qt5base-lts/src/gui/opengl/qopenglpaintengine.cpp

2408 lines
88 KiB
C++
Raw Normal View History

/****************************************************************************
**
** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: http://www.qt-project.org/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
/*
When the active program changes, we need to update it's uniforms.
We could track state for each program and only update stale uniforms
- Could lead to lots of overhead if there's a lot of programs
We could update all the uniforms when the program changes
- Could end up updating lots of uniforms which don't need updating
Updating uniforms should be cheap, so the overhead of updating up-to-date
uniforms should be minimal. It's also less complex.
Things which _may_ cause a different program to be used:
- Change in brush/pen style
- Change in painter opacity
- Change in composition mode
Whenever we set a mode on the shader manager - it needs to tell us if it had
to switch to a different program.
The shader manager should only switch when we tell it to. E.g. if we set a new
brush style and then switch to transparent painter, we only want it to compile
and use the correct program when we really need it.
*/
// #define QT_OPENGL_CACHE_AS_VBOS
#include "qopenglgradientcache_p.h"
#include "qopengltexturecache_p.h"
#include "qopenglpaintengine_p.h"
#include <string.h> //for memcpy
#include <qmath.h>
#include <private/qopengl_p.h>
#include <private/qopenglcontext_p.h>
#include <private/qopenglextensions_p.h>
#include <private/qmath_p.h>
#include <private/qpaintengineex_p.h>
#include <QPaintEngine>
#include <private/qpainter_p.h>
#include <private/qfontengine_p.h>
#include <private/qdatabuffer_p.h>
#include <private/qstatictext_p.h>
#include <private/qtriangulator_p.h>
#include "qopenglengineshadermanager_p.h"
#include "qopengl2pexvertexarray_p.h"
#include "qopengltriangulatingstroker_p.h"
#include "qopengltextureglyphcache_p.h"
#include <QDebug>
QT_BEGIN_NAMESPACE
Q_GUI_EXPORT QImage qt_imageForBrush(int brushStyle, bool invert);
////////////////////////////////// Private Methods //////////////////////////////////////////
QOpenGL2PaintEngineExPrivate::~QOpenGL2PaintEngineExPrivate()
{
delete shaderManager;
while (pathCaches.size()) {
QVectorPath::CacheEntry *e = *(pathCaches.constBegin());
e->cleanup(e->engine, e->data);
e->data = 0;
e->engine = 0;
}
if (elementIndicesVBOId != 0) {
funcs.glDeleteBuffers(1, &elementIndicesVBOId);
elementIndicesVBOId = 0;
}
}
void QOpenGL2PaintEngineExPrivate::updateTextureFilter(GLenum target, GLenum wrapMode, bool smoothPixmapTransform, GLuint id)
{
// funcs.glActiveTexture(GL_TEXTURE0 + QT_BRUSH_TEXTURE_UNIT); //### Is it always this texture unit?
if (id != GLuint(-1) && id == lastTextureUsed)
return;
lastTextureUsed = id;
if (smoothPixmapTransform) {
glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
glTexParameteri(target, GL_TEXTURE_WRAP_S, wrapMode);
glTexParameteri(target, GL_TEXTURE_WRAP_T, wrapMode);
}
inline QColor qt_premultiplyColor(QColor c, GLfloat opacity)
{
qreal alpha = c.alphaF() * opacity;
c.setAlphaF(alpha);
c.setRedF(c.redF() * alpha);
c.setGreenF(c.greenF() * alpha);
c.setBlueF(c.blueF() * alpha);
return c;
}
void QOpenGL2PaintEngineExPrivate::setBrush(const QBrush& brush)
{
if (qbrush_fast_equals(currentBrush, brush))
return;
const Qt::BrushStyle newStyle = qbrush_style(brush);
Q_ASSERT(newStyle != Qt::NoBrush);
currentBrush = brush;
if (!currentBrushPixmap.isNull())
currentBrushPixmap = QPixmap();
brushUniformsDirty = true; // All brushes have at least one uniform
if (newStyle > Qt::SolidPattern)
brushTextureDirty = true;
if (currentBrush.style() == Qt::TexturePattern
&& qHasPixmapTexture(brush) && brush.texture().isQBitmap())
{
shaderManager->setSrcPixelType(QOpenGLEngineShaderManager::TextureSrcWithPattern);
} else {
shaderManager->setSrcPixelType(newStyle);
}
shaderManager->optimiseForBrushTransform(currentBrush.transform().type());
}
void QOpenGL2PaintEngineExPrivate::useSimpleShader()
{
shaderManager->useSimpleProgram();
if (matrixDirty)
updateMatrix();
}
void QOpenGL2PaintEngineExPrivate::updateBrushTexture()
{
Q_Q(QOpenGL2PaintEngineEx);
// qDebug("QOpenGL2PaintEngineExPrivate::updateBrushTexture()");
Qt::BrushStyle style = currentBrush.style();
if ( (style >= Qt::Dense1Pattern) && (style <= Qt::DiagCrossPattern) ) {
// Get the image data for the pattern
QImage texImage = qt_imageForBrush(style, false);
funcs.glActiveTexture(GL_TEXTURE0 + QT_BRUSH_TEXTURE_UNIT);
QOpenGLTextureCache::cacheForContext(ctx)->bindTexture(ctx, texImage);
updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, q->state()->renderHints & QPainter::SmoothPixmapTransform);
}
else if (style >= Qt::LinearGradientPattern && style <= Qt::ConicalGradientPattern) {
// Gradiant brush: All the gradiants use the same texture
const QGradient* g = currentBrush.gradient();
// We apply global opacity in the fragment shaders, so we always pass 1.0
// for opacity to the cache.
GLuint texId = QOpenGL2GradientCache::cacheForContext(ctx)->getBuffer(*g, 1.0);
funcs.glActiveTexture(GL_TEXTURE0 + QT_BRUSH_TEXTURE_UNIT);
glBindTexture(GL_TEXTURE_2D, texId);
if (g->spread() == QGradient::RepeatSpread || g->type() == QGradient::ConicalGradient)
updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, q->state()->renderHints & QPainter::SmoothPixmapTransform);
else if (g->spread() == QGradient::ReflectSpread)
updateTextureFilter(GL_TEXTURE_2D, GL_MIRRORED_REPEAT, q->state()->renderHints & QPainter::SmoothPixmapTransform);
else
updateTextureFilter(GL_TEXTURE_2D, GL_CLAMP_TO_EDGE, q->state()->renderHints & QPainter::SmoothPixmapTransform);
}
else if (style == Qt::TexturePattern) {
currentBrushPixmap = currentBrush.texture();
int max_texture_size = ctx->d_func()->maxTextureSize();
if (currentBrushPixmap.width() > max_texture_size || currentBrushPixmap.height() > max_texture_size)
currentBrushPixmap = currentBrushPixmap.scaled(max_texture_size, max_texture_size, Qt::KeepAspectRatio);
funcs.glActiveTexture(GL_TEXTURE0 + QT_BRUSH_TEXTURE_UNIT);
QOpenGLTextureCache::cacheForContext(ctx)->bindTexture(ctx, currentBrushPixmap);
updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, q->state()->renderHints & QPainter::SmoothPixmapTransform);
textureInvertedY = false;
}
brushTextureDirty = false;
}
void QOpenGL2PaintEngineExPrivate::updateBrushUniforms()
{
// qDebug("QOpenGL2PaintEngineExPrivate::updateBrushUniforms()");
Qt::BrushStyle style = currentBrush.style();
if (style == Qt::NoBrush)
return;
QTransform brushQTransform = currentBrush.transform();
if (style == Qt::SolidPattern) {
QColor col = qt_premultiplyColor(currentBrush.color(), (GLfloat)q->state()->opacity);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::FragmentColor), col);
}
else {
// All other brushes have a transform and thus need the translation point:
QPointF translationPoint;
if (style <= Qt::DiagCrossPattern) {
QColor col = qt_premultiplyColor(currentBrush.color(), (GLfloat)q->state()->opacity);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::PatternColor), col);
QVector2D halfViewportSize(width*0.5, height*0.5);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::HalfViewportSize), halfViewportSize);
}
else if (style == Qt::LinearGradientPattern) {
const QLinearGradient *g = static_cast<const QLinearGradient *>(currentBrush.gradient());
QPointF realStart = g->start();
QPointF realFinal = g->finalStop();
translationPoint = realStart;
QPointF l = realFinal - realStart;
QVector3D linearData(
l.x(),
l.y(),
1.0f / (l.x() * l.x() + l.y() * l.y())
);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::LinearData), linearData);
QVector2D halfViewportSize(width*0.5, height*0.5);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::HalfViewportSize), halfViewportSize);
}
else if (style == Qt::ConicalGradientPattern) {
const QConicalGradient *g = static_cast<const QConicalGradient *>(currentBrush.gradient());
translationPoint = g->center();
GLfloat angle = -(g->angle() * 2 * Q_PI) / 360.0;
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::Angle), angle);
QVector2D halfViewportSize(width*0.5, height*0.5);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::HalfViewportSize), halfViewportSize);
}
else if (style == Qt::RadialGradientPattern) {
const QRadialGradient *g = static_cast<const QRadialGradient *>(currentBrush.gradient());
QPointF realCenter = g->center();
QPointF realFocal = g->focalPoint();
qreal realRadius = g->centerRadius() - g->focalRadius();
translationPoint = realFocal;
QPointF fmp = realCenter - realFocal;
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::Fmp), fmp);
GLfloat fmp2_m_radius2 = -fmp.x() * fmp.x() - fmp.y() * fmp.y() + realRadius*realRadius;
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::Fmp2MRadius2), fmp2_m_radius2);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::Inverse2Fmp2MRadius2),
GLfloat(1.0 / (2.0*fmp2_m_radius2)));
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::SqrFr),
GLfloat(g->focalRadius() * g->focalRadius()));
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::BRadius),
GLfloat(2 * (g->centerRadius() - g->focalRadius()) * g->focalRadius()),
g->focalRadius(),
g->centerRadius() - g->focalRadius());
QVector2D halfViewportSize(width*0.5, height*0.5);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::HalfViewportSize), halfViewportSize);
}
else if (style == Qt::TexturePattern) {
const QPixmap& texPixmap = currentBrush.texture();
if (qHasPixmapTexture(currentBrush) && currentBrush.texture().isQBitmap()) {
QColor col = qt_premultiplyColor(currentBrush.color(), (GLfloat)q->state()->opacity);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::PatternColor), col);
}
QSizeF invertedTextureSize(1.0 / texPixmap.width(), 1.0 / texPixmap.height());
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::InvertedTextureSize), invertedTextureSize);
QVector2D halfViewportSize(width*0.5, height*0.5);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::HalfViewportSize), halfViewportSize);
}
else
qWarning("QOpenGL2PaintEngineEx: Unimplemented fill style");
const QPointF &brushOrigin = q->state()->brushOrigin;
QTransform matrix = q->state()->matrix;
matrix.translate(brushOrigin.x(), brushOrigin.y());
QTransform translate(1, 0, 0, 1, -translationPoint.x(), -translationPoint.y());
qreal m22 = -1;
qreal dy = height;
if (device->paintFlipped()) {
m22 = 1;
dy = 0;
}
QTransform gl_to_qt(1, 0, 0, m22, 0, dy);
QTransform inv_matrix;
if (style == Qt::TexturePattern && textureInvertedY == -1)
inv_matrix = gl_to_qt * (QTransform(1, 0, 0, -1, 0, currentBrush.texture().height()) * brushQTransform * matrix).inverted() * translate;
else
inv_matrix = gl_to_qt * (brushQTransform * matrix).inverted() * translate;
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::BrushTransform), inv_matrix);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::BrushTexture), QT_BRUSH_TEXTURE_UNIT);
}
brushUniformsDirty = false;
}
// This assumes the shader manager has already setup the correct shader program
void QOpenGL2PaintEngineExPrivate::updateMatrix()
{
// qDebug("QOpenGL2PaintEngineExPrivate::updateMatrix()");
const QTransform& transform = q->state()->matrix;
// The projection matrix converts from Qt's coordinate system to GL's coordinate system
// * GL's viewport is 2x2, Qt's is width x height
// * GL has +y -> -y going from bottom -> top, Qt is the other way round
// * GL has [0,0] in the center, Qt has it in the top-left
//
// This results in the Projection matrix below, which is multiplied by the painter's
// transformation matrix, as shown below:
//
// Projection Matrix Painter Transform
// ------------------------------------------------ ------------------------
// | 2.0 / width | 0.0 | -1.0 | | m11 | m21 | dx |
// | 0.0 | -2.0 / height | 1.0 | * | m12 | m22 | dy |
// | 0.0 | 0.0 | 1.0 | | m13 | m23 | m33 |
// ------------------------------------------------ ------------------------
//
// NOTE: The resultant matrix is also transposed, as GL expects column-major matracies
const GLfloat wfactor = 2.0f / width;
GLfloat hfactor = -2.0f / height;
GLfloat dx = transform.dx();
GLfloat dy = transform.dy();
if (device->paintFlipped()) {
hfactor *= -1;
dy -= height;
}
// Non-integer translates can have strange effects for some rendering operations such as
// anti-aliased text rendering. In such cases, we snap the translate to the pixel grid.
if (snapToPixelGrid && transform.type() == QTransform::TxTranslate) {
// 0.50 needs to rounded down to 0.0 for consistency with raster engine:
dx = ceilf(dx - 0.5f);
dy = ceilf(dy - 0.5f);
}
pmvMatrix[0][0] = (wfactor * transform.m11()) - transform.m13();
pmvMatrix[1][0] = (wfactor * transform.m21()) - transform.m23();
pmvMatrix[2][0] = (wfactor * dx) - transform.m33();
pmvMatrix[0][1] = (hfactor * transform.m12()) + transform.m13();
pmvMatrix[1][1] = (hfactor * transform.m22()) + transform.m23();
pmvMatrix[2][1] = (hfactor * dy) + transform.m33();
pmvMatrix[0][2] = transform.m13();
pmvMatrix[1][2] = transform.m23();
pmvMatrix[2][2] = transform.m33();
// 1/10000 == 0.0001, so we have good enough res to cover curves
// that span the entire widget...
inverseScale = qMax(1 / qMax( qMax(qAbs(transform.m11()), qAbs(transform.m22())),
qMax(qAbs(transform.m12()), qAbs(transform.m21())) ),
qreal(0.0001));
matrixDirty = false;
matrixUniformDirty = true;
// Set the PMV matrix attribute. As we use an attributes rather than uniforms, we only
// need to do this once for every matrix change and persists across all shader programs.
funcs.glVertexAttrib3fv(QT_PMV_MATRIX_1_ATTR, pmvMatrix[0]);
funcs.glVertexAttrib3fv(QT_PMV_MATRIX_2_ATTR, pmvMatrix[1]);
funcs.glVertexAttrib3fv(QT_PMV_MATRIX_3_ATTR, pmvMatrix[2]);
dasher.setInvScale(inverseScale);
stroker.setInvScale(inverseScale);
}
void QOpenGL2PaintEngineExPrivate::updateCompositionMode()
{
// NOTE: The entire paint engine works on pre-multiplied data - which is why some of these
// composition modes look odd.
// qDebug() << "QOpenGL2PaintEngineExPrivate::updateCompositionMode() - Setting GL composition mode for " << q->state()->composition_mode;
switch(q->state()->composition_mode) {
case QPainter::CompositionMode_SourceOver:
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
break;
case QPainter::CompositionMode_DestinationOver:
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE);
break;
case QPainter::CompositionMode_Clear:
glBlendFunc(GL_ZERO, GL_ZERO);
break;
case QPainter::CompositionMode_Source:
glBlendFunc(GL_ONE, GL_ZERO);
break;
case QPainter::CompositionMode_Destination:
glBlendFunc(GL_ZERO, GL_ONE);
break;
case QPainter::CompositionMode_SourceIn:
glBlendFunc(GL_DST_ALPHA, GL_ZERO);
break;
case QPainter::CompositionMode_DestinationIn:
glBlendFunc(GL_ZERO, GL_SRC_ALPHA);
break;
case QPainter::CompositionMode_SourceOut:
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ZERO);
break;
case QPainter::CompositionMode_DestinationOut:
glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_ALPHA);
break;
case QPainter::CompositionMode_SourceAtop:
glBlendFunc(GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
break;
case QPainter::CompositionMode_DestinationAtop:
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA);
break;
case QPainter::CompositionMode_Xor:
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
break;
case QPainter::CompositionMode_Plus:
glBlendFunc(GL_ONE, GL_ONE);
break;
default:
qWarning("Unsupported composition mode");
break;
}
compositionModeDirty = false;
}
static inline void setCoords(GLfloat *coords, const QOpenGLRect &rect)
{
coords[0] = rect.left;
coords[1] = rect.top;
coords[2] = rect.right;
coords[3] = rect.top;
coords[4] = rect.right;
coords[5] = rect.bottom;
coords[6] = rect.left;
coords[7] = rect.bottom;
}
void QOpenGL2PaintEngineExPrivate::drawTexture(const QOpenGLRect& dest, const QOpenGLRect& src, const QSize &textureSize, bool opaque, bool pattern)
{
// Setup for texture drawing
currentBrush = noBrush;
shaderManager->setSrcPixelType(pattern ? QOpenGLEngineShaderManager::PatternSrc : QOpenGLEngineShaderManager::ImageSrc);
if (snapToPixelGrid) {
snapToPixelGrid = false;
matrixDirty = true;
}
if (prepareForDraw(opaque))
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::ImageTexture), QT_IMAGE_TEXTURE_UNIT);
if (pattern) {
QColor col = qt_premultiplyColor(q->state()->pen.color(), (GLfloat)q->state()->opacity);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::PatternColor), col);
}
GLfloat dx = 1.0 / textureSize.width();
GLfloat dy = 1.0 / textureSize.height();
QOpenGLRect srcTextureRect(src.left*dx, src.top*dy, src.right*dx, src.bottom*dy);
setCoords(staticVertexCoordinateArray, dest);
setCoords(staticTextureCoordinateArray, srcTextureRect);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
void QOpenGL2PaintEngineEx::beginNativePainting()
{
Q_D(QOpenGL2PaintEngineEx);
ensureActive();
d->transferMode(BrushDrawingMode);
d->nativePaintingActive = true;
d->funcs.glUseProgram(0);
// Disable all the vertex attribute arrays:
for (int i = 0; i < QT_GL_VERTEX_ARRAY_TRACKED_COUNT; ++i)
d->funcs.glDisableVertexAttribArray(i);
#ifndef QT_OPENGL_ES_2
Q_ASSERT(QOpenGLContext::currentContext());
const QSurfaceFormat &fmt = d->device->context()->format();
if (fmt.majorVersion() < 3 || (fmt.majorVersion() == 3 && fmt.minorVersion() < 1)
|| fmt.profile() == QSurfaceFormat::CompatibilityProfile)
{
// be nice to people who mix OpenGL 1.x code with QPainter commands
// by setting modelview and projection matrices to mirror the GL 1
// paint engine
const QTransform& mtx = state()->matrix;
float mv_matrix[4][4] =
{
{ float(mtx.m11()), float(mtx.m12()), 0, float(mtx.m13()) },
{ float(mtx.m21()), float(mtx.m22()), 0, float(mtx.m23()) },
{ 0, 0, 1, 0 },
{ float(mtx.dx()), float(mtx.dy()), 0, float(mtx.m33()) }
};
const QSize sz = d->device->size();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, sz.width(), sz.height(), 0, -999999, 999999);
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(&mv_matrix[0][0]);
}
#endif
d->lastTextureUsed = GLuint(-1);
d->dirtyStencilRegion = QRect(0, 0, d->width, d->height);
d->resetGLState();
d->shaderManager->setDirty();
d->needsSync = true;
}
void QOpenGL2PaintEngineExPrivate::resetGLState()
{
glDisable(GL_BLEND);
funcs.glActiveTexture(GL_TEXTURE0);
glDisable(GL_STENCIL_TEST);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
glDepthMask(true);
glDepthFunc(GL_LESS);
funcs.glClearDepthf(1);
glStencilMask(0xff);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilFunc(GL_ALWAYS, 0, 0xff);
setVertexAttribArrayEnabled(QT_TEXTURE_COORDS_ATTR, false);
setVertexAttribArrayEnabled(QT_VERTEX_COORDS_ATTR, false);
setVertexAttribArrayEnabled(QT_OPACITY_ATTR, false);
#ifndef QT_OPENGL_ES_2
// gl_Color, corresponding to vertex attribute 3, may have been changed
float color[] = { 1.0f, 1.0f, 1.0f, 1.0f };
funcs.glVertexAttrib4fv(3, color);
#endif
}
void QOpenGL2PaintEngineEx::endNativePainting()
{
Q_D(QOpenGL2PaintEngineEx);
d->needsSync = true;
d->nativePaintingActive = false;
}
void QOpenGL2PaintEngineEx::invalidateState()
{
Q_D(QOpenGL2PaintEngineEx);
d->needsSync = true;
}
bool QOpenGL2PaintEngineEx::isNativePaintingActive() const {
Q_D(const QOpenGL2PaintEngineEx);
return d->nativePaintingActive;
}
void QOpenGL2PaintEngineExPrivate::transferMode(EngineMode newMode)
{
if (newMode == mode)
return;
if (mode == TextDrawingMode || mode == ImageDrawingMode || mode == ImageArrayDrawingMode) {
lastTextureUsed = GLuint(-1);
}
if (newMode == TextDrawingMode) {
shaderManager->setHasComplexGeometry(true);
} else {
shaderManager->setHasComplexGeometry(false);
}
if (newMode == ImageDrawingMode) {
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, staticVertexCoordinateArray);
setVertexAttributePointer(QT_TEXTURE_COORDS_ATTR, staticTextureCoordinateArray);
}
if (newMode == ImageArrayDrawingMode) {
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, (GLfloat*)vertexCoordinateArray.data());
setVertexAttributePointer(QT_TEXTURE_COORDS_ATTR, (GLfloat*)textureCoordinateArray.data());
setVertexAttributePointer(QT_OPACITY_ATTR, (GLfloat*)opacityArray.data());
}
// This needs to change when we implement high-quality anti-aliasing...
if (newMode != TextDrawingMode)
shaderManager->setMaskType(QOpenGLEngineShaderManager::NoMask);
mode = newMode;
}
struct QOpenGL2PEVectorPathCache
{
#ifdef QT_OPENGL_CACHE_AS_VBOS
GLuint vbo;
GLuint ibo;
#else
float *vertices;
void *indices;
#endif
int vertexCount;
int indexCount;
GLenum primitiveType;
qreal iscale;
QVertexIndexVector::Type indexType;
};
void QOpenGL2PaintEngineExPrivate::cleanupVectorPath(QPaintEngineEx *engine, void *data)
{
QOpenGL2PEVectorPathCache *c = (QOpenGL2PEVectorPathCache *) data;
#ifdef QT_OPENGL_CACHE_AS_VBOS
Q_ASSERT(engine->type() == QPaintEngine::OpenGL2);
static_cast<QOpenGL2PaintEngineEx *>(engine)->d_func()->unusedVBOSToClean << c->vbo;
if (c->ibo)
d->unusedIBOSToClean << c->ibo;
#else
Q_UNUSED(engine);
free(c->vertices);
free(c->indices);
#endif
delete c;
}
// Assumes everything is configured for the brush you want to use
void QOpenGL2PaintEngineExPrivate::fill(const QVectorPath& path)
{
transferMode(BrushDrawingMode);
if (snapToPixelGrid) {
snapToPixelGrid = false;
matrixDirty = true;
}
// Might need to call updateMatrix to re-calculate inverseScale
if (matrixDirty)
updateMatrix();
const QPointF* const points = reinterpret_cast<const QPointF*>(path.points());
// Check to see if there's any hints
if (path.shape() == QVectorPath::RectangleHint) {
QOpenGLRect rect(points[0].x(), points[0].y(), points[2].x(), points[2].y());
prepareForDraw(currentBrush.isOpaque());
composite(rect);
} else if (path.isConvex()) {
if (path.isCacheable()) {
QVectorPath::CacheEntry *data = path.lookupCacheData(q);
QOpenGL2PEVectorPathCache *cache;
bool updateCache = false;
if (data) {
cache = (QOpenGL2PEVectorPathCache *) data->data;
// Check if scale factor is exceeded for curved paths and generate curves if so...
if (path.isCurved()) {
qreal scaleFactor = cache->iscale / inverseScale;
if (scaleFactor < 0.5 || scaleFactor > 2.0) {
#ifdef QT_OPENGL_CACHE_AS_VBOS
glDeleteBuffers(1, &cache->vbo);
cache->vbo = 0;
Q_ASSERT(cache->ibo == 0);
#else
free(cache->vertices);
Q_ASSERT(cache->indices == 0);
#endif
updateCache = true;
}
}
} else {
cache = new QOpenGL2PEVectorPathCache;
data = const_cast<QVectorPath &>(path).addCacheData(q, cache, cleanupVectorPath);
updateCache = true;
}
// Flatten the path at the current scale factor and fill it into the cache struct.
if (updateCache) {
vertexCoordinateArray.clear();
vertexCoordinateArray.addPath(path, inverseScale, false);
int vertexCount = vertexCoordinateArray.vertexCount();
int floatSizeInBytes = vertexCount * 2 * sizeof(float);
cache->vertexCount = vertexCount;
cache->indexCount = 0;
cache->primitiveType = GL_TRIANGLE_FAN;
cache->iscale = inverseScale;
#ifdef QT_OPENGL_CACHE_AS_VBOS
glGenBuffers(1, &cache->vbo);
glBindBuffer(GL_ARRAY_BUFFER, cache->vbo);
glBufferData(GL_ARRAY_BUFFER, floatSizeInBytes, vertexCoordinateArray.data(), GL_STATIC_DRAW);
cache->ibo = 0;
#else
cache->vertices = (float *) malloc(floatSizeInBytes);
memcpy(cache->vertices, vertexCoordinateArray.data(), floatSizeInBytes);
cache->indices = 0;
#endif
}
prepareForDraw(currentBrush.isOpaque());
#ifdef QT_OPENGL_CACHE_AS_VBOS
glBindBuffer(GL_ARRAY_BUFFER, cache->vbo);
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, 0);
#else
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, cache->vertices);
#endif
glDrawArrays(cache->primitiveType, 0, cache->vertexCount);
} else {
// printf(" - Marking path as cachable...\n");
// Tag it for later so that if the same path is drawn twice, it is assumed to be static and thus cachable
path.makeCacheable();
vertexCoordinateArray.clear();
vertexCoordinateArray.addPath(path, inverseScale, false);
prepareForDraw(currentBrush.isOpaque());
drawVertexArrays(vertexCoordinateArray, GL_TRIANGLE_FAN);
}
} else {
bool useCache = path.isCacheable();
if (useCache) {
QRectF bbox = path.controlPointRect();
// If the path doesn't fit within these limits, it is possible that the triangulation will fail.
useCache &= (bbox.left() > -0x8000 * inverseScale)
&& (bbox.right() < 0x8000 * inverseScale)
&& (bbox.top() > -0x8000 * inverseScale)
&& (bbox.bottom() < 0x8000 * inverseScale);
}
if (useCache) {
QVectorPath::CacheEntry *data = path.lookupCacheData(q);
QOpenGL2PEVectorPathCache *cache;
bool updateCache = false;
if (data) {
cache = (QOpenGL2PEVectorPathCache *) data->data;
// Check if scale factor is exceeded for curved paths and generate curves if so...
if (path.isCurved()) {
qreal scaleFactor = cache->iscale / inverseScale;
if (scaleFactor < 0.5 || scaleFactor > 2.0) {
#ifdef QT_OPENGL_CACHE_AS_VBOS
glDeleteBuffers(1, &cache->vbo);
glDeleteBuffers(1, &cache->ibo);
#else
free(cache->vertices);
free(cache->indices);
#endif
updateCache = true;
}
}
} else {
cache = new QOpenGL2PEVectorPathCache;
data = const_cast<QVectorPath &>(path).addCacheData(q, cache, cleanupVectorPath);
updateCache = true;
}
// Flatten the path at the current scale factor and fill it into the cache struct.
if (updateCache) {
QTriangleSet polys = qTriangulate(path, QTransform().scale(1 / inverseScale, 1 / inverseScale));
cache->vertexCount = polys.vertices.size() / 2;
cache->indexCount = polys.indices.size();
cache->primitiveType = GL_TRIANGLES;
cache->iscale = inverseScale;
cache->indexType = polys.indices.type();
#ifdef QT_OPENGL_CACHE_AS_VBOS
glGenBuffers(1, &cache->vbo);
glGenBuffers(1, &cache->ibo);
glBindBuffer(GL_ARRAY_BUFFER, cache->vbo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cache->ibo);
if (polys.indices.type() == QVertexIndexVector::UnsignedInt)
funcs.glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(quint32) * polys.indices.size(), polys.indices.data(), GL_STATIC_DRAW);
else
funcs.glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(quint16) * polys.indices.size(), polys.indices.data(), GL_STATIC_DRAW);
QVarLengthArray<float> vertices(polys.vertices.size());
for (int i = 0; i < polys.vertices.size(); ++i)
vertices[i] = float(inverseScale * polys.vertices.at(i));
funcs.glBufferData(GL_ARRAY_BUFFER, sizeof(float) * vertices.size(), vertices.data(), GL_STATIC_DRAW);
#else
cache->vertices = (float *) malloc(sizeof(float) * polys.vertices.size());
if (polys.indices.type() == QVertexIndexVector::UnsignedInt) {
cache->indices = (quint32 *) malloc(sizeof(quint32) * polys.indices.size());
memcpy(cache->indices, polys.indices.data(), sizeof(quint32) * polys.indices.size());
} else {
cache->indices = (quint16 *) malloc(sizeof(quint16) * polys.indices.size());
memcpy(cache->indices, polys.indices.data(), sizeof(quint16) * polys.indices.size());
}
for (int i = 0; i < polys.vertices.size(); ++i)
cache->vertices[i] = float(inverseScale * polys.vertices.at(i));
#endif
}
prepareForDraw(currentBrush.isOpaque());
#ifdef QT_OPENGL_CACHE_AS_VBOS
glBindBuffer(GL_ARRAY_BUFFER, cache->vbo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cache->ibo);
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, 0);
if (cache->indexType == QVertexIndexVector::UnsignedInt)
glDrawElements(cache->primitiveType, cache->indexCount, GL_UNSIGNED_INT, 0);
else
glDrawElements(cache->primitiveType, cache->indexCount, GL_UNSIGNED_SHORT, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
#else
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, cache->vertices);
if (cache->indexType == QVertexIndexVector::UnsignedInt)
glDrawElements(cache->primitiveType, cache->indexCount, GL_UNSIGNED_INT, (qint32 *)cache->indices);
else
glDrawElements(cache->primitiveType, cache->indexCount, GL_UNSIGNED_SHORT, (qint16 *)cache->indices);
#endif
} else {
// printf(" - Marking path as cachable...\n");
// Tag it for later so that if the same path is drawn twice, it is assumed to be static and thus cachable
path.makeCacheable();
if (device->context()->format().stencilBufferSize() == 0) {
// If there is no stencil buffer, triangulate the path instead.
QRectF bbox = path.controlPointRect();
// If the path doesn't fit within these limits, it is possible that the triangulation will fail.
bool withinLimits = (bbox.left() > -0x8000 * inverseScale)
&& (bbox.right() < 0x8000 * inverseScale)
&& (bbox.top() > -0x8000 * inverseScale)
&& (bbox.bottom() < 0x8000 * inverseScale);
if (withinLimits) {
QTriangleSet polys = qTriangulate(path, QTransform().scale(1 / inverseScale, 1 / inverseScale));
QVarLengthArray<float> vertices(polys.vertices.size());
for (int i = 0; i < polys.vertices.size(); ++i)
vertices[i] = float(inverseScale * polys.vertices.at(i));
prepareForDraw(currentBrush.isOpaque());
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, vertices.constData());
if (funcs.hasOpenGLExtension(QOpenGLExtensions::ElementIndexUint))
glDrawElements(GL_TRIANGLES, polys.indices.size(), GL_UNSIGNED_INT, polys.indices.data());
else
glDrawElements(GL_TRIANGLES, polys.indices.size(), GL_UNSIGNED_SHORT, polys.indices.data());
} else {
// We can't handle big, concave painter paths with OpenGL without stencil buffer.
qWarning("Painter path exceeds +/-32767 pixels.");
}
return;
}
// The path is too complicated & needs the stencil technique
vertexCoordinateArray.clear();
vertexCoordinateArray.addPath(path, inverseScale, false);
fillStencilWithVertexArray(vertexCoordinateArray, path.hasWindingFill());
glStencilMask(0xff);
glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE);
if (q->state()->clipTestEnabled) {
// Pass when high bit is set, replace stencil value with current clip
glStencilFunc(GL_NOTEQUAL, q->state()->currentClip, GL_STENCIL_HIGH_BIT);
} else if (path.hasWindingFill()) {
// Pass when any bit is set, replace stencil value with 0
glStencilFunc(GL_NOTEQUAL, 0, 0xff);
} else {
// Pass when high bit is set, replace stencil value with 0
glStencilFunc(GL_NOTEQUAL, 0, GL_STENCIL_HIGH_BIT);
}
prepareForDraw(currentBrush.isOpaque());
// Stencil the brush onto the dest buffer
composite(vertexCoordinateArray.boundingRect());
glStencilMask(0);
updateClipScissorTest();
}
}
}
void QOpenGL2PaintEngineExPrivate::fillStencilWithVertexArray(const float *data,
int count,
int *stops,
int stopCount,
const QOpenGLRect &bounds,
StencilFillMode mode)
{
Q_ASSERT(count || stops);
// qDebug("QOpenGL2PaintEngineExPrivate::fillStencilWithVertexArray()");
glStencilMask(0xff); // Enable stencil writes
if (dirtyStencilRegion.intersects(currentScissorBounds)) {
QVector<QRect> clearRegion = dirtyStencilRegion.intersected(currentScissorBounds).rects();
glClearStencil(0); // Clear to zero
for (int i = 0; i < clearRegion.size(); ++i) {
#ifndef QT_GL_NO_SCISSOR_TEST
setScissor(clearRegion.at(i));
#endif
glClear(GL_STENCIL_BUFFER_BIT);
}
dirtyStencilRegion -= currentScissorBounds;
#ifndef QT_GL_NO_SCISSOR_TEST
updateClipScissorTest();
#endif
}
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); // Disable color writes
useSimpleShader();
glEnable(GL_STENCIL_TEST); // For some reason, this has to happen _after_ the simple shader is use()'d
if (mode == WindingFillMode) {
Q_ASSERT(stops && !count);
if (q->state()->clipTestEnabled) {
// Flatten clip values higher than current clip, and set high bit to match current clip
glStencilFunc(GL_LEQUAL, GL_STENCIL_HIGH_BIT | q->state()->currentClip, ~GL_STENCIL_HIGH_BIT);
glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE);
composite(bounds);
glStencilFunc(GL_EQUAL, GL_STENCIL_HIGH_BIT, GL_STENCIL_HIGH_BIT);
} else if (!stencilClean) {
// Clear stencil buffer within bounding rect
glStencilFunc(GL_ALWAYS, 0, 0xff);
glStencilOp(GL_ZERO, GL_ZERO, GL_ZERO);
composite(bounds);
}
// Inc. for front-facing triangle
funcs.glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_INCR_WRAP, GL_INCR_WRAP);
// Dec. for back-facing "holes"
funcs.glStencilOpSeparate(GL_BACK, GL_KEEP, GL_DECR_WRAP, GL_DECR_WRAP);
glStencilMask(~GL_STENCIL_HIGH_BIT);
drawVertexArrays(data, stops, stopCount, GL_TRIANGLE_FAN);
if (q->state()->clipTestEnabled) {
// Clear high bit of stencil outside of path
glStencilFunc(GL_EQUAL, q->state()->currentClip, ~GL_STENCIL_HIGH_BIT);
glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE);
glStencilMask(GL_STENCIL_HIGH_BIT);
composite(bounds);
}
} else if (mode == OddEvenFillMode) {
glStencilMask(GL_STENCIL_HIGH_BIT);
glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT); // Simply invert the stencil bit
drawVertexArrays(data, stops, stopCount, GL_TRIANGLE_FAN);
} else { // TriStripStrokeFillMode
Q_ASSERT(count && !stops); // tristrips generated directly, so no vertexArray or stops
glStencilMask(GL_STENCIL_HIGH_BIT);
#if 0
glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT); // Simply invert the stencil bit
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, data);
glDrawArrays(GL_TRIANGLE_STRIP, 0, count);
#else
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
if (q->state()->clipTestEnabled) {
glStencilFunc(GL_LEQUAL, q->state()->currentClip | GL_STENCIL_HIGH_BIT,
~GL_STENCIL_HIGH_BIT);
} else {
glStencilFunc(GL_ALWAYS, GL_STENCIL_HIGH_BIT, 0xff);
}
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, data);
glDrawArrays(GL_TRIANGLE_STRIP, 0, count);
#endif
}
// Enable color writes & disable stencil writes
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
/*
If the maximum value in the stencil buffer is GL_STENCIL_HIGH_BIT - 1,
restore the stencil buffer to a pristine state. The current clip region
is set to 1, and the rest to 0.
*/
void QOpenGL2PaintEngineExPrivate::resetClipIfNeeded()
{
if (maxClip != (GL_STENCIL_HIGH_BIT - 1))
return;
Q_Q(QOpenGL2PaintEngineEx);
useSimpleShader();
glEnable(GL_STENCIL_TEST);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
QRectF bounds = q->state()->matrix.inverted().mapRect(QRectF(0, 0, width, height));
QOpenGLRect rect(bounds.left(), bounds.top(), bounds.right(), bounds.bottom());
// Set high bit on clip region
glStencilFunc(GL_LEQUAL, q->state()->currentClip, 0xff);
glStencilOp(GL_KEEP, GL_INVERT, GL_INVERT);
glStencilMask(GL_STENCIL_HIGH_BIT);
composite(rect);
// Reset clipping to 1 and everything else to zero
glStencilFunc(GL_NOTEQUAL, 0x01, GL_STENCIL_HIGH_BIT);
glStencilOp(GL_ZERO, GL_REPLACE, GL_REPLACE);
glStencilMask(0xff);
composite(rect);
q->state()->currentClip = 1;
q->state()->canRestoreClip = false;
maxClip = 1;
glStencilMask(0x0);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
bool QOpenGL2PaintEngineExPrivate::prepareForDraw(bool srcPixelsAreOpaque)
{
if (brushTextureDirty && mode != ImageDrawingMode && mode != ImageArrayDrawingMode)
updateBrushTexture();
if (compositionModeDirty)
updateCompositionMode();
if (matrixDirty)
updateMatrix();
const bool stateHasOpacity = q->state()->opacity < 0.99f;
if (q->state()->composition_mode == QPainter::CompositionMode_Source
|| (q->state()->composition_mode == QPainter::CompositionMode_SourceOver
&& srcPixelsAreOpaque && !stateHasOpacity))
{
glDisable(GL_BLEND);
} else {
glEnable(GL_BLEND);
}
QOpenGLEngineShaderManager::OpacityMode opacityMode;
if (mode == ImageArrayDrawingMode) {
opacityMode = QOpenGLEngineShaderManager::AttributeOpacity;
} else {
opacityMode = stateHasOpacity ? QOpenGLEngineShaderManager::UniformOpacity
: QOpenGLEngineShaderManager::NoOpacity;
if (stateHasOpacity && (mode != ImageDrawingMode)) {
// Using a brush
bool brushIsPattern = (currentBrush.style() >= Qt::Dense1Pattern) &&
(currentBrush.style() <= Qt::DiagCrossPattern);
if ((currentBrush.style() == Qt::SolidPattern) || brushIsPattern)
opacityMode = QOpenGLEngineShaderManager::NoOpacity; // Global opacity handled by srcPixel shader
}
}
shaderManager->setOpacityMode(opacityMode);
bool changed = shaderManager->useCorrectShaderProg();
// If the shader program needs changing, we change it and mark all uniforms as dirty
if (changed) {
// The shader program has changed so mark all uniforms as dirty:
brushUniformsDirty = true;
opacityUniformDirty = true;
matrixUniformDirty = true;
}
if (brushUniformsDirty && mode != ImageDrawingMode && mode != ImageArrayDrawingMode)
updateBrushUniforms();
if (opacityMode == QOpenGLEngineShaderManager::UniformOpacity && opacityUniformDirty) {
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::GlobalOpacity), (GLfloat)q->state()->opacity);
opacityUniformDirty = false;
}
if (matrixUniformDirty && shaderManager->hasComplexGeometry()) {
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::Matrix),
pmvMatrix);
matrixUniformDirty = false;
}
return changed;
}
void QOpenGL2PaintEngineExPrivate::composite(const QOpenGLRect& boundingRect)
{
setCoords(staticVertexCoordinateArray, boundingRect);
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, staticVertexCoordinateArray);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
// Draws the vertex array as a set of <vertexArrayStops.size()> triangle fans.
void QOpenGL2PaintEngineExPrivate::drawVertexArrays(const float *data, int *stops, int stopCount,
GLenum primitive)
{
// Now setup the pointer to the vertex array:
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, (GLfloat*)data);
int previousStop = 0;
for (int i=0; i<stopCount; ++i) {
int stop = stops[i];
/*
qDebug("Drawing triangle fan for vertecies %d -> %d:", previousStop, stop-1);
for (int i=previousStop; i<stop; ++i)
qDebug(" %02d: [%.2f, %.2f]", i, vertexArray.data()[i].x, vertexArray.data()[i].y);
*/
glDrawArrays(primitive, previousStop, stop - previousStop);
previousStop = stop;
}
}
/////////////////////////////////// Public Methods //////////////////////////////////////////
QOpenGL2PaintEngineEx::QOpenGL2PaintEngineEx()
: QPaintEngineEx(*(new QOpenGL2PaintEngineExPrivate(this)))
{
}
QOpenGL2PaintEngineEx::~QOpenGL2PaintEngineEx()
{
}
void QOpenGL2PaintEngineEx::fill(const QVectorPath &path, const QBrush &brush)
{
Q_D(QOpenGL2PaintEngineEx);
if (qbrush_style(brush) == Qt::NoBrush)
return;
ensureActive();
d->setBrush(brush);
d->fill(path);
}
Q_GUI_EXPORT bool qt_scaleForTransform(const QTransform &transform, qreal *scale); // qtransform.cpp
void QOpenGL2PaintEngineEx::stroke(const QVectorPath &path, const QPen &pen)
{
Q_D(QOpenGL2PaintEngineEx);
const QBrush &penBrush = qpen_brush(pen);
if (qpen_style(pen) == Qt::NoPen || qbrush_style(penBrush) == Qt::NoBrush)
return;
QOpenGL2PaintEngineState *s = state();
if (pen.isCosmetic() && !qt_scaleForTransform(s->transform(), 0)) {
// QTriangulatingStroker class is not meant to support cosmetically sheared strokes.
QPaintEngineEx::stroke(path, pen);
return;
}
ensureActive();
d->setBrush(penBrush);
d->stroke(path, pen);
}
void QOpenGL2PaintEngineExPrivate::stroke(const QVectorPath &path, const QPen &pen)
{
const QOpenGL2PaintEngineState *s = q->state();
if (snapToPixelGrid) {
snapToPixelGrid = false;
matrixDirty = true;
}
const Qt::PenStyle penStyle = qpen_style(pen);
const QBrush &penBrush = qpen_brush(pen);
const bool opaque = penBrush.isOpaque() && s->opacity > 0.99;
transferMode(BrushDrawingMode);
// updateMatrix() is responsible for setting the inverse scale on
// the strokers, so we need to call it here and not wait for
// prepareForDraw() down below.
updateMatrix();
QRectF clip = q->state()->matrix.inverted().mapRect(q->state()->clipEnabled
? q->state()->rectangleClip
: QRectF(0, 0, width, height));
if (penStyle == Qt::SolidLine) {
stroker.process(path, pen, clip);
} else { // Some sort of dash
dasher.process(path, pen, clip);
QVectorPath dashStroke(dasher.points(),
dasher.elementCount(),
dasher.elementTypes());
stroker.process(dashStroke, pen, clip);
}
if (!stroker.vertexCount())
return;
if (opaque) {
prepareForDraw(opaque);
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, stroker.vertices());
glDrawArrays(GL_TRIANGLE_STRIP, 0, stroker.vertexCount() / 2);
// QBrush b(Qt::green);
// d->setBrush(&b);
// d->prepareForDraw(true);
// glDrawArrays(GL_LINE_STRIP, 0, d->stroker.vertexCount() / 2);
} else {
qreal width = qpen_widthf(pen) / 2;
if (width == 0)
width = 0.5;
qreal extra = pen.joinStyle() == Qt::MiterJoin
? qMax(pen.miterLimit() * width, width)
: width;
if (pen.isCosmetic())
extra = extra * inverseScale;
QRectF bounds = path.controlPointRect().adjusted(-extra, -extra, extra, extra);
fillStencilWithVertexArray(stroker.vertices(), stroker.vertexCount() / 2,
0, 0, bounds, QOpenGL2PaintEngineExPrivate::TriStripStrokeFillMode);
glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE);
// Pass when any bit is set, replace stencil value with 0
glStencilFunc(GL_NOTEQUAL, 0, GL_STENCIL_HIGH_BIT);
prepareForDraw(false);
// Stencil the brush onto the dest buffer
composite(bounds);
glStencilMask(0);
updateClipScissorTest();
}
}
void QOpenGL2PaintEngineEx::penChanged() { }
void QOpenGL2PaintEngineEx::brushChanged() { }
void QOpenGL2PaintEngineEx::brushOriginChanged() { }
void QOpenGL2PaintEngineEx::opacityChanged()
{
// qDebug("QOpenGL2PaintEngineEx::opacityChanged()");
Q_D(QOpenGL2PaintEngineEx);
state()->opacityChanged = true;
Q_ASSERT(d->shaderManager);
d->brushUniformsDirty = true;
d->opacityUniformDirty = true;
}
void QOpenGL2PaintEngineEx::compositionModeChanged()
{
// qDebug("QOpenGL2PaintEngineEx::compositionModeChanged()");
Q_D(QOpenGL2PaintEngineEx);
state()->compositionModeChanged = true;
d->compositionModeDirty = true;
}
void QOpenGL2PaintEngineEx::renderHintsChanged()
{
state()->renderHintsChanged = true;
#if !defined(QT_OPENGL_ES_2)
if ((state()->renderHints & QPainter::Antialiasing)
|| (state()->renderHints & QPainter::HighQualityAntialiasing))
glEnable(GL_MULTISAMPLE);
else
glDisable(GL_MULTISAMPLE);
#endif
Q_D(QOpenGL2PaintEngineEx);
d->lastTextureUsed = GLuint(-1);
d->brushTextureDirty = true;
// qDebug("QOpenGL2PaintEngineEx::renderHintsChanged() not implemented!");
}
void QOpenGL2PaintEngineEx::transformChanged()
{
Q_D(QOpenGL2PaintEngineEx);
d->matrixDirty = true;
state()->matrixChanged = true;
}
static const QRectF scaleRect(const QRectF &r, qreal sx, qreal sy)
{
return QRectF(r.x() * sx, r.y() * sy, r.width() * sx, r.height() * sy);
}
void QOpenGL2PaintEngineEx::drawPixmap(const QRectF& dest, const QPixmap & pixmap, const QRectF & src)
{
Q_D(QOpenGL2PaintEngineEx);
QOpenGLContext *ctx = d->ctx;
int max_texture_size = ctx->d_func()->maxTextureSize();
if (pixmap.width() > max_texture_size || pixmap.height() > max_texture_size) {
QPixmap scaled = pixmap.scaled(max_texture_size, max_texture_size, Qt::KeepAspectRatio);
const qreal sx = scaled.width() / qreal(pixmap.width());
const qreal sy = scaled.height() / qreal(pixmap.height());
drawPixmap(dest, scaled, scaleRect(src, sx, sy));
return;
}
ensureActive();
d->transferMode(ImageDrawingMode);
d->funcs.glActiveTexture(GL_TEXTURE0 + QT_IMAGE_TEXTURE_UNIT);
GLuint id = QOpenGLTextureCache::cacheForContext(ctx)->bindTexture(ctx, pixmap);
QOpenGLRect srcRect(src.left(), src.top(), src.right(), src.bottom());
bool isBitmap = pixmap.isQBitmap();
bool isOpaque = !isBitmap && !pixmap.hasAlpha();
d->updateTextureFilter(GL_TEXTURE_2D, GL_CLAMP_TO_EDGE,
state()->renderHints & QPainter::SmoothPixmapTransform, id);
d->drawTexture(dest, srcRect, pixmap.size(), isOpaque, isBitmap);
}
void QOpenGL2PaintEngineEx::drawImage(const QRectF& dest, const QImage& image, const QRectF& src,
Qt::ImageConversionFlags)
{
Q_D(QOpenGL2PaintEngineEx);
QOpenGLContext *ctx = d->ctx;
int max_texture_size = ctx->d_func()->maxTextureSize();
if (image.width() > max_texture_size || image.height() > max_texture_size) {
QImage scaled = image.scaled(max_texture_size, max_texture_size, Qt::KeepAspectRatio);
const qreal sx = scaled.width() / qreal(image.width());
const qreal sy = scaled.height() / qreal(image.height());
drawImage(dest, scaled, scaleRect(src, sx, sy));
return;
}
ensureActive();
d->transferMode(ImageDrawingMode);
d->funcs.glActiveTexture(GL_TEXTURE0 + QT_IMAGE_TEXTURE_UNIT);
GLuint id = QOpenGLTextureCache::cacheForContext(ctx)->bindTexture(ctx, image);
d->updateTextureFilter(GL_TEXTURE_2D, GL_CLAMP_TO_EDGE,
state()->renderHints & QPainter::SmoothPixmapTransform, id);
d->drawTexture(dest, src, image.size(), !image.hasAlphaChannel());
}
void QOpenGL2PaintEngineEx::drawStaticTextItem(QStaticTextItem *textItem)
{
Q_D(QOpenGL2PaintEngineEx);
ensureActive();
QPainterState *s = state();
float det = s->matrix.determinant();
// don't try to cache huge fonts or vastly transformed fonts
QFontEngine *fontEngine = textItem->fontEngine();
const qreal pixelSize = fontEngine->fontDef.pixelSize;
if (shouldDrawCachedGlyphs(pixelSize, s->matrix) || det < 0.25f || det > 4.f) {
QFontEngineGlyphCache::Type glyphType = fontEngine->glyphFormat >= 0
? QFontEngineGlyphCache::Type(textItem->fontEngine()->glyphFormat)
: d->glyphCacheType;
if (glyphType == QFontEngineGlyphCache::Raster_RGBMask) {
if (d->device->context()->format().alphaBufferSize() > 0 || s->matrix.type() > QTransform::TxTranslate
|| (s->composition_mode != QPainter::CompositionMode_Source
&& s->composition_mode != QPainter::CompositionMode_SourceOver))
{
glyphType = QFontEngineGlyphCache::Raster_A8;
}
}
d->drawCachedGlyphs(glyphType, textItem);
} else {
QPaintEngineEx::drawStaticTextItem(textItem);
}
}
bool QOpenGL2PaintEngineEx::drawTexture(const QRectF &dest, GLuint textureId, const QSize &size, const QRectF &src)
{
Q_D(QOpenGL2PaintEngineEx);
if (!d->shaderManager)
return false;
ensureActive();
d->transferMode(ImageDrawingMode);
d->funcs.glActiveTexture(GL_TEXTURE0 + QT_IMAGE_TEXTURE_UNIT);
glBindTexture(GL_TEXTURE_2D, textureId);
QOpenGLRect srcRect(src.left(), src.bottom(), src.right(), src.top());
d->updateTextureFilter(GL_TEXTURE_2D, GL_CLAMP_TO_EDGE,
state()->renderHints & QPainter::SmoothPixmapTransform, textureId);
d->drawTexture(dest, srcRect, size, false);
return true;
}
void QOpenGL2PaintEngineEx::drawTextItem(const QPointF &p, const QTextItem &textItem)
{
Q_D(QOpenGL2PaintEngineEx);
ensureActive();
QOpenGL2PaintEngineState *s = state();
const QTextItemInt &ti = static_cast<const QTextItemInt &>(textItem);
QTransform::TransformationType txtype = s->matrix.type();
float det = s->matrix.determinant();
bool drawCached = txtype < QTransform::TxProject;
// don't try to cache huge fonts or vastly transformed fonts
const qreal pixelSize = ti.fontEngine->fontDef.pixelSize;
if (shouldDrawCachedGlyphs(pixelSize, s->matrix) || det < 0.25f || det > 4.f)
drawCached = false;
QFontEngineGlyphCache::Type glyphType = ti.fontEngine->glyphFormat >= 0
? QFontEngineGlyphCache::Type(ti.fontEngine->glyphFormat)
: d->glyphCacheType;
if (glyphType == QFontEngineGlyphCache::Raster_RGBMask) {
if (d->device->context()->format().alphaBufferSize() > 0 || txtype > QTransform::TxTranslate
|| (state()->composition_mode != QPainter::CompositionMode_Source
&& state()->composition_mode != QPainter::CompositionMode_SourceOver))
{
glyphType = QFontEngineGlyphCache::Raster_A8;
}
}
if (drawCached) {
QVarLengthArray<QFixedPoint> positions;
QVarLengthArray<glyph_t> glyphs;
QTransform matrix = QTransform::fromTranslate(p.x(), p.y());
ti.fontEngine->getGlyphPositions(ti.glyphs, matrix, ti.flags, glyphs, positions);
{
QStaticTextItem staticTextItem;
staticTextItem.chars = const_cast<QChar *>(ti.chars);
staticTextItem.setFontEngine(ti.fontEngine);
staticTextItem.glyphs = glyphs.data();
staticTextItem.numChars = ti.num_chars;
staticTextItem.numGlyphs = glyphs.size();
staticTextItem.glyphPositions = positions.data();
d->drawCachedGlyphs(glyphType, &staticTextItem);
}
return;
}
QPaintEngineEx::drawTextItem(p, ti);
}
namespace {
class QOpenGLStaticTextUserData: public QStaticTextUserData
{
public:
QOpenGLStaticTextUserData()
: QStaticTextUserData(OpenGLUserData), cacheSize(0, 0), cacheSerialNumber(0)
{
}
~QOpenGLStaticTextUserData()
{
}
QSize cacheSize;
QOpenGL2PEXVertexArray vertexCoordinateArray;
QOpenGL2PEXVertexArray textureCoordinateArray;
QFontEngineGlyphCache::Type glyphType;
int cacheSerialNumber;
};
}
// #define QT_OPENGL_DRAWCACHEDGLYPHS_INDEX_ARRAY_VBO
void QOpenGL2PaintEngineExPrivate::drawCachedGlyphs(QFontEngineGlyphCache::Type glyphType,
QStaticTextItem *staticTextItem)
{
Q_Q(QOpenGL2PaintEngineEx);
QOpenGL2PaintEngineState *s = q->state();
void *cacheKey = ctx->shareGroup();
bool recreateVertexArrays = false;
QFontEngine *fe = staticTextItem->fontEngine();
QOpenGLTextureGlyphCache *cache =
(QOpenGLTextureGlyphCache *) fe->glyphCache(cacheKey, glyphType, QTransform());
if (!cache || cache->cacheType() != glyphType || cache->contextGroup() == 0) {
cache = new QOpenGLTextureGlyphCache(glyphType, QTransform());
fe->setGlyphCache(cacheKey, cache);
recreateVertexArrays = true;
}
if (staticTextItem->userDataNeedsUpdate) {
recreateVertexArrays = true;
} else if (staticTextItem->userData() == 0) {
recreateVertexArrays = true;
} else if (staticTextItem->userData()->type != QStaticTextUserData::OpenGLUserData) {
recreateVertexArrays = true;
} else {
QOpenGLStaticTextUserData *userData = static_cast<QOpenGLStaticTextUserData *>(staticTextItem->userData());
if (userData->glyphType != glyphType) {
recreateVertexArrays = true;
} else if (userData->cacheSerialNumber != cache->serialNumber()) {
recreateVertexArrays = true;
}
}
// We only need to update the cache with new glyphs if we are actually going to recreate the vertex arrays.
// If the cache size has changed, we do need to regenerate the vertices, but we don't need to repopulate the
// cache so this text is performed before we test if the cache size has changed.
if (recreateVertexArrays) {
cache->setPaintEnginePrivate(this);
if (!cache->populate(fe, staticTextItem->numGlyphs,
staticTextItem->glyphs, staticTextItem->glyphPositions)) {
// No space for glyphs in cache. We need to reset it and try again.
cache->clear();
cache->populate(fe, staticTextItem->numGlyphs,
staticTextItem->glyphs, staticTextItem->glyphPositions);
}
cache->fillInPendingGlyphs();
}
if (cache->width() == 0 || cache->height() == 0)
return;
transferMode(TextDrawingMode);
int margin = fe->glyphMargin(glyphType);
GLfloat dx = 1.0 / cache->width();
GLfloat dy = 1.0 / cache->height();
// Use global arrays by default
QOpenGL2PEXVertexArray *vertexCoordinates = &vertexCoordinateArray;
QOpenGL2PEXVertexArray *textureCoordinates = &textureCoordinateArray;
if (staticTextItem->useBackendOptimizations) {
QOpenGLStaticTextUserData *userData = 0;
if (staticTextItem->userData() == 0
|| staticTextItem->userData()->type != QStaticTextUserData::OpenGLUserData) {
userData = new QOpenGLStaticTextUserData();
staticTextItem->setUserData(userData);
} else {
userData = static_cast<QOpenGLStaticTextUserData*>(staticTextItem->userData());
}
userData->glyphType = glyphType;
userData->cacheSerialNumber = cache->serialNumber();
// Use cache if backend optimizations is turned on
vertexCoordinates = &userData->vertexCoordinateArray;
textureCoordinates = &userData->textureCoordinateArray;
QSize size(cache->width(), cache->height());
if (userData->cacheSize != size) {
recreateVertexArrays = true;
userData->cacheSize = size;
}
}
if (recreateVertexArrays) {
vertexCoordinates->clear();
textureCoordinates->clear();
bool supportsSubPixelPositions = fe->supportsSubPixelPositions();
for (int i=0; i<staticTextItem->numGlyphs; ++i) {
QFixed subPixelPosition;
if (supportsSubPixelPositions)
subPixelPosition = fe->subPixelPositionForX(staticTextItem->glyphPositions[i].x);
QTextureGlyphCache::GlyphAndSubPixelPosition glyph(staticTextItem->glyphs[i], subPixelPosition);
const QTextureGlyphCache::Coord &c = cache->coords[glyph];
if (c.isNull())
continue;
int x = qFloor(staticTextItem->glyphPositions[i].x) + c.baseLineX - margin;
int y = qFloor(staticTextItem->glyphPositions[i].y) - c.baseLineY - margin;
vertexCoordinates->addQuad(QRectF(x, y, c.w, c.h));
textureCoordinates->addQuad(QRectF(c.x*dx, c.y*dy, c.w * dx, c.h * dy));
}
staticTextItem->userDataNeedsUpdate = false;
}
int numGlyphs = vertexCoordinates->vertexCount() / 4;
if (numGlyphs == 0)
return;
if (elementIndices.size() < numGlyphs*6) {
Q_ASSERT(elementIndices.size() % 6 == 0);
int j = elementIndices.size() / 6 * 4;
while (j < numGlyphs*4) {
elementIndices.append(j + 0);
elementIndices.append(j + 0);
elementIndices.append(j + 1);
elementIndices.append(j + 2);
elementIndices.append(j + 3);
elementIndices.append(j + 3);
j += 4;
}
#if defined(QT_OPENGL_DRAWCACHEDGLYPHS_INDEX_ARRAY_VBO)
if (elementIndicesVBOId == 0)
glGenBuffers(1, &elementIndicesVBOId);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementIndicesVBOId);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, elementIndices.size() * sizeof(GLushort),
elementIndices.constData(), GL_STATIC_DRAW);
#endif
} else {
#if defined(QT_OPENGL_DRAWCACHEDGLYPHS_INDEX_ARRAY_VBO)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementIndicesVBOId);
#endif
}
setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, (GLfloat*)vertexCoordinates->data());
setVertexAttributePointer(QT_TEXTURE_COORDS_ATTR, (GLfloat*)textureCoordinates->data());
if (!snapToPixelGrid) {
snapToPixelGrid = true;
matrixDirty = true;
}
QBrush pensBrush = q->state()->pen.brush();
setBrush(pensBrush);
if (glyphType == QFontEngineGlyphCache::Raster_RGBMask) {
// Subpixel antialiasing without gamma correction
QPainter::CompositionMode compMode = q->state()->composition_mode;
Q_ASSERT(compMode == QPainter::CompositionMode_Source
|| compMode == QPainter::CompositionMode_SourceOver);
shaderManager->setMaskType(QOpenGLEngineShaderManager::SubPixelMaskPass1);
if (pensBrush.style() == Qt::SolidPattern) {
// Solid patterns can get away with only one pass.
QColor c = pensBrush.color();
qreal oldOpacity = q->state()->opacity;
if (compMode == QPainter::CompositionMode_Source) {
c = qt_premultiplyColor(c, q->state()->opacity);
q->state()->opacity = 1;
opacityUniformDirty = true;
}
compositionModeDirty = false; // I can handle this myself, thank you very much
prepareForDraw(false); // Text always causes src pixels to be transparent
// prepareForDraw() have set the opacity on the current shader, so the opacity state can now be reset.
if (compMode == QPainter::CompositionMode_Source) {
q->state()->opacity = oldOpacity;
opacityUniformDirty = true;
}
glEnable(GL_BLEND);
glBlendFunc(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR);
funcs.glBlendColor(c.redF(), c.greenF(), c.blueF(), c.alphaF());
} else {
// Other brush styles need two passes.
