mp_n_root: add mp_n_root_ex() with parameter 'fast' for mp_expt_d_ex()

This change is introduced to be able to choose the underlying
implementation of mp_expt_d_ex()

The implementation of the root_n functionality is now implemented in the
mp_n_root_ex() function.

The parameter 'fast' is just passed over to mp_expt_d_ex().

mp_n_root() defaults to the pre 921be35779
implementation
This commit is contained in:
Steffen Jaeckel 2014-02-14 11:26:07 +01:00 committed by Steffen Jaeckel
parent e9b1837c8c
commit 52cfd5ff0a
5 changed files with 144 additions and 112 deletions

View File

@ -15,116 +15,14 @@
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/* find the n'th root of an integer
*
* Result found such that (c)**b <= a and (c+1)**b > a
*
* This algorithm uses Newton's approximation
* x[i+1] = x[i] - f(x[i])/f'(x[i])
* which will find the root in log(N) time where
* each step involves a fair bit. This is not meant to
* find huge roots [square and cube, etc].
/* wrapper function for mp_n_root_ex()
* computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
*/
int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
{
mp_int t1, t2, t3;
int res, neg;
/* input must be positive if b is even */
if ((b & 1) == 0 && a->sign == MP_NEG) {
return MP_VAL;
}
if ((res = mp_init (&t1)) != MP_OKAY) {
return res;
}
if ((res = mp_init (&t2)) != MP_OKAY) {
goto LBL_T1;
}
if ((res = mp_init (&t3)) != MP_OKAY) {
goto LBL_T2;
}
/* if a is negative fudge the sign but keep track */
neg = a->sign;
a->sign = MP_ZPOS;
/* t2 = 2 */
mp_set (&t2, 2);
do {
/* t1 = t2 */
if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
goto LBL_T3;
}
/* numerator */
/* t2 = t1**b */
if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1**b - a */
if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* denominator */
/* t3 = t1**(b-1) * b */
if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
goto LBL_T3;
}
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
goto LBL_T3;
}
if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
goto LBL_T3;
}
} while (mp_cmp (&t1, &t2) != MP_EQ);
/* result can be off by a few so check */
for (;;) {
if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
goto LBL_T3;
}
if (mp_cmp (&t2, a) == MP_GT) {
if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
goto LBL_T3;
}
} else {
break;
}
}
/* reset the sign of a first */
a->sign = neg;
/* set the result */
mp_exch (&t1, c);
/* set the sign of the result */
c->sign = neg;
res = MP_OKAY;
LBL_T3:mp_clear (&t3);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
return res;
return mp_n_root_ex(a, b, c, 0);
}
#endif
/* $Source$ */

132
bn_mp_n_root_ex.c Normal file
View File

@ -0,0 +1,132 @@
#include <tommath.h>
#ifdef BN_MP_N_ROOT_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/* find the n'th root of an integer
*
* Result found such that (c)**b <= a and (c+1)**b > a
*
* This algorithm uses Newton's approximation
* x[i+1] = x[i] - f(x[i])/f'(x[i])
* which will find the root in log(N) time where
* each step involves a fair bit. This is not meant to
* find huge roots [square and cube, etc].
*/
int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
{
mp_int t1, t2, t3;
int res, neg;
/* input must be positive if b is even */
if ((b & 1) == 0 && a->sign == MP_NEG) {
return MP_VAL;
}
if ((res = mp_init (&t1)) != MP_OKAY) {
return res;
}
if ((res = mp_init (&t2)) != MP_OKAY) {
goto LBL_T1;
}
if ((res = mp_init (&t3)) != MP_OKAY) {
goto LBL_T2;
}
/* if a is negative fudge the sign but keep track */
neg = a->sign;
a->sign = MP_ZPOS;
/* t2 = 2 */
mp_set (&t2, 2);
do {
/* t1 = t2 */
if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((res = mp_expt_d_ex (&t1, b - 1, &t3, fast)) != MP_OKAY) {
goto LBL_T3;
}
/* numerator */
/* t2 = t1**b */
if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1**b - a */
if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* denominator */
/* t3 = t1**(b-1) * b */
if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
goto LBL_T3;
}
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
goto LBL_T3;
}
if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
goto LBL_T3;
}
} while (mp_cmp (&t1, &t2) != MP_EQ);
/* result can be off by a few so check */
for (;;) {
if ((res = mp_expt_d_ex (&t1, b, &t2, fast)) != MP_OKAY) {
goto LBL_T3;
}
if (mp_cmp (&t2, a) == MP_GT) {
if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
goto LBL_T3;
}
} else {
break;
}
}
/* reset the sign of a first */
a->sign = neg;
/* set the result */
mp_exch (&t1, c);
/* set the sign of the result */
c->sign = neg;
res = MP_OKAY;
LBL_T3:mp_clear (&t3);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
return res;
}
#endif
/* $Source$ */
/* $Revision$ */
/* $Date$ */

View File

@ -96,7 +96,7 @@ bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \
bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o bn_mp_import.o bn_mp_export.o \
bn_mp_balance_mul.o bn_mp_expt_d_ex.o
bn_mp_balance_mul.o bn_mp_expt_d_ex.o bn_mp_n_root_ex.o
$(LIBNAME): $(OBJECTS)
$(AR) $(ARFLAGS) $@ $(OBJECTS)

View File

@ -400,6 +400,7 @@ int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
* returns error if a < 0 and b is even
*/
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast);
/* special sqrt algo */
int mp_sqrt(mp_int *arg, mp_int *ret);

View File

@ -77,6 +77,7 @@
#define BN_MP_MUL_D_C
#define BN_MP_MULMOD_C
#define BN_MP_N_ROOT_C
#define BN_MP_N_ROOT_EX_C
#define BN_MP_NEG_C
#define BN_MP_OR_C
#define BN_MP_PRIME_FERMAT_C
@ -614,10 +615,14 @@
#endif
#if defined(BN_MP_N_ROOT_C)
#define BN_MP_N_ROOT_EX_C
#endif
#if defined(BN_MP_N_ROOT_EX_C)
#define BN_MP_INIT_C
#define BN_MP_SET_C
#define BN_MP_COPY_C
#define BN_MP_EXPT_D_C
#define BN_MP_EXPT_D_EX_C
#define BN_MP_MUL_C
#define BN_MP_SUB_C
#define BN_MP_MUL_D_C
@ -1023,7 +1028,3 @@
#else
#define LTM_LAST
#endif
/* $Source$ */
/* $Revision$ */
/* $Date$ */