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
mp_clear(&M[y]);
}
mp_clear(&M[1]);
return err;
}
}
2003-05-17 12:33:54 +00:00
2017-08-30 18:23:46 +00:00
/* determine and setup reduction code */
if (redmode == 0) {
2017-08-30 03:51:11 +00:00
#ifdef BN_MP_MONTGOMERY_SETUP_C
2017-08-30 18:23:46 +00:00
/* now setup montgomery */
if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) {
goto LBL_M;
}
2004-10-29 22:07:18 +00:00
#else
2017-08-30 18:23:46 +00:00
err = MP_VAL;
goto LBL_M;
2004-10-29 22:07:18 +00:00
#endif
2003-09-19 22:43:07 +00:00
2017-08-30 18:23:46 +00:00
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
2004-10-29 22:07:18 +00:00
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
2017-10-15 17:58:35 +00:00
if ((((P->used * 2) + 1) < (int)MP_WARRAY) &&
(P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
2017-08-30 18:23:46 +00:00
redux = fast_mp_montgomery_reduce;
} else
2004-10-29 22:07:18 +00:00
#endif
2017-08-30 18:23:46 +00:00
{
2004-10-29 22:07:18 +00:00
#ifdef BN_MP_MONTGOMERY_REDUCE_C
2017-08-30 18:23:46 +00:00
/* use slower baseline Montgomery method */
redux = mp_montgomery_reduce;
2004-10-29 22:07:18 +00:00
#else
2017-08-30 18:23:46 +00:00
err = MP_VAL;
goto LBL_M;
2004-10-29 22:07:18 +00:00
#endif
2017-08-30 18:23:46 +00:00
}
} else if (redmode == 1) {
2004-10-29 22:07:18 +00:00
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
2017-08-30 18:23:46 +00:00
/* setup DR reduction for moduli of the form B**k - b */
mp_dr_setup(P, &mp);
redux = mp_dr_reduce;
2004-10-29 22:07:18 +00:00
#else
2017-08-30 18:23:46 +00:00
err = MP_VAL;
goto LBL_M;
2004-10-29 22:07:18 +00:00
#endif
2017-08-30 18:23:46 +00:00
} else {
2004-10-29 22:07:18 +00:00
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
2017-08-30 18:23:46 +00:00
/* setup DR reduction for moduli of the form 2**k - b */
if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
goto LBL_M;
}
redux = mp_reduce_2k;
2004-10-29 22:07:18 +00:00
#else
2017-08-30 18:23:46 +00:00
err = MP_VAL;
goto LBL_M;
2004-10-29 22:07:18 +00:00
#endif
2017-08-30 18:23:46 +00:00
}
2003-02-28 16:08:34 +00:00
2017-08-30 18:23:46 +00:00
/* setup result */
if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY) {
goto LBL_M;
}
2003-02-28 16:08:34 +00:00
2017-08-30 18:23:46 +00:00
/* create M table
*
2004-10-29 22:07:18 +00:00
2017-08-30 18:23:46 +00:00
*
* The first half of the table is not computed though accept for M[0] and M[1]
*/
2003-02-28 16:09:08 +00:00
2017-08-30 18:23:46 +00:00
if (redmode == 0) {
2004-10-29 22:07:18 +00:00
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
2017-08-30 18:23:46 +00:00
/* now we need R mod m */
if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) {
goto LBL_RES;
}
/* now set M[1] to G * R mod m */
if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY) {
goto LBL_RES;
}
#else
2017-08-30 18:23:46 +00:00
err = MP_VAL;
2004-12-23 02:40:37 +00:00
goto LBL_RES;
2017-08-30 18:23:46 +00:00
#endif
} else {
2017-10-15 14:11:09 +00:00
mp_set(&res, 1uL);
2017-08-30 18:23:46 +00:00
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
goto LBL_RES;
}
}
2003-02-28 16:08:34 +00:00
2017-08-30 18:23:46 +00:00
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) {
2004-12-23 02:40:37 +00:00
goto LBL_RES;
2017-08-30 18:23:46 +00:00
}
for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) {
2017-08-30 18:23:46 +00:00
goto LBL_RES;
2003-02-28 16:08:34 +00:00
}
if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, mp)) != MP_OKAY) {
2017-08-30 18:23:46 +00:00
goto LBL_RES;
2003-02-28 16:08:34 +00:00
}
2017-08-30 18:23:46 +00:00
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto LBL_RES;
2003-02-28 16:08:34 +00:00
}
2017-08-30 18:23:46 +00:00
if ((err = redux(&M[x], P, mp)) != MP_OKAY) {
goto LBL_RES;
}
}
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
/* if digidx == -1 we are out of digits so break */
if (digidx == -1) {
break;
}
/* read next digit and reset bitcnt */
buf = X->dp[digidx--];
bitcnt = (int)DIGIT_BIT;
2003-02-28 16:08:34 +00:00
}
2017-08-30 18:23:46 +00:00
/* grab the next msb from the exponent */
y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
buf <<= (mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if ((mode == 0) && (y == 0)) {
continue;
2003-02-28 16:08:34 +00:00
}
2017-08-30 18:23:46 +00:00
/* if the bit is zero and mode == 1 then we square */
if ((mode == 1) && (y == 0)) {
if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux(&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
continue;
2003-02-28 16:08:34 +00:00
}
2017-08-30 18:23:46 +00:00
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux(&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
}
/* then multiply */
if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux(&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
2003-02-28 16:08:34 +00:00
}
2017-08-30 18:23:46 +00:00
}
/* if bits remain then square/multiply */
if ((mode == 2) && (bitcpy > 0)) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux(&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
/* get next bit of the window */
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux(&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
}
}
}
if (redmode == 0) {
/* fixup result if Montgomery reduction is used
* recall that any value in a Montgomery system is
* actually multiplied by R mod n. So we have
* to reduce one more time to cancel out the factor
* of R.
*/
if ((err = redux(&res, P, mp)) != MP_OKAY) {
2017-08-30 18:23:46 +00:00
goto LBL_RES;
2003-02-28 16:08:34 +00:00
}
2017-08-30 18:23:46 +00:00
}
2003-02-28 16:08:34 +00:00
2017-08-30 18:23:46 +00:00
/* swap res with Y */
mp_exch(&res, Y);
err = MP_OKAY;
2017-08-28 20:34:46 +00:00
LBL_RES:
2017-08-30 18:23:46 +00:00
mp_clear(&res);
2004-12-23 02:40:37 +00:00
LBL_M:
2017-08-30 18:23:46 +00:00
mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear(&M[x]);
}
return err;
2003-02-28 16:08:34 +00:00
}
2004-10-29 22:07:18 +00:00
#endif
2005-08-01 16:37:28 +00:00
2017-08-28 14:27:26 +00:00
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */