Only (straightforwardly) implementable with modern APIs, and
only really exists to handle special platform cases, such as
when a video framework gives us a D3D texture array with
D3D11_BIND_DECODER | D3D11_BIND_SHADER_RESOURCE
which is only possible to use as a shader resource if the SRV
selects a single array layer.
Has no effect on the normal usage of texture arrays, where all
array layers are exposed, and it is the shader that selects the
layer when sampling or loading via the sampler2DArray. That
continues to be the standard way to work with texture arrays.
Change-Id: I0a656b605da21f50239b38abb83067e0208c1dbe
Reviewed-by: Piotr Srebrny <piotr.srebrny@qt.io>
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
Multiple tests use qt_internal_add_resource that copies the
functionality that is already implemented inside the
qt_internal_add_test function. Simplify these test by replacing
the qt_internal_add_resource call with the new BUILTIN_TESTDATA
option.
Change-Id: I18475b817d6f87264f0de53817d6c26c5ccab4e2
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
Raster pipeline is not supported on webOS OSE: trying to use it causes
an exit(1).
Fixes: QTBUG-100654
Pick-to: 6.3
Change-Id: I00325fc1330a2d0d4abfdee054343ecfac767309
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
There is a TODO for this in Qt Quick from the 6.0 times. To decide
upfront if Metal can be expected to function, or if a fallback to
OpenGL needs to be triggered (especially important with macOS virtual
machines, where, unlike any real macOS system, Metal may not be
present at all), the scenegraph calls create() and then drops the
result. The idea to make this less wasteful was back then to add a
dedicated probing function which can, possibly, perform the checks in
a more lightweight manner than full initialization. Implement this
now, focusing on Metal.
Brought to attention by QTBUG-100441: printing warnings about not
having an MTLDevice is confusing in a Metal-less macOS VM, because it
is not an actual error, only part of the probing at scenegraph
initialization. We can now avoid printing confusing warnings there.
Change-Id: Ie52c36af9224bedc3f5e4c23edb486d961c9f216
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
This is an issue for QQuickWindow in practice, although it is not hit
by our current tests.
Pick-to: 6.3
Change-Id: Ia73704c1af6a82b2689ce7b844d3b0eb9a17ec18
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
Mainly because we do have legacy code in the Qt 5 graphical effects that
tries to dynamically determine the max number of varyings. Make it
easier to port such code.
Change-Id: I846cab2c2fe7b4cd473b5ced0146ca36f1c8169b
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
Add some sort of autotest for both RGBA16F and the new RGB10A2. The
latter is introduced particularly because ideally we should have a
texture format that corresponds to the D3D/Vulkan swapchain color
buffer format with HDR10.
Change-Id: I1e1bbb7c7e32cb3db89275900811c0bcaeac39d6
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
As these are QList and QHash. All existing usages are based on this
anyway, no value in being able to indicate "not available" - an empty
container fulfills the same role.
Change-Id: I8059025fa7a4acb6fc674cd98b16fcafa19ed85d
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
For Direct 3D, Metal, and Vulkan this is natively supported. (and
makes no difference in particular for D3D and Metal because they do
not have the legacy combined image sampler concept anyways)
With OpenGL it will work too, but this relies on SPIR-Cross magic and
is still using a combined sampler (e.g. a sampler2D) in the GLSL
shader. The GL backend walks back and forth in the mapping tables from
the shader baker in order to make this work, which is presumably
slightly more expensive than combined image samplers.
Do note that combined image samplers (i.e. sampler2D in the shader and
QRhiShaderResourceBinding::sampledTexture() in code) continue to be
the primary, recommended way for any user of the rhi for the time
being.
Change-Id: I194721bc657b1ffbcc1bb79e6eadebe569a25087
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
The system we inherited from the original Qt 5.14 introduction of QRhi
is a text stream based solution where resource creation and frame
timings are sent in a comma-separated format to a QIODevice.
This, while useful to get insights about the number of resources at a
given time, is not actively helpful. The frameworks built on top (Qt
Quick, Qt Quick 3D) are expected to provide solutions for logging
timings in a different way (e.g. via the QML Profiler). Similarly,
tracking active resources and generating statistics from that is
better handled on a higher level.
The unique bits, such as the Vulkan memory allocator statistics and
the GPU frame timestamps, are converted into APIs in QRhi. This way a
user of QRhi can query it at any time and do whatever it sees fit with
the data.
When it comes to the GPU timestamps, that has a somewhat limited value
due to the heavy asynchronousness, hence the callback based
API. Nonetheless, this is still useful since it is the only means of
reporting some frame timing data (an approx. elapsed milliseconds for
a frame) from the GPU side.
Change-Id: I67cd58b81aaa7e343c11731f9aa5b4804c2a1823
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
Adds the following in a QShader/QShaderDescription:
- a list of separate images
- a list of separate samplers
- a list of "combined_sampler_uniform_name" -> [
separate_texture_binding, separate_sampler_binding ] mappings
(relevant for GLSL only)
On the QShader (and qsb/QShaderBaker) level not having separate image
(texture) and sampler objects exposed in the reflection info is not
entirely future proof. Right now we benefit strongly from the fact
that Vulkan/SPIR-V supports both combined and separate
images/samplers, while for HLSL and MSL SPIRV-Cross translates
combined image samplers to separate texture and sampler objects, but
it is not given that relying on combined image samplers will always be
possible in the long run; it is mostly a legacy OpenGL thing that just
happens to be supported in Vulkan/SPIR-V due to some benefits with
certain implementations/hw, but is not something present in any newer
APIs.
In addition, before this patch, attempting to run a shader with
separate textures and samplers through qsb will just fail for GLSL,
even though SPIRV-Cross does have the ability to generate a "fake"
combined sampler for each separate texture+sampler combination. Take
this into use. This also involves generating and exposing a
combined_name->[separate_texture_binding,separate_sampler_binding]
mapping table for GLSL, not unlike we have the native binding map for
HLSL and MSL. A user (such as, the GL backend of QRhi) would then use
this table to recognize what user-provided texture+sampler binding
point numbers correspond to which auto-generated sampler2Ds in the GL
program.
Take the following example:
layout(binding = 1) uniform texture2D sepTex;
layout(binding = 2) uniform sampler sepSampler;
layout(binding = 3) uniform sampler sepSampler2;
Inn the reflection info (QShaderDescription) this (assuming a
corresponding qtshadertools patch in place) now gives one entry in
separateImages() and two in separateSamplers(). Assuming sepTex is
used both with sepSampler and sepSampler2, the GLSL output and mapping
table from QShaderBaker will have two auto-generated sampler2Ds (and
no 'texture2D' or 'sampler').
One immediate benefit is that it is now possible to create a shader
that relies only on separate images and samplers, feed it into qsb,
generate all the possible targets, and then also feed the SPIR-V
binary into a tool or library such as Tint (e.g. to generate WGSL)
that canot deal with combined image samplers.
Change-Id: I9b19847ea5854837b45d3a23edc788c48502aa15
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Unlike the shader resource binding lists that automatically recognize
in setShaderResources() when a referenced QRhiResource has been rebuilt
in the meantime (create() was called i.e. there may be completely
different native objects underneath), QRhiTextureRenderTarget has no
such thing. This leads to an asymmetric API and requires also rebuilding
the rt whenever an attachment is rebuilt:
rt = rhi->newTextureRenderTarget({ { texture } })
rt->create()
cb->beginPass(rt, ...)
texture->setPixelSize(...)
texture->create()
rt->create() // this should not be needed
cb->beginPass(rt, ...)
Avoid having to do that second rt->create().
Change-Id: If14eaa7aac3530950498bbdf834324d0741a7c4d
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
This time exercising series of buffer updates and texture uploads
within proper, on-screen frames. (particularly interesting for dynamic
buffers in case the double (or more) buffering and having multiple
frames in flight involves special bookkeeping for these - using
'offscreen' frames like in other test cases does not necessarily
exercise all of this)
Change-Id: Id470919d27037359a1f0346a50a2a0e3966f5cd2
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Arrays of textures have always been supported, but we will encounter
cases when we need to work with texture array objects as well.
Note that currently it is not possible to expose only a slice of the
array to the shader, because there is no dedicated API in the SRB,
and thus the same SRV/UAV (or equivalent) is used always, capturing
all elements in the array. Therefore in the shader the last component
of P in texture() is in range 0..array_size-1.
Change-Id: I5a032ed016aeefbbcd743d5bfb9fbc49ba00a1fa
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
QVLA itself is non-relocatable due to self references. (ptr pointing
to array[Prealloc] as long as capacity < Prealloc)
Seems we shot ourselves in the foot in multiple places with this.
Pick-to: 6.2 6.2.0
Fixes: QTBUG-96619
Change-Id: I57a2ce539b671326cd352dbe57a1f3d4c46a6456
Reviewed-by: Tobias Koenig <tobias.koenig@kdab.com>
Reviewed-by: Lars Knoll <lars.knoll@qt.io>
...when starting a render/compute pass.
This matches most other backends in fact, the Vulkan backend has
just certain historical differences, and is complicated due to the
fact that it has the option of using secondary command buffers for
passes that specify ExternalContents (to support the case of wanting
to issue direct Vulkan commands in a code block surrounded by calls
to beginExternal and endExternal).
Not resetting state such as the currently bound index buffer when
starting a pass quickly blows up when two consecutive render passes
use different settings, one targeting the primary while the other
the secondary command buffer. Instead of further complicating the
logic, just reset the relevant state in every begin(Compute)Pass.
Comes with an autotest that is crafted so that it manages to
downright crash when run with Vulkan without the fix to the backend.
Fixes: QTBUG-89765
Pick-to: 6.2
Change-Id: I8dc47bd179c17d45a0556ec31200dc90c4b67ca5
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Follow what has been done for QRhiShaderResourceBindings. Have a way
to retrieve an opaque blob (that just happens to be a list of integers)
so that a simple == comparison can be used to determine compatibility
even when the objects from which the blob was retrieved are no longer
alive.
The contract is the following:
bool a = rp1->isCompatible(rp2);
bool b = rp1->serializedFormat() == rp2->serializedFormat();
assert(a == b);
Pick-to: 6.2
Change-Id: I45e7d05eeb6dfa2b2de474da0a0644912aaf174a
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
Be idiomatic and return the output iterator one past the last element.
Otherwise passing in a plain pointer (as exercised by the autotest now)
fails to function because we write over the same 4 elements again and
again for each binding.
Pick-to: 6.2
Change-Id: If74463fa5140ffa2b1d5be97b71868848ad46614
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
...by the Qt Quick renderer, for example.
A typical Qt Quick material binding set serializes to 8 uints. This
would not demand a container like QVector. However, being implicitly
shared is essential here due to the intended usage (query the
serialized blob, put it into a cache key, hash it, compare it, all
without any copying and new allocs; we can afford an extra alloc
upon each srb construction, but don't want more afterwards in the
rendering engines)
Also make it clear in the pipeline docs that the optimization Qt Quick
is (soon going to be) doing is legal. (the srb ref in the pipeline can
be dead and dangling as long as every call to setShaderResources()
specifies a layout-compatible alternative)
Pick-to: 6.2
Change-Id: I97efbea1fa3516b10c9832adbab0a21b7bc0845d
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
One is a bad application or library in this case, but nonetheless
we should handle this more gracefully then just crashing due to
the QRhi already having been destroyed. Mainly because in Qt 5 one
could get away with the same: releasing OpenGL objects underneath,
for example, a QSGPlainTexture with no (or wrong) GL context did
not generate any user visible fatal errors. So we should not crash
in Qt 6 either with these code bases.