qreal oldOpacity = q->state()->opacity;
if (compMode == QPainter::CompositionMode_Source) {
q->state()->opacity = 1;
opacityUniformDirty = true;
pensBrush = Qt::white;
setBrush(pensBrush);
}
compositionModeDirty = false; // I can handle this myself, thank you very much
prepareForDraw(false); // Text always causes src pixels to be transparent
glEnable(GL_BLEND);
glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
funcs.glActiveTexture(GL_TEXTURE0 + QT_MASK_TEXTURE_UNIT);
glBindTexture(GL_TEXTURE_2D, cache->texture());
updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, false);
#if defined(QT_OPENGL_DRAWCACHEDGLYPHS_INDEX_ARRAY_VBO)
glDrawElements(GL_TRIANGLE_STRIP, 6 * numGlyphs, GL_UNSIGNED_SHORT, 0);
#else
glDrawElements(GL_TRIANGLE_STRIP, 6 * numGlyphs, GL_UNSIGNED_SHORT, elementIndices.data());
#endif
shaderManager->setMaskType(QOpenGLEngineShaderManager::SubPixelMaskPass2);
if (compMode == QPainter::CompositionMode_Source) {
q->state()->opacity = oldOpacity;
opacityUniformDirty = true;
pensBrush = q->state()->pen.brush();
setBrush(pensBrush);
}
compositionModeDirty = false;
prepareForDraw(false); // Text always causes src pixels to be transparent
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
}
compositionModeDirty = true;
} else {
// Greyscale/mono glyphs
shaderManager->setMaskType(QOpenGLEngineShaderManager::PixelMask);
prepareForDraw(false); // Text always causes src pixels to be transparent
}
QOpenGLTextureGlyphCache::FilterMode filterMode = (s->matrix.type() > QTransform::TxTranslate)?QOpenGLTextureGlyphCache::Linear:QOpenGLTextureGlyphCache::Nearest;
if (lastMaskTextureUsed != cache->texture() || cache->filterMode() != filterMode) {
funcs.glActiveTexture(GL_TEXTURE0 + QT_MASK_TEXTURE_UNIT);
if (lastMaskTextureUsed != cache->texture()) {
glBindTexture(GL_TEXTURE_2D, cache->texture());
lastMaskTextureUsed = cache->texture();
}
if (cache->filterMode() != filterMode) {
if (filterMode == QOpenGLTextureGlyphCache::Linear) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
cache->setFilterMode(filterMode);
}
}
bool srgbFrameBufferEnabled = false;
if (funcs.hasOpenGLExtension(QOpenGLExtensions::SRGBFrameBuffer)) {
if (false)
{
glEnable(GL_FRAMEBUFFER_SRGB);
srgbFrameBufferEnabled = true;
}
}
#if defined(QT_OPENGL_DRAWCACHEDGLYPHS_INDEX_ARRAY_VBO)
glDrawElements(GL_TRIANGLE_STRIP, 6 * numGlyphs, GL_UNSIGNED_SHORT, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
#else
glDrawElements(GL_TRIANGLE_STRIP, 6 * numGlyphs, GL_UNSIGNED_SHORT, elementIndices.data());
#endif
if (srgbFrameBufferEnabled)
glDisable(GL_FRAMEBUFFER_SRGB);
}
void QOpenGL2PaintEngineEx::drawPixmapFragments(const QPainter::PixmapFragment *fragments, int fragmentCount, const QPixmap &pixmap,
QPainter::PixmapFragmentHints hints)
{
Q_D(QOpenGL2PaintEngineEx);
// Use fallback for extended composition modes.
if (state()->composition_mode > QPainter::CompositionMode_Plus) {
QPaintEngineEx::drawPixmapFragments(fragments, fragmentCount, pixmap, hints);
return;
}
ensureActive();
int max_texture_size = d->ctx->d_func()->maxTextureSize();
if (pixmap.width() > max_texture_size || pixmap.height() > max_texture_size) {
QPixmap scaled = pixmap.scaled(max_texture_size, max_texture_size, Qt::KeepAspectRatio);
d->drawPixmapFragments(fragments, fragmentCount, scaled, hints);
} else {
d->drawPixmapFragments(fragments, fragmentCount, pixmap, hints);
}
}
void QOpenGL2PaintEngineExPrivate::drawPixmapFragments(const QPainter::PixmapFragment *fragments,
int fragmentCount, const QPixmap &pixmap,
QPainter::PixmapFragmentHints hints)
{
GLfloat dx = 1.0f / pixmap.size().width();
GLfloat dy = 1.0f / pixmap.size().height();
vertexCoordinateArray.clear();
textureCoordinateArray.clear();
opacityArray.reset();
if (snapToPixelGrid) {
snapToPixelGrid = false;
matrixDirty = true;
}
bool allOpaque = true;
for (int i = 0; i < fragmentCount; ++i) {
qreal s = 0;
qreal c = 1;
if (fragments[i].rotation != 0) {
s = qFastSin(fragments[i].rotation * Q_PI / 180);
c = qFastCos(fragments[i].rotation * Q_PI / 180);
}
qreal right = 0.5 * fragments[i].scaleX * fragments[i].width;
qreal bottom = 0.5 * fragments[i].scaleY * fragments[i].height;
QOpenGLPoint bottomRight(right * c - bottom * s, right * s + bottom * c);
QOpenGLPoint bottomLeft(-right * c - bottom * s, -right * s + bottom * c);
vertexCoordinateArray.addVertex(bottomRight.x + fragments[i].x, bottomRight.y + fragments[i].y);
vertexCoordinateArray.addVertex(-bottomLeft.x + fragments[i].x, -bottomLeft.y + fragments[i].y);
vertexCoordinateArray.addVertex(-bottomRight.x + fragments[i].x, -bottomRight.y + fragments[i].y);
vertexCoordinateArray.addVertex(-bottomRight.x + fragments[i].x, -bottomRight.y + fragments[i].y);
vertexCoordinateArray.addVertex(bottomLeft.x + fragments[i].x, bottomLeft.y + fragments[i].y);
vertexCoordinateArray.addVertex(bottomRight.x + fragments[i].x, bottomRight.y + fragments[i].y);
QOpenGLRect src(fragments[i].sourceLeft * dx, fragments[i].sourceTop * dy,
(fragments[i].sourceLeft + fragments[i].width) * dx,
(fragments[i].sourceTop + fragments[i].height) * dy);
textureCoordinateArray.addVertex(src.right, src.bottom);
textureCoordinateArray.addVertex(src.right, src.top);
textureCoordinateArray.addVertex(src.left, src.top);
textureCoordinateArray.addVertex(src.left, src.top);
textureCoordinateArray.addVertex(src.left, src.bottom);
textureCoordinateArray.addVertex(src.right, src.bottom);
qreal opacity = fragments[i].opacity * q->state()->opacity;
opacityArray << opacity << opacity << opacity << opacity << opacity << opacity;
allOpaque &= (opacity >= 0.99f);
}
funcs.glActiveTexture(GL_TEXTURE0 + QT_IMAGE_TEXTURE_UNIT);
GLuint id = QOpenGLTextureCache::cacheForContext(ctx)->bindTexture(ctx, pixmap);
transferMode(ImageArrayDrawingMode);
bool isBitmap = pixmap.isQBitmap();
bool isOpaque = !isBitmap && (!pixmap.hasAlpha() || (hints & QPainter::OpaqueHint)) && allOpaque;
updateTextureFilter(GL_TEXTURE_2D, GL_CLAMP_TO_EDGE,
q->state()->renderHints & QPainter::SmoothPixmapTransform, id);
// Setup for texture drawing
currentBrush = noBrush;
shaderManager->setSrcPixelType(isBitmap ? QOpenGLEngineShaderManager::PatternSrc
: QOpenGLEngineShaderManager::ImageSrc);
if (prepareForDraw(isOpaque))
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::ImageTexture), QT_IMAGE_TEXTURE_UNIT);
if (isBitmap) {
QColor col = qt_premultiplyColor(q->state()->pen.color(), (GLfloat)q->state()->opacity);
shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::PatternColor), col);
}
glDrawArrays(GL_TRIANGLES, 0, 6 * fragmentCount);
}
bool QOpenGL2PaintEngineEx::begin(QPaintDevice *pdev)
{
Q_D(QOpenGL2PaintEngineEx);
Q_ASSERT(pdev->devType() == QInternal::OpenGL);
d->device = static_cast<QOpenGLPaintDevice*>(pdev);
if (!d->device)
return false;
if (d->device->context() != QOpenGLContext::currentContext()) {
qWarning("QPainter::begin(): QOpenGLPaintDevice's context needs to be current");
return false;
}
d->ctx = QOpenGLContext::currentContext();
d->ctx->d_func()->active_engine = this;
d->funcs.initializeGLFunctions();
for (int i = 0; i < QT_GL_VERTEX_ARRAY_TRACKED_COUNT; ++i)
d->vertexAttributeArraysEnabledState[i] = false;
const QSize sz = d->device->size();
d->width = sz.width();
d->height = sz.height();
d->mode = BrushDrawingMode;
d->brushTextureDirty = true;
d->brushUniformsDirty = true;
d->matrixUniformDirty = true;
d->matrixDirty = true;
d->compositionModeDirty = true;
d->opacityUniformDirty = true;
d->needsSync = true;
d->useSystemClip = !systemClip().isEmpty();
d->currentBrush = QBrush();
d->dirtyStencilRegion = QRect(0, 0, d->width, d->height);
d->stencilClean = true;
d->shaderManager = new QOpenGLEngineShaderManager(d->ctx);
glDisable(GL_STENCIL_TEST);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
#if !defined(QT_OPENGL_ES_2)
glDisable(GL_MULTISAMPLE);
#endif
d->glyphCacheType = QFontEngineGlyphCache::Raster_A8;
#if !defined(QT_OPENGL_ES_2)
d->glyphCacheType = QFontEngineGlyphCache::Raster_RGBMask;
#endif
#if defined(QT_OPENGL_ES_2)
// OpenGL ES can't switch MSAA off, so if the gl paint device is
// multisampled, it's always multisampled.
