scuffed-code/icu4c/source/common/rbbi.cpp

1880 lines
66 KiB
C++
Raw Normal View History

/*
***************************************************************************
* Copyright (C) 1999-2010 International Business Machines Corporation
* and others. All rights reserved.
***************************************************************************
*/
//
// file: rbbi.c Contains the implementation of the rule based break iterator
// runtime engine and the API implementation for
// class RuleBasedBreakIterator
//
#include <typeinfo> // for 'typeid' to work
#include "unicode/utypes.h"
#if !UCONFIG_NO_BREAK_ITERATION
#include "unicode/rbbi.h"
#include "unicode/schriter.h"
#include "unicode/uchriter.h"
#include "unicode/udata.h"
#include "unicode/uclean.h"
#include "rbbidata.h"
#include "rbbirb.h"
#include "cmemory.h"
#include "cstring.h"
#include "umutex.h"
#include "ucln_cmn.h"
#include "brkeng.h"
#include "uassert.h"
#include "uvector.h"
// if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included.
#if U_LOCAL_SERVICE_HOOK
#include "localsvc.h"
#endif
#ifdef RBBI_DEBUG
static UBool fTrace = FALSE;
#endif
U_NAMESPACE_BEGIN
// The state number of the starting state
#define START_STATE 1
// The state-transition value indicating "stop"
#define STOP_STATE 0
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
//=======================================================================
// constructors
//=======================================================================
/**
* Constructs a RuleBasedBreakIterator that uses the already-created
* tables object that is passed in as a parameter.
*/
RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
{
init();
fData = new RBBIDataWrapper(data, status); // status checked in constructor
if (U_FAILURE(status)) {return;}
if(fData == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
/**
* Same as above but does not adopt memory
*/
RuleBasedBreakIterator::RuleBasedBreakIterator(const RBBIDataHeader* data, enum EDontAdopt, UErrorCode &status)
{
init();
fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); // status checked in constructor
if (U_FAILURE(status)) {return;}
if(fData == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
//-------------------------------------------------------------------------------
//
// Constructor from a UDataMemory handle to precompiled break rules
// stored in an ICU data file.
//
//-------------------------------------------------------------------------------
RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
{
init();
fData = new RBBIDataWrapper(udm, status); // status checked in constructor
if (U_FAILURE(status)) {return;}
if(fData == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
//-------------------------------------------------------------------------------
//
// Constructor from a set of rules supplied as a string.
//
//-------------------------------------------------------------------------------
RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules,
UParseError &parseError,
UErrorCode &status)
{
init();
if (U_FAILURE(status)) {return;}
RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
// Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that
// creates and returns a complete RBBI. From here, in a constructor, we
// can't just return the object created by the builder factory, hence
// the assignment of the factory created object to "this".
if (U_SUCCESS(status)) {
*this = *bi;
delete bi;
}
}
//-------------------------------------------------------------------------------
//
// Default Constructor. Create an empty shell that can be set up later.
// Used when creating a RuleBasedBreakIterator from a set
// of rules.
//-------------------------------------------------------------------------------
RuleBasedBreakIterator::RuleBasedBreakIterator() {
init();
}
//-------------------------------------------------------------------------------
//
// Copy constructor. Will produce a break iterator with the same behavior,
// and which iterates over the same text, as the one passed in.
//
//-------------------------------------------------------------------------------
RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
: BreakIterator(other)
{
this->init();
*this = other;
}
/**
* Destructor
*/
RuleBasedBreakIterator::~RuleBasedBreakIterator() {
if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
// fCharIter was adopted from the outside.
delete fCharIter;
}
fCharIter = NULL;
delete fSCharIter;
fCharIter = NULL;
delete fDCharIter;
fDCharIter = NULL;
utext_close(fText);
if (fData != NULL) {
fData->removeReference();
fData = NULL;
}
if (fCachedBreakPositions) {
uprv_free(fCachedBreakPositions);
fCachedBreakPositions = NULL;
}
if (fLanguageBreakEngines) {
delete fLanguageBreakEngines;
fLanguageBreakEngines = NULL;
}
if (fUnhandledBreakEngine) {
delete fUnhandledBreakEngine;
fUnhandledBreakEngine = NULL;
}
}
/**
* Assignment operator. Sets this iterator to have the same behavior,
* and iterate over the same text, as the one passed in.
*/
RuleBasedBreakIterator&
RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
if (this == &that) {
return *this;
}
reset(); // Delete break cache information
fBreakType = that.fBreakType;
if (fLanguageBreakEngines != NULL) {
delete fLanguageBreakEngines;
fLanguageBreakEngines = NULL; // Just rebuild for now
}
// TODO: clone fLanguageBreakEngines from "that"
UErrorCode status = U_ZERO_ERROR;
fText = utext_clone(fText, that.fText, FALSE, TRUE, &status);
if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
delete fCharIter;
}
fCharIter = NULL;
if (that.fCharIter != NULL ) {
// This is a little bit tricky - it will intially appear that
// this->fCharIter is adopted, even if that->fCharIter was
// not adopted. That's ok.
fCharIter = that.fCharIter->clone();
}
if (fData != NULL) {
fData->removeReference();
fData = NULL;
}
if (that.fData != NULL) {
fData = that.fData->addReference();
}
return *this;
}
//-----------------------------------------------------------------------------
//
// init() Shared initialization routine. Used by all the constructors.
// Initializes all fields, leaving the object in a consistent state.
//
//-----------------------------------------------------------------------------
void RuleBasedBreakIterator::init() {
UErrorCode status = U_ZERO_ERROR;
fBufferClone = FALSE;
fText = utext_openUChars(NULL, NULL, 0, &status);
fCharIter = NULL;
fSCharIter = NULL;
fDCharIter = NULL;
fData = NULL;
fLastRuleStatusIndex = 0;
fLastStatusIndexValid = TRUE;
fDictionaryCharCount = 0;
fBreakType = UBRK_WORD; // Defaulting BreakType to word gives reasonable
// dictionary behavior for Break Iterators that are
// built from rules. Even better would be the ability to
// declare the type in the rules.
fCachedBreakPositions = NULL;
fLanguageBreakEngines = NULL;
fUnhandledBreakEngine = NULL;
fNumCachedBreakPositions = 0;
fPositionInCache = 0;
#ifdef RBBI_DEBUG
static UBool debugInitDone = FALSE;
if (debugInitDone == FALSE) {
char *debugEnv = getenv("U_RBBIDEBUG");
if (debugEnv && uprv_strstr(debugEnv, "trace")) {
fTrace = TRUE;
}
debugInitDone = TRUE;
}
#endif
}
//-----------------------------------------------------------------------------
//
// clone - Returns a newly-constructed RuleBasedBreakIterator with the same
// behavior, and iterating over the same text, as this one.