In debug builds or when QT_RHI_LEAK_CHECK is set, one will get the
unreleased resources warning printed in Qt 6, which is a step
forward compared to Qt 5. So there is still some indication that
something is badly designed, even if the application survives.
Task-number: QTBUG-95394
Pick-to: 6.2
Change-Id: I944f4f425ff126e7363a82aff926b280ccf1dfc3
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Supported on OpenGL (and ES) 3.0+ and everywhere else.
Can also be a render target, targeting a single slice at a time.
Can be mipmapped, cannot be multisample.
Reading back a given slice from a 3D texture is left as a future
exercise, for now it is documented to be not supported.
Upload is going to be limited to one slice in one upload entry,
just like we specify one face or one miplevel for cubemap and
mipmapped textures.
This also involves some welcome hardening of how texture subresources
are described internally: as we no longer can count on a layer index
between 0..5 (as is the case with cubemaps), simply arrays with
MAX_LAYER==6 are no longer sufficient. Switch to sufficiently dynamic
data structures where applicable.
On Vulkan rendering to a slice needs Vulkan 1.1 (and 1.1 enabled on the
VkInstance).
Task-number: QTBUG-89703
Change-Id: Ide6c20124ec9201d94ffc339dd479cd1ece777b0
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Normally we only allow creating wrappers for texture objects. These
can then be used with a QRhiTextureRenderTarget to allow rendering into
an externally created texture.
With OpenGL (ES), there are additional, special cases, especially on
embedded. Consider EGLImages for example. An EGLImageKHR can be bound to
a renderbuffer object (glEGLImageTargetRenderbufferStorageOES), which
can then be associated with a framebuffer object to allow rendering into
the external buffer represented by the EGLImage. To implement the same
via QRhi one needs a way to create a wrapping QRhiRenderBuffer for the
native OpenGL renderbuffer object.
Here we add a createFrom() to QRhiRenderBuffer, while providing a dummy,
default implementation. The only real implementation is in the OpenGL
backend, which simply takes a renderbuffer id, without taking ownership.
Task-number: QTBUG-92116
Change-Id: I4e68e665fb35a7d7803b7780db901c8bed5740e2
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Those tests don't fail anymore and show in CI as BPASS, so we
can safely, hopefully, unblock them
Task-number: QTBUG-87429
Fixes: QTBUG-68974
Fixes: QTBUG-69166
Fixes: QTBUG-87403
Fixes: QTBUG-87411
Fixes: QTBUG-69083
Fixes: QTBUG-69084
Fixes: QTBUG-87426
Pick-to: 6.1
Change-Id: I831b955116c0f465319b9c5fc726dd98804d1c00
Reviewed-by: Edward Welbourne <edward.welbourne@qt.io>
Reviewed-by: Volker Hilsheimer <volker.hilsheimer@qt.io>
Following patterns from the other backends is insufficient with OpenGL
because we do not use real uniform buffers. There is currently a
possibility that a shader program will be bound without following it
with setting uniforms. Correct this by having a second level of tracking
of the associated srb object in the pipelines.
Pick-to: 6.0 6.1
Fixes: QTBUG-91630
Change-Id: I74a012daade826dd22c436bde06381c1233bad11
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Reviewed-by: Eirik Aavitsland <eirik.aavitsland@qt.io>
Add QRhi APIs to retrieve and reload the contents of the "pipeline
cache".
The only API where there is a true pipeline cache is object is Vulkan
(VkPipelineCache). For OpenGL, the other backend where we support this,
it is simulated with program binaries. The Qt 5 style OpenGL program
binary disk cache continues to work like before, but one has now the
option to do things in a more modern, graphics API agnostic way, that
leads to generating a single blob instead of a large set of files in
some system location, allowing easier "pre-baking" of the cache content.
It is expected that Qt Quick exposes the two new functions in form
if QSG_RHI_ environment variables, thus allowing easy testing and
cache file generation.
As an example for the performance improvements this can give, consider
Vulkan, where we do not have any existing persistent caching mechanism
in place:
Running BenchmarkDemoQt6.exe --scene flythrough --mode demo creates 18
QRhiGraphicsPipeline objects from Qt Quick and Qt Quick 3D.
The total time spent in QRhiGraphicsPipeline::create() during application
startup for these 18 pipelines is 35-40 ms on a given Windows (NVIDIA)
system.
When exporting the pipeline cache contents to a file, and then, in a
subsequent run, reloading the cache contents, this is reduced to 5-7 ms
on the same system, meaning we get a 6-7x improvement.
The generated data is always specific to a given Qt version, RHI
backend, graphics device, and driver version. Much of the implementation
consists of adding and verifying the appropriate header to the blobs
retrieved from the driver, to allow gracefully ignoring data that was
generated with a device or driver that differs from the one used at
run time. This should provide robustness, even if the Vulkan or OpenGL
implementation is for some reason not prepared to identity and reject
incompatible cache/program blobs.
Fixes: QTBUG-90398
Change-Id: I67b197f393562434f372c7b7377f638abab85cb3
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Instead, have a static function in QRhiVulkanInitParams then Qt Quick
and anyone else who creates a QVulkanInstance that is then used in
combination with QRhi can query.
Change-Id: I046e0d84541fc00f5487a7527c97be262221527f
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
From QRhi's perspective this consists of two things:
- A shader with samplerExternalOES in it cannot go through the standard
pipeline. Rather, a QShader with suitable GLSL code in it has to be
constructed manually. As this is something useful as an autotest
anyway, add a test case to the qshader autotest that demonstrates
this.
- When it comes to correctly calling glBindTexture, add a QRhiTexture
flag. The expectation is that an OpenGL-only client sets this in
combination with QRhiTexture::createFrom(), thus wrapping an existing
texture that then gets bound to the GL_TEXTURE_EXTERNAL_OES target
instead of our usual GL_TEXTURE_2D.
For completeness we also add a SamplerExternalOES variable type to
QShaderDescription, but the sampler type is not actually used by the
QRhi OpenGL backend, as it is the QRhiTexture that defines the
texture target.
Change-Id: I36b52325deb3703b59186ee3d726d0c3015bfc4b
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
...to the extent it is sensible. We have to make compromises still,
meaning some fields will only be applicable with certain APIs.
Most of this is already shown upon QRhi::create() as info debug
prints, when enabled. Now expose it all through the QRhi API as
well.
This is useful for printing in qtdiag, and, while it should be
avoided as much as possible, to make decisions about disabling
3D rendering features depending on the driver and GPU in use.
Change-Id: Iebe1e192965c928b82a094d1c7c50ddf4b38b9a2
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Those serve no purpose anymore, now that the .pro files are gone.
Task-number: QTBUG-88742
Change-Id: I39943327b8c9871785b58e9973e4e7602371793e
Reviewed-by: Cristian Adam <cristian.adam@qt.io>
Reviewed-by: Edward Welbourne <edward.welbourne@qt.io>
Reviewed-by: Kai Koehne <kai.koehne@qt.io>
Remove the qmake project files for most of Qt.
Leave the qmake project files for examples, because we still test those
in the CI to ensure qmake does not regress.
Also leave the qmake project files for utils and other minor parts that
lack CMake project files.
Task-number: QTBUG-88742
Change-Id: I6cdf059e6204816f617f9624f3ea9822703f73cc
Reviewed-by: Edward Welbourne <edward.welbourne@qt.io>
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Kai Koehne <kai.koehne@qt.io>
Complete search and replace of QtTest and QtTest/QtTest with QTest, as
QtTest includes the whole module. Replace all such instances with
correct header includes. See Jira task for more discussion.