d->multisamplingAlwaysEnabled = d->device->context()->format().samples() > 1;
#else
d->multisamplingAlwaysEnabled = false;
#endif
return true;
}
bool QOpenGL2PaintEngineEx::end()
{
Q_D(QOpenGL2PaintEngineEx);
QOpenGLContext *ctx = d->ctx;
d->funcs.glUseProgram(0);
d->transferMode(BrushDrawingMode);
ctx->d_func()->active_engine = 0;
d->resetGLState();
delete d->shaderManager;
d->shaderManager = 0;
d->currentBrush = QBrush();
#ifdef QT_OPENGL_CACHE_AS_VBOS
if (!d->unusedVBOSToClean.isEmpty()) {
glDeleteBuffers(d->unusedVBOSToClean.size(), d->unusedVBOSToClean.constData());
d->unusedVBOSToClean.clear();
}
if (!d->unusedIBOSToClean.isEmpty()) {
glDeleteBuffers(d->unusedIBOSToClean.size(), d->unusedIBOSToClean.constData());
d->unusedIBOSToClean.clear();
}
#endif
return false;
}
void QOpenGL2PaintEngineEx::ensureActive()
{
Q_D(QOpenGL2PaintEngineEx);
QOpenGLContext *ctx = d->ctx;
if (isActive() && ctx->d_func()->active_engine != this) {
ctx->d_func()->active_engine = this;
d->needsSync = true;
}
if (d->needsSync) {
d->transferMode(BrushDrawingMode);
glViewport(0, 0, d->width, d->height);
d->needsSync = false;
d->lastMaskTextureUsed = 0;
d->shaderManager->setDirty();
d->syncGlState();
for (int i = 0; i < 3; ++i)
d->vertexAttribPointers[i] = (GLfloat*)-1; // Assume the pointers are clobbered
setState(state());
}
}
void QOpenGL2PaintEngineExPrivate::updateClipScissorTest()
{
Q_Q(QOpenGL2PaintEngineEx);
if (q->state()->clipTestEnabled) {
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_LEQUAL, q->state()->currentClip, ~GL_STENCIL_HIGH_BIT);
} else {
glDisable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0, 0xff);
}
#ifdef QT_GL_NO_SCISSOR_TEST
currentScissorBounds = QRect(0, 0, width, height);
#else
QRect bounds = q->state()->rectangleClip;
if (!q->state()->clipEnabled) {
if (useSystemClip)
bounds = systemClip.boundingRect();
else
bounds = QRect(0, 0, width, height);
} else {
if (useSystemClip)
bounds = bounds.intersected(systemClip.boundingRect());
else
bounds = bounds.intersected(QRect(0, 0, width, height));
}
currentScissorBounds = bounds;
if (bounds == QRect(0, 0, width, height)) {
glDisable(GL_SCISSOR_TEST);
} else {
glEnable(GL_SCISSOR_TEST);
setScissor(bounds);
}
#endif
}
void QOpenGL2PaintEngineExPrivate::setScissor(const QRect &rect)
{
const int left = rect.left();
const int width = rect.width();
int bottom = height - (rect.top() + rect.height());
if (device->paintFlipped()) {
bottom = rect.top();
}
const int height = rect.height();
glScissor(left, bottom, width, height);
}
void QOpenGL2PaintEngineEx::clipEnabledChanged()
{
Q_D(QOpenGL2PaintEngineEx);
state()->clipChanged = true;
if (painter()->hasClipping())
d->regenerateClip();
else
d->systemStateChanged();
}
void QOpenGL2PaintEngineExPrivate::clearClip(uint value)
{
dirtyStencilRegion -= currentScissorBounds;
glStencilMask(0xff);
glClearStencil(value);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilMask(0x0);
q->state()->needsClipBufferClear = false;
}
void QOpenGL2PaintEngineExPrivate::writeClip(const QVectorPath &path, uint value)
{
transferMode(BrushDrawingMode);
if (snapToPixelGrid) {
snapToPixelGrid = false;
matrixDirty = true;
}
if (matrixDirty)
updateMatrix();
stencilClean = false;
const bool singlePass = !path.hasWindingFill()
&& (((q->state()->currentClip == maxClip - 1) && q->state()->clipTestEnabled)
|| q->state()->needsClipBufferClear);
const uint referenceClipValue = q->state()->needsClipBufferClear ? 1 : q->state()->currentClip;
if (q->state()->needsClipBufferClear)
clearClip(1);
if (path.isEmpty()) {
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_LEQUAL, value, ~GL_STENCIL_HIGH_BIT);
return;
}
if (q->state()->clipTestEnabled)
glStencilFunc(GL_LEQUAL, q->state()->currentClip, ~GL_STENCIL_HIGH_BIT);
else
glStencilFunc(GL_ALWAYS, 0, 0xff);
vertexCoordinateArray.clear();
vertexCoordinateArray.addPath(path, inverseScale, false);
if (!singlePass)
fillStencilWithVertexArray(vertexCoordinateArray, path.hasWindingFill());
glColorMask(false, false, false, false);
glEnable(GL_STENCIL_TEST);
useSimpleShader();
if (singlePass) {
// Under these conditions we can set the new stencil value in a single
// pass, by using the current value and the "new value" as the toggles
glStencilFunc(GL_LEQUAL, referenceClipValue, ~GL_STENCIL_HIGH_BIT);
glStencilOp(GL_KEEP, GL_INVERT, GL_INVERT);
glStencilMask(value ^ referenceClipValue);
drawVertexArrays(vertexCoordinateArray, GL_TRIANGLE_FAN);
} else {
glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE);
glStencilMask(0xff);
if (!q->state()->clipTestEnabled && path.hasWindingFill()) {
// Pass when any clip bit is set, set high bit
glStencilFunc(GL_NOTEQUAL, GL_STENCIL_HIGH_BIT, ~GL_STENCIL_HIGH_BIT);
composite(vertexCoordinateArray.boundingRect());
}
// Pass when high bit is set, replace stencil value with new clip value
glStencilFunc(GL_NOTEQUAL, value, GL_STENCIL_HIGH_BIT);
composite(vertexCoordinateArray.boundingRect());
}
glStencilFunc(GL_LEQUAL, value, ~GL_STENCIL_HIGH_BIT);
glStencilMask(0);
glColorMask(true, true, true, true);
}
void QOpenGL2PaintEngineEx::clip(const QVectorPath &path, Qt::ClipOperation op)
{
// qDebug("QOpenGL2PaintEngineEx::clip()");
Q_D(QOpenGL2PaintEngineEx);
state()->clipChanged = true;
ensureActive();
if (op == Qt::ReplaceClip) {
op = Qt::IntersectClip;
if (d->hasClipOperations()) {
d->systemStateChanged();
state()->canRestoreClip = false;
}
}
#ifndef QT_GL_NO_SCISSOR_TEST
if (!path.isEmpty() && op == Qt::IntersectClip && (path.shape() == QVectorPath::RectangleHint)) {
const QPointF* const points = reinterpret_cast<const QPointF*>(path.points());
QRectF rect(points[0], points[2]);
if (state()->matrix.type() <= QTransform::TxScale
|| (state()->matrix.type() == QTransform::TxRotate
&& qFuzzyIsNull(state()->matrix.m11())
&& qFuzzyIsNull(state()->matrix.m22())))
{
state()->rectangleClip = state()->rectangleClip.intersected(state()->matrix.mapRect(rect).toRect());
d->updateClipScissorTest();
return;
}
}
#endif
const QRect pathRect = state()->matrix.mapRect(path.controlPointRect()).toAlignedRect();
switch (op) {
case Qt::NoClip:
if (d->useSystemClip) {
state()->clipTestEnabled = true;
state()->currentClip = 1;
} else {
state()->clipTestEnabled = false;
}
state()->rectangleClip = QRect(0, 0, d->width, d->height);
state()->canRestoreClip = false;
d->updateClipScissorTest();
break;
case Qt::IntersectClip:
state()->rectangleClip = state()->rectangleClip.intersected(pathRect);
d->updateClipScissorTest();
d->resetClipIfNeeded();
++d->maxClip;
d->writeClip(path, d->maxClip);
state()->currentClip = d->maxClip;
state()->clipTestEnabled = true;
break;
default:
break;
}
}
void QOpenGL2PaintEngineExPrivate::regenerateClip()
{
systemStateChanged();
replayClipOperations();
}
void QOpenGL2PaintEngineExPrivate::systemStateChanged()
{
Q_Q(QOpenGL2PaintEngineEx);
q->state()->clipChanged = true;
if (systemClip.isEmpty()) {
useSystemClip = false;
} else {
if (q->paintDevice()->devType() == QInternal::Widget && currentClipDevice) {
//QWidgetPrivate *widgetPrivate = qt_widget_private(static_cast<QWidget *>(currentClipDevice)->window());
//useSystemClip = widgetPrivate->extra && widgetPrivate->extra->inRenderWithPainter;
useSystemClip = true;
} else {
useSystemClip = true;
}
}
q->state()->clipTestEnabled = false;
q->state()->needsClipBufferClear = true;
q->state()->currentClip = 1;
maxClip = 1;
q->state()->rectangleClip = useSystemClip ? systemClip.boundingRect() : QRect(0, 0, width, height);
updateClipScissorTest();
if (systemClip.rectCount() == 1) {
if (systemClip.boundingRect() == QRect(0, 0, width, height))
useSystemClip = false;
#ifndef QT_GL_NO_SCISSOR_TEST
// scissoring takes care of the system clip
return;
#endif
}
if (useSystemClip) {
clearClip(0);
QPainterPath path;
path.addRegion(systemClip);
q->state()->currentClip = 0;
writeClip(qtVectorPathForPath(q->state()->matrix.inverted().map(path)), 1);
q->state()->currentClip = 1;
q->state()->clipTestEnabled = true;
}
}
void QOpenGL2PaintEngineEx::setState(QPainterState *new_state)
{
// qDebug("QOpenGL2PaintEngineEx::setState()");
Q_D(QOpenGL2PaintEngineEx);
QOpenGL2PaintEngineState *s = static_cast<QOpenGL2PaintEngineState *>(new_state);
QOpenGL2PaintEngineState *old_state = state();
QPaintEngineEx::setState(s);
if (s->isNew) {
// Newly created state object. The call to setState()
// will either be followed by a call to begin(), or we are
// setting the state as part of a save().
s->isNew = false;
return;
}
// Setting the state as part of a restore().
if (old_state == s || old_state->renderHintsChanged)
renderHintsChanged();
if (old_state == s || old_state->matrixChanged)
d->matrixDirty = true;
if (old_state == s || old_state->compositionModeChanged)
d->compositionModeDirty = true;
if (old_state == s || old_state->opacityChanged)
d->opacityUniformDirty = true;
if (old_state == s || old_state->clipChanged) {
if (old_state && old_state != s && old_state->canRestoreClip) {
d->updateClipScissorTest();
glDepthFunc(GL_LEQUAL);
} else {
d->regenerateClip();
}
}
}
QPainterState *QOpenGL2PaintEngineEx::createState(QPainterState *orig) const
{
if (orig)
const_cast<QOpenGL2PaintEngineEx *>(this)->ensureActive();
QOpenGL2PaintEngineState *s;
if (!orig)
s = new QOpenGL2PaintEngineState();
else
s = new QOpenGL2PaintEngineState(*static_cast<QOpenGL2PaintEngineState *>(orig));
s->matrixChanged = false;
s->compositionModeChanged = false;
s->opacityChanged = false;
s->renderHintsChanged = false;
s->clipChanged = false;
return s;
}
QOpenGL2PaintEngineState::QOpenGL2PaintEngineState(QOpenGL2PaintEngineState &other)
: QPainterState(other)
{
isNew = true;
needsClipBufferClear = other.needsClipBufferClear;
clipTestEnabled = other.clipTestEnabled;
currentClip = other.currentClip;
canRestoreClip = other.canRestoreClip;
rectangleClip = other.rectangleClip;
}
QOpenGL2PaintEngineState::QOpenGL2PaintEngineState()
{
isNew = true;
needsClipBufferClear = true;
clipTestEnabled = false;
canRestoreClip = true;
}
QOpenGL2PaintEngineState::~QOpenGL2PaintEngineState()
{
}
void QOpenGL2PaintEngineExPrivate::setVertexAttribArrayEnabled(int arrayIndex, bool enabled)
{
Q_ASSERT(arrayIndex < QT_GL_VERTEX_ARRAY_TRACKED_COUNT);
if (vertexAttributeArraysEnabledState[arrayIndex] && !enabled)
funcs.glDisableVertexAttribArray(arrayIndex);
if (!vertexAttributeArraysEnabledState[arrayIndex] && enabled)
funcs.glEnableVertexAttribArray(arrayIndex);
vertexAttributeArraysEnabledState[arrayIndex] = enabled;
}
void QOpenGL2PaintEngineExPrivate::syncGlState()
{
for (int i = 0; i < QT_GL_VERTEX_ARRAY_TRACKED_COUNT; ++i) {
if (vertexAttributeArraysEnabledState[i])
funcs.glEnableVertexAttribArray(i);
else
funcs.glDisableVertexAttribArray(i);
}
}
QT_END_NAMESPACE