// Virtual function: does the right thing with subclasses.
//
//-----------------------------------------------------------------------------
BreakIterator*
RuleBasedBreakIterator::clone(void) const {
return new RuleBasedBreakIterator(*this);
}
/**
* Equality operator. Returns TRUE if both BreakIterators are of the
* same class, have the same behavior, and iterate over the same text.
*/
UBool
RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
if (typeid(*this) != typeid(that)) {
return FALSE;
}
const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
if (!utext_equals(fText, that2.fText)) {
// The two break iterators are operating on different text,
// or have a different interation position.
return FALSE;
};
// TODO: need a check for when in a dictionary region at different offsets.
if (that2.fData == fData ||
(fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
// The two break iterators are using the same rules.
return TRUE;
}
return FALSE;
}
/**
* Compute a hash code for this BreakIterator
* @return A hash code
*/
int32_t
RuleBasedBreakIterator::hashCode(void) const {
int32_t hash = 0;
if (fData != NULL) {
hash = fData->hashCode();
}
return hash;
}
void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
reset();
fText = utext_clone(fText, ut, FALSE, TRUE, &status);
// Set up a dummy CharacterIterator to be returned if anyone
// calls getText(). With input from UText, there is no reasonable
// way to return a characterIterator over the actual input text.
// Return one over an empty string instead - this is the closest
// we can come to signaling a failure.
// (GetText() is obsolete, this failure is sort of OK)
if (fDCharIter == NULL) {
static const UChar c = 0;
fDCharIter = new UCharCharacterIterator(&c, 0);
if (fDCharIter == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
// existing fCharIter was adopted from the outside. Delete it now.
delete fCharIter;
}
fCharIter = fDCharIter;
this->first();
}
UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status);
return result;
}
/**
* Returns the description used to create this iterator
*/
const UnicodeString&
RuleBasedBreakIterator::getRules() const {
if (fData != NULL) {
return fData->getRuleSourceString();
} else {
static const UnicodeString *s;
if (s == NULL) {
// TODO: something more elegant here.
// perhaps API should return the string by value.
// Note: thread unsafe init & leak are semi-ok, better than
// what was before. Sould be cleaned up, though.
s = new UnicodeString;
}
return *s;
}
}
//=======================================================================
// BreakIterator overrides
//=======================================================================
/**
* Return a CharacterIterator over the text being analyzed.
*/
CharacterIterator&
RuleBasedBreakIterator::getText() const {
return *fCharIter;
}
/**
* Set the iterator to analyze a new piece of text. This function resets
* the current iteration position to the beginning of the text.
* @param newText An iterator over the text to analyze.
*/
void
RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
// If we are holding a CharacterIterator adopted from a
// previous call to this function, delete it now.
if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
delete fCharIter;
}
fCharIter = newText;
UErrorCode status = U_ZERO_ERROR;
reset();
if (newText==NULL || newText->startIndex() != 0) {
// startIndex !=0 wants to be an error, but there's no way to report it.
// Make the iterator text be an empty string.
fText = utext_openUChars(fText, NULL, 0, &status);
} else {
fText = utext_openCharacterIterator(fText, newText, &status);
}
this->first();
}
/**
* Set the iterator to analyze a new piece of text. This function resets
* the current iteration position to the beginning of the text.
* @param newText An iterator over the text to analyze.
*/
void
RuleBasedBreakIterator::setText(const UnicodeString& newText) {
UErrorCode status = U_ZERO_ERROR;
reset();
fText = utext_openConstUnicodeString(fText, &newText, &status);
// Set up a character iterator on the string.
// Needed in case someone calls getText().
// Can not, unfortunately, do this lazily on the (probably never)
// call to getText(), because getText is const.
if (fSCharIter == NULL) {
fSCharIter = new StringCharacterIterator(newText);
} else {
fSCharIter->setText(newText);
}
if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
// old fCharIter was adopted from the outside. Delete it.
delete fCharIter;
}
fCharIter = fSCharIter;
this->first();
}
/**
* Sets the current iteration position to the beginning of the text.
* @return The offset of the beginning of the text.
*/
int32_t RuleBasedBreakIterator::first(void) {
reset();
fLastRuleStatusIndex = 0;
fLastStatusIndexValid = TRUE;
//if (fText == NULL)
// return BreakIterator::DONE;
utext_setNativeIndex(fText, 0);
return 0;
}
/**
* Sets the current iteration position to the end of the text.
* @return The text's past-the-end offset.
*/
int32_t RuleBasedBreakIterator::last(void) {
reset();
if (fText == NULL) {
fLastRuleStatusIndex = 0;
fLastStatusIndexValid = TRUE;
return BreakIterator::DONE;
}
fLastStatusIndexValid = FALSE;
int32_t pos = (int32_t)utext_nativeLength(fText);
utext_setNativeIndex(fText, pos);
return pos;
}
/**
* Advances the iterator either forward or backward the specified number of steps.
* Negative values move backward, and positive values move forward. This is
* equivalent to repeatedly calling next() or previous().
* @param n The number of steps to move. The sign indicates the direction
* (negative is backwards, and positive is forwards).
* @return The character offset of the boundary position n boundaries away from
* the current one.
*/
int32_t RuleBasedBreakIterator::next(int32_t n) {
int32_t result = current();
while (n > 0) {
result = next();
--n;
}
while (n < 0) {
result = previous();
++n;
}
return result;
}
/**
* Advances the iterator to the next boundary position.
* @return The position of the first boundary after this one.
*/
int32_t RuleBasedBreakIterator::next(void) {
// if we have cached break positions and we're still in the range
// covered by them, just move one step forward in the cache
if (fCachedBreakPositions != NULL) {
if (fPositionInCache < fNumCachedBreakPositions - 1) {
++fPositionInCache;
int32_t pos = fCachedBreakPositions[fPositionInCache];
utext_setNativeIndex(fText, pos);
return pos;
}
else {
reset();
}
}
int32_t startPos = current();
int32_t result = handleNext(fData->fForwardTable);
if (fDictionaryCharCount > 0) {
result = checkDictionary(startPos, result, FALSE);
}
return result;
}
/**
* Advances the iterator backwards, to the last boundary preceding this one.
* @return The position of the last boundary position preceding this one.
*/
int32_t RuleBasedBreakIterator::previous(void) {
int32_t result;
int32_t startPos;
// if we have cached break positions and we're still in the range
// covered by them, just move one step backward in the cache
if (fCachedBreakPositions != NULL) {
if (fPositionInCache > 0) {
--fPositionInCache;
// If we're at the beginning of the cache, need to reevaluate the
// rule status
if (fPositionInCache <= 0) {
fLastStatusIndexValid = FALSE;
}
int32_t pos = fCachedBreakPositions[fPositionInCache];
utext_setNativeIndex(fText, pos);
return pos;
}
else {
reset();
}
}
// if we're already sitting at the beginning of the text, return DONE
if (fText == NULL || (startPos = current()) == 0) {
fLastRuleStatusIndex = 0;
fLastStatusIndexValid = TRUE;
return BreakIterator::DONE;
}
if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) {
result = handlePrevious(fData->fReverseTable);
if (fDictionaryCharCount > 0) {
result = checkDictionary(result, startPos, TRUE);
}
return result;
}
// old rule syntax
// set things up. handlePrevious() will back us up to some valid
// break position before the current position (we back our internal
// iterator up one step to prevent handlePrevious() from returning
// the current position), but not necessarily the last one before
// where we started
int32_t start = current();
UTEXT_PREVIOUS32(fText);
int32_t lastResult = handlePrevious(fData->fReverseTable);
if (lastResult == UBRK_DONE) {
lastResult = 0;
utext_setNativeIndex(fText, 0);
}
result = lastResult;
int32_t lastTag = 0;
UBool breakTagValid = FALSE;
// iterate forward from the known break position until we pass our
// starting point. The last break position before the starting
// point is our return value
for (;;) {
result = next();
if (result == BreakIterator::DONE || result >= start) {
break;
}
lastResult = result;
lastTag = fLastRuleStatusIndex;
breakTagValid = TRUE;
}
// fLastBreakTag wants to have the value for section of text preceding
// the result position that we are to return (in lastResult.) If
// the backwards rules overshot and the above loop had to do two or more
// next()s to move up to the desired return position, we will have a valid
// tag value. But, if handlePrevious() took us to exactly the correct result positon,
// we wont have a tag value for that position, which is only set by handleNext().
// set the current iteration position to be the last break position
// before where we started, and then return that value
utext_setNativeIndex(fText, lastResult);
fLastRuleStatusIndex = lastTag; // for use by getRuleStatus()
fLastStatusIndexValid = breakTagValid;
// No need to check the dictionary; it will have been handled by
// next()
return lastResult;
}
/**
* Sets the iterator to refer to the first boundary position following
* the specified position.
* @offset The position from which to begin searching for a break position.
* @return The position of the first break after the current position.
*/
int32_t RuleBasedBreakIterator::following(int32_t offset) {
// if we have cached break positions and offset is in the range
// covered by them, use them
// TODO: could use binary search
// TODO: what if offset is outside range, but break is not?
if (fCachedBreakPositions != NULL) {
if (offset >= fCachedBreakPositions[0]
&& offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
fPositionInCache = 0;
// We are guaranteed not to leave the array due to range test above
while (offset >= fCachedBreakPositions[fPositionInCache]) {
++fPositionInCache;
}
int32_t pos = fCachedBreakPositions[fPositionInCache];
utext_setNativeIndex(fText, pos);
return pos;
}
else {
reset();
}
}
// if the offset passed in is already past the end of the text,
// just return DONE; if it's before the beginning, return the
// text's starting offset
fLastRuleStatusIndex = 0;
fLastStatusIndexValid = TRUE;
if (fText == NULL || offset >= utext_nativeLength(fText)) {
last();
return next();
}
else if (offset < 0) {
return first();
}
// otherwise, set our internal iteration position (temporarily)
// to the position passed in. If this is the _beginning_ position,
// then we can just use next() to get our return value
int32_t result = 0;
if (fData->fSafeRevTable != NULL) {
// new rule syntax
utext_setNativeIndex(fText, offset);
// move forward one codepoint to prepare for moving back to a
// safe point.
// this handles offset being between a supplementary character
UTEXT_NEXT32(fText);
// handlePrevious will move most of the time to < 1 boundary away
handlePrevious(fData->fSafeRevTable);
int32_t result = next();
while (result <= offset) {
result = next();
}
return result;
}
if (fData->fSafeFwdTable != NULL) {
// backup plan if forward safe table is not available
utext_setNativeIndex(fText, offset);
UTEXT_PREVIOUS32(fText);
// handle next will give result >= offset
handleNext(fData->fSafeFwdTable);
// previous will give result 0 or 1 boundary away from offset,
// most of the time
// we have to
int32_t oldresult = previous();
while (oldresult > offset) {
int32_t result = previous();
if (result <= offset) {
return oldresult;
}
oldresult = result;
}
int32_t result = next();
if (result <= offset) {
return next();
}
return result;
}
// otherwise, we have to sync up first. Use handlePrevious() to back
// up to a known break position before the specified position (if
// we can determine that the specified position is a break position,
// we don't back up at all). This may or may not be the last break
// position at or before our starting position. Advance forward
// from here until we've passed the starting position. The position
// we stop on will be the first break position after the specified one.
// old rule syntax
utext_setNativeIndex(fText, offset);
if (offset==0 ||
(offset==1 && utext_getNativeIndex(fText)==0)) {
return next();
}
result = previous();
while (result != BreakIterator::DONE && result <= offset) {
result = next();
}
return result;
}
/**
* Sets the iterator to refer to the last boundary position before the
* specified position.
* @offset The position to begin searching for a break from.
* @return The position of the last boundary before the starting position.
*/
int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
// if we have cached break positions and offset is in the range
// covered by them, use them
if (fCachedBreakPositions != NULL) {
// TODO: binary search?
// TODO: What if offset is outside range, but break is not?
if (offset > fCachedBreakPositions[0]
&& offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
fPositionInCache = 0;
while (fPositionInCache < fNumCachedBreakPositions
&& offset > fCachedBreakPositions[fPositionInCache])
++fPositionInCache;
--fPositionInCache;
// If we're at the beginning of the cache, need to reevaluate the
// rule status
if (fPositionInCache <= 0) {
fLastStatusIndexValid = FALSE;
}
utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]);
return fCachedBreakPositions[fPositionInCache];
}
else {
reset();
}
}
// if the offset passed in is already past the end of the text,
// just return DONE; if it's before the beginning, return the
// text's starting offset
if (fText == NULL || offset > utext_nativeLength(fText)) {
// return BreakIterator::DONE;
return last();
}
else if (offset < 0) {
return first();
}
// if we start by updating the current iteration position to the
// position specified by the caller, we can just use previous()
// to carry out this operation
if (fData->fSafeFwdTable != NULL) {
// new rule syntax
utext_setNativeIndex(fText, offset);
int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
if (newOffset != offset) {
// Will come here if specified offset was not a code point boundary AND
// the underlying implmentation is using UText, which snaps any non-code-point-boundary
// indices to the containing code point.
// For breakitereator::preceding only, these non-code-point indices need to be moved
// up to refer to the following codepoint.
UTEXT_NEXT32(fText);
offset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
}
// TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair,
// rather than adjusting the position unconditionally?
// (Change would interact with safe rules.)
// TODO: change RBBI behavior for off-boundary indices to match that of UText?
// affects only preceding(), seems cleaner, but is slightly different.
UTEXT_PREVIOUS32(fText);
handleNext(fData->fSafeFwdTable);
int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
while (result >= offset) {
result = previous();
}
return result;
}
if (fData->fSafeRevTable != NULL) {
// backup plan if forward safe table is not available
// TODO: check whether this path can be discarded
// It's probably OK to say that rules must supply both safe tables
// if they use safe tables at all. We have certainly never described
// to anyone how to work with just one safe table.
utext_setNativeIndex(fText, offset);
UTEXT_NEXT32(fText);
// handle previous will give result <= offset
handlePrevious(fData->fSafeRevTable);
// next will give result 0 or 1 boundary away from offset,
// most of the time
// we have to
int32_t oldresult = next();
while (oldresult < offset) {
int32_t result = next();
if (result >= offset) {
return oldresult;
}
oldresult = result;
}
int32_t result = previous();
if (result >= offset) {
return previous();
}
return result;
}
// old rule syntax
utext_setNativeIndex(fText, offset);
return previous();
}
/**
* Returns true if the specfied position is a boundary position. As a side
* effect, leaves the iterator pointing to the first boundary position at
* or after "offset".
* @param offset the offset to check.
* @return True if "offset" is a boundary position.
*/
UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
// the beginning index of the iterator is always a boundary position by definition
if (offset == 0) {
first(); // For side effects on current position, tag values.
return TRUE;
}
if (offset == (int32_t)utext_nativeLength(fText)) {
last(); // For side effects on current position, tag values.
return TRUE;
}
// out-of-range indexes are never boundary positions
if (offset < 0) {
first(); // For side effects on current position, tag values.
return FALSE;
}
if (offset > utext_nativeLength(fText)) {
last(); // For side effects on current position, tag values.
return FALSE;
}
// otherwise, we can use following() on the position before the specified
// one and return true if the position we get back is the one the user
// specified
utext_previous32From(fText, offset);
int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText);
UBool result = following(backOne) == offset;
return result;
}
/**
* Returns the current iteration position.
* @return The current iteration position.
*/
int32_t RuleBasedBreakIterator::current(void) const {
int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
return pos;
}
//=======================================================================
// implementation
//=======================================================================
//
// RBBIRunMode - the state machine runs an extra iteration at the beginning and end
// of user text. A variable with this enum type keeps track of where we
// are. The state machine only fetches user input while in the RUN mode.
//
enum RBBIRunMode {
RBBI_START, // state machine processing is before first char of input
RBBI_RUN, // state machine processing is in the user text
RBBI_END // state machine processing is after end of user text.
};
//-----------------------------------------------------------------------------------
//
// handleNext(stateTable)
// This method is the actual implementation of the rbbi next() method.
// This method initializes the state machine to state 1
// and advances through the text character by character until we reach the end
// of the text or the state machine transitions to state 0. We update our return
// value every time the state machine passes through an accepting state.
//
//-----------------------------------------------------------------------------------
int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) {
int32_t state;
int16_t category = 0;
RBBIRunMode mode;
RBBIStateTableRow *row;
UChar32 c;
int32_t lookaheadStatus = 0;
int32_t lookaheadTagIdx = 0;
int32_t result = 0;
int32_t initialPosition = 0;
int32_t lookaheadResult = 0;
UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;
const char *tableData = statetable->fTableData;
uint32_t tableRowLen = statetable->fRowLen;
#ifdef RBBI_DEBUG
if (fTrace) {
RBBIDebugPuts("Handle Next pos char state category");
}
#endif
// No matter what, handleNext alway correctly sets the break tag value.
fLastStatusIndexValid = TRUE;
fLastRuleStatusIndex = 0;
// if we're already at the end of the text, return DONE.
initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
result = initialPosition;
c = UTEXT_NEXT32(fText);
if (fData == NULL || c==U_SENTINEL) {
return BreakIterator::DONE;
}
// Set the initial state for the state machine
state = START_STATE;
row = (RBBIStateTableRow *)
//(statetable->fTableData + (statetable->fRowLen * state));
(tableData + tableRowLen * state);
mode = RBBI_RUN;
if (statetable->fFlags & RBBI_BOF_REQUIRED) {
category = 2;
mode = RBBI_START;
}
// loop until we reach the end of the text or transition to state 0
//
for (;;) {
if (c == U_SENTINEL) {
// Reached end of input string.
if (mode == RBBI_END) {
// We have already run the loop one last time with the
// character set to the psueudo {eof} value. Now it is time
// to unconditionally bail out.
if (lookaheadResult > result) {
// We ran off the end of the string with a pending look-ahead match.