Fixes: QTBUG-88831
Change-Id: I981cfae18a1cabcabcabee376016b086d9d01f44
Pick-to: 6.0
Reviewed-by: Volker Hilsheimer <volker.hilsheimer@qt.io>
This patch disables four failing unit tests when executed with the
offscreen backend.
Change-Id: Ie67341b886984e6de19cd8dd8a8a237a620a1b7a
Reviewed-by: Fabian Kosmale <fabian.kosmale@qt.io>
Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
We want to re-enable Android tests in QTQAINFRA-3867. However,
many tests are failing already preventing that from happening.
QTBUG-87025 is currently keeping track (links) to all of those
failing tests.
The current proposal is to hide those failing tests, and enable
Android test running in COIN for other tests. After, that try
to fix them one by one, and at the same time we can make sure
no more failing tests go unnoticed.
Task-number: QTBUG-87025
Change-Id: Ic1fe9fdd167cbcfd99efce9a09c69c344a36bbe4
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
The original restriction to UniformBuffer was due to the GL backend
where there is no GL buffer object for QRhiBuffers with usage
UniformBuffer. However, we can still implement this for cases when
there is a true GL buffer object underneath. With other backends it
should all work as-is already.
This becomes useful when one has buffers with usage Vertex that need
full updates every frame. (f.ex. instance data)
Unfortunately this involves renaming the function. But while at it, add
an autotest case as well.
Change-Id: Iff59e4509a8bae06654cc92fe8428bd79eb012fb
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Reports on the Web have it that there's nothing guaranteeing a
driver does any actual freeing of resources then doing
vkFreeCommandBuffer for a command buffer from a command pool that
does not have VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, thus
leading to continuously growing resource usage with our current
allocate/free pattern. It could be that this is the source of out
of memory problems we are seeing on some Android devices.
Instead of just going straight for said command pool flag and doing
ResetCommandBuffer for the command buffers individually, take one
step further and use per-slot (slot being 0 or 1 if QVK_FRAMES_IN_FLIGHT
is 2) command pools. The current pool is reset in each
beginFrame/beginOffscreenFrame, moving all allocated command buffers
to the initial state (while other command buffers with the other pool
are not affected).
This may be (while impossible to tell from just guessing based on the
spec) our best approach to command buffer allocation since a Vulkan
implementation can likely just use some simple per pool allocator,
knowing that we never want to free or reset individual command buffers,
but we rather only reset the whole pool at once.
The option of importing an existing VkCommandPool when creating the
QRhi instance is now gone, but there was probably no point in offering
that in the first place.
When it comes to VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT it will
not be set unless releaseCachedResources() (in Qt Quick this is hooked
into QQuickWindow::releaseResources()) was called. What this does in
practice is unknown, but have an option to set it now and then if the
application really wants.
While we are at it, rename secondaryCbs to activeSecondaryCbStack to
indicate what it really is. (it's a stack as each call to
beginExternal() pushes a new one, while each endExternal() pops)
Change-Id: I2e5c1fad26d794e1f56c778e38f750998d706d84
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
ExternalContentsInPass becomes a per-pass flag now. Why is this
beneficial? Because while Qt Quick has no choice for its render
pass, not being able to guess if the application wants to do some
native rendering in there, Quick 3D's render passes, all the ones
that are under Quick3D's control, do not have native rendering
from the application in them, and so using secondary command
buffers with Vulkan is not necessary.
Introduce something similar for compute and OpenGL. By knowing that
none of the resources used in a pass are used with a compute pass
(e.g. because we know that there are no compute passes at all) a small
amount of time can be saved by skipping tracking buffers and textures
because the only purpose of said tracking is to generate barriers that
are relevant only to compute.
Change-Id: I0eceb4774d87803c73a39db527f5707a9f4d75c1
Reviewed-by: Andy Nichols <andy.nichols@qt.io>