// Treat this as if the look-ahead condition had been met, and return
// the match at the / position from the look-ahead rule.
result = lookaheadResult;
fLastRuleStatusIndex = lookaheadTagIdx;
lookaheadStatus = 0;
}
break;
}
// Run the loop one last time with the fake end-of-input character category.
mode = RBBI_END;
category = 1;
}
//
// Get the char category. An incoming category of 1 or 2 means that
// we are preset for doing the beginning or end of input, and
// that we shouldn't get a category from an actual text input character.
//
if (mode == RBBI_RUN) {
// look up the current character's character category, which tells us
// which column in the state table to look at.
// Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
// not the size of the character going in, which is a UChar32.
//
UTRIE_GET16(&fData->fTrie, c, category);
// Check the dictionary bit in the character's category.
// Counter is only used by dictionary based iterators (subclasses).
// Chars that need to be handled by a dictionary have a flag bit set
// in their category values.
//
if ((category & 0x4000) != 0) {
fDictionaryCharCount++;
// And off the dictionary flag bit.
category &= ~0x4000;
}
}
#ifdef RBBI_DEBUG
if (fTrace) {
RBBIDebugPrintf(" %4ld ", utext_getNativeIndex(fText));
if (0x20<=c && c<0x7f) {
RBBIDebugPrintf("\"%c\" ", c);
} else {
RBBIDebugPrintf("%5x ", c);
}
RBBIDebugPrintf("%3d %3d\n", state, category);
}
#endif
// State Transition - move machine to its next state
//
state = row->fNextState[category];
row = (RBBIStateTableRow *)
// (statetable->fTableData + (statetable->fRowLen * state));
(tableData + tableRowLen * state);
if (row->fAccepting == -1) {
// Match found, common case.
if (mode != RBBI_START) {
result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
}
fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values.
}
if (row->fLookAhead != 0) {
if (lookaheadStatus != 0
&& row->fAccepting == lookaheadStatus) {
// Lookahead match is completed.
result = lookaheadResult;
fLastRuleStatusIndex = lookaheadTagIdx;
lookaheadStatus = 0;
// TODO: make a standalone hard break in a rule work.
if (lookAheadHardBreak) {
UTEXT_SETNATIVEINDEX(fText, result);
return result;
}
// Look-ahead completed, but other rules may match further. Continue on
// TODO: junk this feature? I don't think it's used anywhwere.
goto continueOn;
}
int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
lookaheadResult = r;
lookaheadStatus = row->fLookAhead;
lookaheadTagIdx = row->fTagIdx;
goto continueOn;
}
if (row->fAccepting != 0) {
// Because this is an accepting state, any in-progress look-ahead match
// is no longer relavant. Clear out the pending lookahead status.
lookaheadStatus = 0; // clear out any pending look-ahead match.
}
continueOn:
if (state == STOP_STATE) {
// This is the normal exit from the lookup state machine.
// We have advanced through the string until it is certain that no
// longer match is possible, no matter what characters follow.
break;
}
// Advance to the next character.
// If this is a beginning-of-input loop iteration, don't advance
// the input position. The next iteration will be processing the
// first real input character.
if (mode == RBBI_RUN) {
c = UTEXT_NEXT32(fText);
} else {
if (mode == RBBI_START) {
mode = RBBI_RUN;
}
}
}
// The state machine is done. Check whether it found a match...
// If the iterator failed to advance in the match engine, force it ahead by one.
// (This really indicates a defect in the break rules. They should always match
// at least one character.)
if (result == initialPosition) {
UTEXT_SETNATIVEINDEX(fText, initialPosition);
UTEXT_NEXT32(fText);
result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
}
// Leave the iterator at our result position.
UTEXT_SETNATIVEINDEX(fText, result);
#ifdef RBBI_DEBUG
if (fTrace) {
RBBIDebugPrintf("result = %d\n\n", result);
}
#endif
return result;
}
//-----------------------------------------------------------------------------------
//
// handlePrevious()
//
// Iterate backwards, according to the logic of the reverse rules.
// This version handles the exact style backwards rules.
//
// The logic of this function is very similar to handleNext(), above.
//
//-----------------------------------------------------------------------------------
int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) {
int32_t state;
int16_t category = 0;
RBBIRunMode mode;
RBBIStateTableRow *row;
UChar32 c;
int32_t lookaheadStatus = 0;
int32_t result = 0;
int32_t initialPosition = 0;
int32_t lookaheadResult = 0;
UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;
#ifdef RBBI_DEBUG
if (fTrace) {
RBBIDebugPuts("Handle Previous pos char state category");
}
#endif
// handlePrevious() never gets the rule status.
// Flag the status as invalid; if the user ever asks for status, we will need
// to back up, then re-find the break position using handleNext(), which does
// get the status value.
fLastStatusIndexValid = FALSE;
fLastRuleStatusIndex = 0;
// if we're already at the start of the text, return DONE.
if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) {
return BreakIterator::DONE;
}
// Set up the starting char.
initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
result = initialPosition;
c = UTEXT_PREVIOUS32(fText);
// Set the initial state for the state machine
state = START_STATE;
row = (RBBIStateTableRow *)
(statetable->fTableData + (statetable->fRowLen * state));
category = 3;
mode = RBBI_RUN;
if (statetable->fFlags & RBBI_BOF_REQUIRED) {
category = 2;
mode = RBBI_START;
}
// loop until we reach the start of the text or transition to state 0
//
for (;;) {
if (c == U_SENTINEL) {
// Reached end of input string.
if (mode == RBBI_END) {
// We have already run the loop one last time with the
// character set to the psueudo {eof} value. Now it is time
// to unconditionally bail out.
if (lookaheadResult < result) {
// We ran off the end of the string with a pending look-ahead match.
// Treat this as if the look-ahead condition had been met, and return
// the match at the / position from the look-ahead rule.
result = lookaheadResult;
lookaheadStatus = 0;
} else if (result == initialPosition) {
// Ran off start, no match found.
// move one index one (towards the start, since we are doing a previous())
UTEXT_SETNATIVEINDEX(fText, initialPosition);
UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check.
}
break;
}
// Run the loop one last time with the fake end-of-input character category.
mode = RBBI_END;
category = 1;
}
//
// Get the char category. An incoming category of 1 or 2 means that
// we are preset for doing the beginning or end of input, and
// that we shouldn't get a category from an actual text input character.
//
if (mode == RBBI_RUN) {
// look up the current character's character category, which tells us
// which column in the state table to look at.
// Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
// not the size of the character going in, which is a UChar32.
//
UTRIE_GET16(&fData->fTrie, c, category);
// Check the dictionary bit in the character's category.
// Counter is only used by dictionary based iterators (subclasses).
// Chars that need to be handled by a dictionary have a flag bit set
// in their category values.
//
if ((category & 0x4000) != 0) {
fDictionaryCharCount++;
// And off the dictionary flag bit.
category &= ~0x4000;
}
}
#ifdef RBBI_DEBUG
if (fTrace) {
RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText));
if (0x20<=c && c<0x7f) {
RBBIDebugPrintf("\"%c\" ", c);
} else {
RBBIDebugPrintf("%5x ", c);
}
RBBIDebugPrintf("%3d %3d\n", state, category);
}
#endif
// State Transition - move machine to its next state
//
state = row->fNextState[category];
row = (RBBIStateTableRow *)
(statetable->fTableData + (statetable->fRowLen * state));
if (row->fAccepting == -1) {
// Match found, common case.
result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
}
if (row->fLookAhead != 0) {
if (lookaheadStatus != 0
&& row->fAccepting == lookaheadStatus) {
// Lookahead match is completed.
result = lookaheadResult;
lookaheadStatus = 0;
// TODO: make a standalone hard break in a rule work.
if (lookAheadHardBreak) {
UTEXT_SETNATIVEINDEX(fText, result);
return result;
}
// Look-ahead completed, but other rules may match further. Continue on
// TODO: junk this feature? I don't think it's used anywhwere.
goto continueOn;
}
int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
lookaheadResult = r;
lookaheadStatus = row->fLookAhead;
goto continueOn;
}
if (row->fAccepting != 0) {
// Because this is an accepting state, any in-progress look-ahead match
// is no longer relavant. Clear out the pending lookahead status.
lookaheadStatus = 0;
}
continueOn:
if (state == STOP_STATE) {
// This is the normal exit from the lookup state machine.
// We have advanced through the string until it is certain that no
// longer match is possible, no matter what characters follow.
break;
}
// Move (backwards) to the next character to process.
// If this is a beginning-of-input loop iteration, don't advance
// the input position. The next iteration will be processing the
// first real input character.
if (mode == RBBI_RUN) {
c = UTEXT_PREVIOUS32(fText);
} else {
if (mode == RBBI_START) {
mode = RBBI_RUN;
}
}
}
// The state machine is done. Check whether it found a match...
// If the iterator failed to advance in the match engine, force it ahead by one.
// (This really indicates a defect in the break rules. They should always match
// at least one character.)
if (result == initialPosition) {
UTEXT_SETNATIVEINDEX(fText, initialPosition);
UTEXT_PREVIOUS32(fText);
result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
}
// Leave the iterator at our result position.
UTEXT_SETNATIVEINDEX(fText, result);
#ifdef RBBI_DEBUG
if (fTrace) {
RBBIDebugPrintf("result = %d\n\n", result);
}
#endif
return result;
}
void
RuleBasedBreakIterator::reset()
{
if (fCachedBreakPositions) {
uprv_free(fCachedBreakPositions);
}
fCachedBreakPositions = NULL;
fNumCachedBreakPositions = 0;
fDictionaryCharCount = 0;
fPositionInCache = 0;
}
//-------------------------------------------------------------------------------
//
// getRuleStatus() Return the break rule tag associated with the current
// iterator position. If the iterator arrived at its current
// position by iterating forwards, the value will have been
// cached by the handleNext() function.
//
// If no cached status value is available, the status is
// found by doing a previous() followed by a next(), which
// leaves the iterator where it started, and computes the
// status while doing the next().
//
//-------------------------------------------------------------------------------
void RuleBasedBreakIterator::makeRuleStatusValid() {
if (fLastStatusIndexValid == FALSE) {
// No cached status is available.
if (fText == NULL || current() == 0) {
// At start of text, or there is no text. Status is always zero.
fLastRuleStatusIndex = 0;
fLastStatusIndexValid = TRUE;
} else {
// Not at start of text. Find status the tedious way.
int32_t pa = current();
previous();
if (fNumCachedBreakPositions > 0) {
reset(); // Blow off the dictionary cache
}
int32_t pb = next();
if (pa != pb) {
// note: the if (pa != pb) test is here only to eliminate warnings for
// unused local variables on gcc. Logically, it isn't needed.
U_ASSERT(pa == pb);
}
}
}
U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx);
}
int32_t RuleBasedBreakIterator::getRuleStatus() const {
RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
nonConstThis->makeRuleStatusValid();
// fLastRuleStatusIndex indexes to the start of the appropriate status record
// (the number of status values.)
// This function returns the last (largest) of the array of status values.
int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex];
int32_t tagVal = fData->fRuleStatusTable[idx];
return tagVal;
}
int32_t RuleBasedBreakIterator::getRuleStatusVec(
int32_t *fillInVec, int32_t capacity, UErrorCode &status)
{
if (U_FAILURE(status)) {
return 0;
}
RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
nonConstThis->makeRuleStatusValid();
int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex];
int32_t numValsToCopy = numVals;
if (numVals > capacity) {
status = U_BUFFER_OVERFLOW_ERROR;
numValsToCopy = capacity;
}
int i;
for (i=0; i<numValsToCopy; i++) {
fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1];
}
return numVals;
}
//-------------------------------------------------------------------------------
//
// getBinaryRules Access to the compiled form of the rules,
// for use by build system tools that save the data
// for standard iterator types.
//
//-------------------------------------------------------------------------------
const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) {
const uint8_t *retPtr = NULL;
length = 0;
if (fData != NULL) {
retPtr = (const uint8_t *)fData->fHeader;
length = fData->fHeader->fLength;
}
return retPtr;
}
//-------------------------------------------------------------------------------
//
// BufferClone TODO: In my (Andy) opinion, this function should be deprecated.
// Saving one heap allocation isn't worth the trouble.
// Cloning shouldn't be done in tight loops, and
// making the clone copy involves other heap operations anyway.
// And the application code for correctly dealing with buffer
// size problems and the eventual object destruction is ugly.
//
//-------------------------------------------------------------------------------
BreakIterator * RuleBasedBreakIterator::createBufferClone(void *stackBuffer,
int32_t &bufferSize,
UErrorCode &status)
{
if (U_FAILURE(status)){
return NULL;
}
//
// If user buffer size is zero this is a preflight operation to
// obtain the needed buffer size, allowing for worst case misalignment.
//
if (bufferSize == 0) {
bufferSize = sizeof(RuleBasedBreakIterator) + U_ALIGNMENT_OFFSET_UP(0);
return NULL;
}
//
// Check the alignment and size of the user supplied buffer.
// Allocate heap memory if the user supplied memory is insufficient.
//
char *buf = (char *)stackBuffer;
uint32_t s = bufferSize;
if (stackBuffer == NULL) {
s = 0; // Ignore size, force allocation if user didn't give us a buffer.
}
if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) {
uint32_t offsetUp = (uint32_t)U_ALIGNMENT_OFFSET_UP(buf);
s -= offsetUp;
buf += offsetUp;
}
if (s < sizeof(RuleBasedBreakIterator)) {
// Not enough room in the caller-supplied buffer.
// Do a plain-vanilla heap based clone and return that, along with
// a warning that the clone was allocated.
RuleBasedBreakIterator *clonedBI = new RuleBasedBreakIterator(*this);
if (clonedBI == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
} else {
status = U_SAFECLONE_ALLOCATED_WARNING;
}
return clonedBI;
}
//
// Clone the source BI into the caller-supplied buffer.
// TODO: using an overloaded operator new to directly initialize the
// copy in the user's buffer would be better, but it doesn't seem
// to get along with namespaces. Investigate why.
//
// The memcpy is only safe with an empty (default constructed)
// break iterator. Use on others can screw up reference counts
// to data. memcpy-ing objects is not really a good idea...
//
RuleBasedBreakIterator localIter; // Empty break iterator, source for memcpy
RuleBasedBreakIterator *clone = (RuleBasedBreakIterator *)buf;
uprv_memcpy(clone, &localIter, sizeof(RuleBasedBreakIterator)); // init C++ gorp, BreakIterator base class part
clone->init(); // Init RuleBasedBreakIterator part, (user default constructor)
*clone = *this; // clone = the real BI we want.
clone->fBufferClone = TRUE; // Flag to prevent deleting storage on close (From C code)
return clone;
}
//-------------------------------------------------------------------------------
//
// isDictionaryChar Return true if the category lookup for this char
// indicates that it is in the set of dictionary lookup
// chars.
//
// This function is intended for use by dictionary based
// break iterators.
//
//-------------------------------------------------------------------------------
/*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) {
if (fData == NULL) {
return FALSE;
}
uint16_t category;
UTRIE_GET16(&fData->fTrie, c, category);
return (category & 0x4000) != 0;
}*/
//-------------------------------------------------------------------------------
//
// checkDictionary This function handles all processing of characters in
// the "dictionary" set. It will determine the appropriate
// course of action, and possibly set up a cache in the
// process.
//
//-------------------------------------------------------------------------------
int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos,
int32_t endPos,
UBool reverse) {
// Reset the old break cache first.
uint32_t dictionaryCount = fDictionaryCharCount;
reset();
if (dictionaryCount <= 1 || (endPos - startPos) <= 1) {
return (reverse ? startPos : endPos);
}
// Bug 5532. The dictionary code will crash if the input text is UTF-8
// because native indexes are different from UTF-16 indexes.
// Temporary hack: skip dictionary lookup for UTF-8 encoded text.
// It wont give the right breaks, but it's better than a crash.
//
// Check the type of the UText by checking its pFuncs field, which
// is UText's function dispatch table. It will be the same for all
// UTF-8 UTexts and different for any other UText type.
//
// We have no other type of UText available with non-UTF-16 native indexing.
// This whole check will go away once the dictionary code is fixed.
static const void *utext_utf8Funcs;
if (utext_utf8Funcs == NULL) {
// Cache the UTF-8 UText function pointer value.
UErrorCode status = U_ZERO_ERROR;
UText tempUText = UTEXT_INITIALIZER;
utext_openUTF8(&tempUText, NULL, 0, &status);
utext_utf8Funcs = tempUText.pFuncs;
utext_close(&tempUText);
}
if (fText->pFuncs == utext_utf8Funcs) {
return (reverse ? startPos : endPos);
}
// Starting from the starting point, scan towards the proposed result,
// looking for the first dictionary character (which may be the one
// we're on, if we're starting in the middle of a range).
utext_setNativeIndex(fText, reverse ? endPos : startPos);
if (reverse) {
UTEXT_PREVIOUS32(fText);
}
int32_t rangeStart = startPos;
int32_t rangeEnd = endPos;
uint16_t category;
int32_t current;
UErrorCode status = U_ZERO_ERROR;
UStack breaks(status);
int32_t foundBreakCount = 0;
UChar32 c = utext_current32(fText);
UTRIE_GET16(&fData->fTrie, c, category);
// Is the character we're starting on a dictionary character? If so, we
// need to back up to include the entire run; otherwise the results of
// the break algorithm will differ depending on where we start. Since
// the result is cached and there is typically a non-dictionary break
// within a small number of words, there should be little performance impact.
if (category & 0x4000) {
if (reverse) {
do {
utext_next32(fText); // TODO: recast to work directly with postincrement.
c = utext_current32(fText);
UTRIE_GET16(&fData->fTrie, c, category);
} while (c != U_SENTINEL && (category & 0x4000));
// Back up to the last dictionary character
rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText);
if (c == U_SENTINEL) {
// c = fText->last32();
// TODO: why was this if needed?
c = UTEXT_PREVIOUS32(fText);
}
else {
c = UTEXT_PREVIOUS32(fText);
}
}
else {
do {
c = UTEXT_PREVIOUS32(fText);
UTRIE_GET16(&fData->fTrie, c, category);
}
while (c != U_SENTINEL && (category & 0x4000));
// Back up to the last dictionary character
if (c == U_SENTINEL) {
// c = fText->first32();
c = utext_current32(fText);
}
else {
utext_next32(fText);
c = utext_current32(fText);
}
rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);;
}
UTRIE_GET16(&fData->fTrie, c, category);
}
// Loop through the text, looking for ranges of dictionary characters.
// For each span, find the appropriate break engine, and ask it to find
// any breaks within the span.
// Note: we always do this in the forward direction, so that the break
// cache is built in the right order.
if (reverse) {
utext_setNativeIndex(fText, rangeStart);
c = utext_current32(fText);
UTRIE_GET16(&fData->fTrie, c, category);
}
while(U_SUCCESS(status)) {
while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) {
utext_next32(fText); // TODO: tweak for post-increment operation
c = utext_current32(fText);
UTRIE_GET16(&fData->fTrie, c, category);
}
if (current >= rangeEnd) {
break;
}
// We now have a dictionary character. Get the appropriate language object
// to deal with it.
const LanguageBreakEngine *lbe = getLanguageBreakEngine(c);
// Ask the language object if there are any breaks. It will leave the text
// pointer on the other side of its range, ready to search for the next one.
if (lbe != NULL) {
foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks);
}
// Reload the loop variables for the next go-round
c = utext_current32(fText);
UTRIE_GET16(&fData->fTrie, c, category);
}
// If we found breaks, build a new break cache. The first and last entries must
// be the original starting and ending position.
if (foundBreakCount > 0) {
int32_t totalBreaks = foundBreakCount;
if (startPos < breaks.elementAti(0)) {
totalBreaks += 1;
}
if (endPos > breaks.peeki()) {
totalBreaks += 1;
}
fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t));
if (fCachedBreakPositions != NULL) {
int32_t out = 0;
fNumCachedBreakPositions = totalBreaks;
if (startPos < breaks.elementAti(0)) {
fCachedBreakPositions[out++] = startPos;
}
for (int32_t i = 0; i < foundBreakCount; ++i) {
fCachedBreakPositions[out++] = breaks.elementAti(i);
}
if (endPos > fCachedBreakPositions[out-1]) {
fCachedBreakPositions[out] = endPos;
}
// If there are breaks, then by definition, we are replacing the original
// proposed break by one of the breaks we found. Use following() and
// preceding() to do the work. They should never recurse in this case.
if (reverse) {
return preceding(endPos - 1);
}
else {
return following(startPos);
}
}
// If the allocation failed, just fall through to the "no breaks found" case.
}
// If we get here, there were no language-based breaks. Set the text pointer
// to the original proposed break.
utext_setNativeIndex(fText, reverse ? startPos : endPos);
return (reverse ? startPos : endPos);
}
U_NAMESPACE_END
// defined in ucln_cmn.h
static U_NAMESPACE_QUALIFIER UStack *gLanguageBreakFactories = NULL;
/**
* Release all static memory held by breakiterator.
*/
U_CDECL_BEGIN
static UBool U_CALLCONV breakiterator_cleanup_dict(void) {
if (gLanguageBreakFactories) {
delete gLanguageBreakFactories;
gLanguageBreakFactories = NULL;
}
return TRUE;
}
U_CDECL_END
U_CDECL_BEGIN
static void U_CALLCONV _deleteFactory(void *obj) {
delete (U_NAMESPACE_QUALIFIER LanguageBreakFactory *) obj;
}
U_CDECL_END
U_NAMESPACE_BEGIN
static const LanguageBreakEngine*
getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType)
{
UBool needsInit;
UErrorCode status = U_ZERO_ERROR;
UMTX_CHECK(NULL, (UBool)(gLanguageBreakFactories == NULL), needsInit);
if (needsInit) {
UStack *factories = new UStack(_deleteFactory, NULL, status);
if (factories != NULL && U_SUCCESS(status)) {
ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status);
factories->push(builtIn, status);
#ifdef U_LOCAL_SERVICE_HOOK
LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status);
if (extra != NULL) {
factories->push(extra, status);
}
#endif
}
umtx_lock(NULL);
if (gLanguageBreakFactories == NULL) {
gLanguageBreakFactories = factories;
factories = NULL;
ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict);
}
umtx_unlock(NULL);
delete factories;
}
if (gLanguageBreakFactories == NULL) {
return NULL;
}
int32_t i = gLanguageBreakFactories->size();
const LanguageBreakEngine *lbe = NULL;
while (--i >= 0) {
LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
lbe = factory->getEngineFor(c, breakType);
if (lbe != NULL) {
break;
}
}
return lbe;
}
//-------------------------------------------------------------------------------
//
// getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the
// the characer c.
//
//-------------------------------------------------------------------------------
const LanguageBreakEngine *
RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
const LanguageBreakEngine *lbe = NULL;
UErrorCode status = U_ZERO_ERROR;
if (fLanguageBreakEngines == NULL) {
fLanguageBreakEngines = new UStack(status);
if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
delete fLanguageBreakEngines;
fLanguageBreakEngines = 0;
return NULL;
}
}
int32_t i = fLanguageBreakEngines->size();
while (--i >= 0) {
lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
if (lbe->handles(c, fBreakType)) {
return lbe;
}
}
// No existing dictionary took the character. See if a factory wants to
// give us a new LanguageBreakEngine for this character.
lbe = getLanguageBreakEngineFromFactory(c, fBreakType);
// If we got one, use it and push it on our stack.
if (lbe != NULL) {
fLanguageBreakEngines->push((void *)lbe, status);
// Even if we can't remember it, we can keep looking it up, so
// return it even if the push fails.
return lbe;
}
// No engine is forthcoming for this character. Add it to the
// reject set. Create the reject break engine if needed.
if (fUnhandledBreakEngine == NULL) {
fUnhandledBreakEngine = new UnhandledEngine(status);
if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}
// Put it last so that scripts for which we have an engine get tried
// first.
fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status);
// If we can't insert it, or creation failed, get rid of it
if (U_FAILURE(status)) {
delete fUnhandledBreakEngine;
fUnhandledBreakEngine = 0;
return NULL;
}
}
// Tell the reject engine about the character; at its discretion, it may
// add more than just the one character.
fUnhandledBreakEngine->handleCharacter(c, fBreakType);
return fUnhandledBreakEngine;
}
/*int32_t RuleBasedBreakIterator::getBreakType() const {
return fBreakType;
}*/
void RuleBasedBreakIterator::setBreakType(int32_t type) {
fBreakType = type;
reset();
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */