scuffed-code/icu4c/source/i18n/rbbi.cpp

651 lines
22 KiB
C++
Raw Normal View History

/*
**********************************************************************
* Copyright (C) 1999 International Business Machines Corporation *
* and others. All rights reserved. *
**********************************************************************
* Date Name Description
* 11/11/99 rgillam Complete port from Java.
**********************************************************************
*/
#include "unicode/rbbi.h"
#include "unicode/schriter.h"
#include "rbbi_tbl.h"
#include "filestrm.h"
#include "cmemory.h"
/**
* A token used as a character-category value to identify ignore characters
*/
int8_t
RuleBasedBreakIterator::IGNORE = -1;
/**
* The state number of the starting state
*/
int16_t
RuleBasedBreakIterator::START_STATE = 1;
/**
* The state-transition value indicating "stop"
*/
int16_t
RuleBasedBreakIterator::STOP_STATE = 0;
/**
* Class ID. (value is irrelevant; address is important)
*/
char
RuleBasedBreakIterator::fgClassID = 0;
//=======================================================================
// constructors
//=======================================================================
/**
* Constructs a RuleBasedBreakIterator that uses the already-created
* tables object that is passed in as a parameter.
*/
RuleBasedBreakIterator::RuleBasedBreakIterator(RuleBasedBreakIteratorTables* adoptTables)
: text(NULL),
tables(adoptTables)
{
}
// This constructor uses the udata interface to create a BreakIterator whose
// internal tables live in a memory-mapped file. "image" is a pointer to the
// beginning of that file.
RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* image)
: text(NULL),
tables(image != NULL ? new RuleBasedBreakIteratorTables(image) : NULL)
{
if (tables != NULL)
tables->addReference();
}
/**
* Copy constructor. Will produce a collator with the same behavior,
* and which iterates over the same text, as the one passed in.
*/
RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& that)
: text(that.text->clone()),
tables(that.tables)
{
tables->addReference();
}
//=======================================================================
// boilerplate
//=======================================================================
/**
* Destructor
*/
RuleBasedBreakIterator::~RuleBasedBreakIterator() {
delete text;
tables->removeReference();
}
/**
* Assignment operator. Sets this iterator to have the same behavior,
* and iterate over the same text, as the one passed in.
*/
RuleBasedBreakIterator&
RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
delete text;
text = that.text->clone();
tables->removeReference();
tables = that.tables;
tables->addReference();
return *this;
}
/**
* Returns a newly-constructed RuleBasedBreakIterator with the same
* behavior, and iterating over the same text, as this one.
*/
BreakIterator*
RuleBasedBreakIterator::clone(void) const {
return new RuleBasedBreakIterator(*this);
}
/**
* Equality operator. Returns TRUE if both BreakIterators are of the
* same class, have the same behavior, and iterate over the same text.
*/
UBool
RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
if (that.getDynamicClassID() != getDynamicClassID())
return FALSE;
const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&)that;
return (that2.text == text || *that2.text == *text)
&& (that2.tables == tables || *that2.tables == *tables);
}
/**
* Compute a hash code for this BreakIterator
* @return A hash code
*/
int32_t
RuleBasedBreakIterator::hashCode(void) const {
return tables->hashCode();
}
/**
* Returns the description used to create this iterator
*/
const UnicodeString&
RuleBasedBreakIterator::getRules() const {
return tables->getRules();
}
//=======================================================================
// BreakIterator overrides
//=======================================================================
/**
* Return a CharacterIterator over the text being analyzed. This version
* of this method returns the actual CharacterIterator we're using internally.
* Changing the state of this iterator can have undefined consequences. If
* you need to change it, clone it first.
* @return An iterator over the text being analyzed.
*/
const CharacterIterator&
RuleBasedBreakIterator::getText() const {
RuleBasedBreakIterator* nonConstThis = (RuleBasedBreakIterator*)this;
// The iterator is initialized pointing to no text at all, so if this
// function is called while we're in that state, we have to fudge an
// an iterator to return.
if (nonConstThis->text == NULL)
nonConstThis->text = new StringCharacterIterator("");
return *nonConstThis->text;
}
/**
* Returns a newly-created CharacterIterator that the caller is to take
* ownership of.
* THIS FUNCTION SHOULD NOT BE HERE. IT'S HERE BECAUSE BreakIterator DEFINES
* IT AS PURE VIRTUAL, FORCING RBBI TO IMPLEMENT IT. IT SHOULD BE REMOVED
* FROM *BOTH* CLASSES.
*/
CharacterIterator*
RuleBasedBreakIterator::createText() const {
if (text == NULL)
return new StringCharacterIterator("");
else
return text->clone();
}
/**
* Set the iterator to analyze a new piece of text. This function resets
* the current iteration position to the beginning of the text.
* @param newText An iterator over the text to analyze.
*/
void
RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
reset();
delete text;
text = newText;
text->first();
}
/**
* Set the iterator to analyze a new piece of text. This function resets
* the current iteration position to the beginning of the text.
* @param newText An iterator over the text to analyze.
*/
void
RuleBasedBreakIterator::setText(const UnicodeString& newText) {
reset();
if (text != NULL && text->getDynamicClassID()
== StringCharacterIterator::getStaticClassID()) {
((StringCharacterIterator*)text)->setText(newText);
}
else {
delete text;
text = new StringCharacterIterator(newText);
text->first();
}
}
/**
* Set the iterator to analyze a new piece of text. This function resets
* the current iteration position to the beginning of the text.
* @param newText The text to analyze.
* THIS FUNCTION SHOULD NOT BE HERE. IT'S HERE BECAUSE BreakIterator DEFINES
* IT AS PURE VIRTUAL, FORCING RBBI TO IMPLEMENT IT. IT SHOULD BE REMOVED
* FROM *BOTH* CLASSES.
*/
void
RuleBasedBreakIterator::setText(const UnicodeString* newText) {
setText(*newText);
}
/**
* Sets the current iteration position to the beginning of the text.
* (i.e., the CharacterIterator's starting offset).
* @return The offset of the beginning of the text.
*/
int32_t RuleBasedBreakIterator::first(void) {
reset();
if (text == NULL)
return BreakIterator::DONE;
text->first();
return text->getIndex();
}
/**
* Sets the current iteration position to the end of the text.
* (i.e., the CharacterIterator's ending offset).
* @return The text's past-the-end offset.
*/
int32_t RuleBasedBreakIterator::last(void) {
reset();
if (text == NULL)
return BreakIterator::DONE;
// I'm not sure why, but t.last() returns the offset of the last character,
// rather than the past-the-end offset
int32_t pos = text->endIndex();
text->setIndex(pos);
return pos;
}
/**
* Advances the iterator either forward or backward the specified number of steps.
* Negative values move backward, and positive values move forward. This is
* equivalent to repeatedly calling next() or previous().
* @param n The number of steps to move. The sign indicates the direction
* (negative is backwards, and positive is forwards).
* @return The character offset of the boundary position n boundaries away from
* the current one.
*/
int32_t RuleBasedBreakIterator::next(int32_t n) {
int32_t result = current();
while (n > 0) {
result = handleNext();
--n;
}
while (n < 0) {
result = previous();
++n;
}
return result;
}
/**
* Advances the iterator to the next boundary position.
* @return The position of the first boundary after this one.
*/
int32_t RuleBasedBreakIterator::next(void) {
return handleNext();
}
/**
* Advances the iterator backwards, to the last boundary preceding this one.
* @return The position of the last boundary position preceding this one.
*/
int32_t RuleBasedBreakIterator::previous(void) {
// if we're already sitting at the beginning of the text, return DONE
if (text == NULL || current() == text->startIndex())
return BreakIterator::DONE;
// set things up. handlePrevious() will back us up to some valid
// break position before the current position (we back our internal
// iterator up one step to prevent handlePrevious() from returning
// the current position), but not necessarily the last one before
// where we started
int32_t start = current();
text->previous();
int32_t lastResult = handlePrevious();
int32_t result = lastResult;
// iterate forward from the known break position until we pass our
// starting point. The last break position before the starting
// point is our return value
while (result != BreakIterator::DONE && result < start) {
lastResult = result;
result = handleNext();
}
// set the current iteration position to be the last break position
// before where we started, and then return that value
text->setIndex(lastResult);
return lastResult;
}
/**
* Sets the iterator to refer to the first boundary position following
* the specified position.
* @offset The position from which to begin searching for a break position.
* @return The position of the first break after the current position.
*/
int32_t RuleBasedBreakIterator::following(int32_t offset) {
// if the offset passed in is already past the end of the text,
// just return DONE; if it's before the beginning, return the
// text's starting offset
if (text == NULL || offset >= text->endIndex()) {
return BreakIterator::DONE;
}
else if (offset < text->startIndex()) {
return text->startIndex();
}
// otherwise, set our internal iteration position (temporarily)
// to the position passed in. If this is the _beginning_ position,
// then we can just use next() to get our return value
text->setIndex(offset);
if (offset == text->startIndex())
return handleNext();
// otherwise, we have to sync up first. Use handlePrevious() to back
// us up to a known break position before the specified position (if
// we can determine that the specified position is a break position,
// we don't back up at all). This may or may not be the last break
// position at or before our starting position. Advance forward
// from here until we've passed the starting position. The position
// we stop on will be the first break position after the specified one.
int32_t result = handlePrevious();
while (result != BreakIterator::DONE && result <= offset)
result = handleNext();
return result;
}
/**
* Sets the iterator to refer to the last boundary position before the
* specified position.
* @offset The position to begin searching for a break from.
* @return The position of the last boundary before the starting position.
*/
int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
// if the offset passed in is already past the end of the text,
// just return DONE; if it's before the beginning, return the
// text's starting offset
if (text == NULL || offset > text->endIndex()) {
return BreakIterator::DONE;
}
else if (offset < text->startIndex()) {
return text->startIndex();
}
// if we start by updating the current iteration position to the
// position specified by the caller, we can just use previous()
// to carry out this operation
text->setIndex(offset);
return previous();
}
/**
* Returns true if the specfied position is a boundary position. As a side
* effect, leaves the iterator pointing to the first boundary position at
* or after "offset".
* @param offset the offset to check.
* @return True if "offset" is a boundary position.
*/
UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
// the beginning index of the iterator is always a boundary position by definition
if (text == NULL || offset == text->startIndex()) {
return TRUE;
}
// out-of-range indexes are never boundary positions
else if (offset < text->startIndex() || offset > text->endIndex()) {
return FALSE;
}
// otherwise, we can use following() on the position before the specified
// one and return true of the position we get back is the one the user
// specified
else
return following(offset - 1) == offset;
}
/**
* Returns the current iteration position.
* @return The current iteration position.
*/
int32_t RuleBasedBreakIterator::current(void) const {
return (text != NULL) ? text->getIndex() : BreakIterator::DONE;
}
//=======================================================================
// implementation
//=======================================================================
/**
* This method is the actual implementation of the next() method. All iteration
* vectors through here. This method initializes the state machine to state 1
* and advances through the text character by character until we reach the end
* of the text or the state machine transitions to state 0. We update our return
* value every time the state machine passes through a possible end state.
*/
int32_t RuleBasedBreakIterator::handleNext(void) {
// if we're already at the end of the text, return DONE.
if (text == NULL || tables == NULL || text->getIndex() == text->endIndex())
return BreakIterator::DONE;
// no matter what, we always advance at least one character forward
int32_t result = text->getIndex() + 1;
int32_t lookaheadResult = 0;
// begin in state 1
int32_t state = START_STATE;
int32_t category;
UChar c = text->current();
UChar lastC = c;
int32_t lastCPos = 0;
// loop until we reach the end of the text or transition to state 0
while (c != CharacterIterator::DONE && state != STOP_STATE) {
// look up the current character's character category (which tells us
// which column in the state table to look at)
category = tables->lookupCategory(c, this);
// if the character isn't an ignore character, look up a state
// transition in the state table
if (category != IGNORE) {
state = tables->lookupState(state, category);
}
// if the state we've just transitioned to is a lookahead state,
// (but not also an end state), save its position. If it's
// both a lookahead state and an end state, update the break position
// to the last saved lookup-state position
if (tables->isLookaheadState(state)) {
if (tables->isEndState(state)) {
result = lookaheadResult;
}
else {
lookaheadResult = text->getIndex() + 1;
}
}
// otherwise, if the state we've just transitioned to is an accepting state,
// update our return value to be the current iteration position
else {
if (tables->isEndState(state)) {
result = text->getIndex() + 1;
}
}
// keep track of the last "real" character we saw. If this character isn't an
// ignore character, take note of it and its position in the text
if (category != IGNORE && state != STOP_STATE) {
lastC = c;
lastCPos = text->getIndex();
}
c = text->next();
}
// if we've run off the end of the text, and the very last character took us into
// a lookahead state, advance the break position to the lookahead position
// (the theory here is that if there are no characters at all after the lookahead
// position, that always matches the lookahead criteria)
if (c == CharacterIterator::DONE && lookaheadResult == text->endIndex()) {
result = lookaheadResult;
}
// if the last character we saw before the one that took us into the stop state
// was a mandatory breaking character, then the break position goes right after it
// (this is here so that breaks come before, rather than after, a string of
// ignore characters when they follow a mandatory break character)
else if (lastC == 0x0a || lastC == 0x0d || lastC == 0x0c || lastC == 0x2028
|| lastC == 0x2029) {
result = lastCPos + 1;
}
text->setIndex(result);
return result;
}
/**
* This method backs the iterator back up to a "safe position" in the text.
* This is a position that we know, without any context, must be a break position.
* The various calling methods then iterate forward from this safe position to
* the appropriate position to return. (For more information, see the description
* of buildBackwardsStateTable() in RuleBasedBreakIterator.Builder.)
*/
int32_t RuleBasedBreakIterator::handlePrevious(void) {
if (text == NULL || tables == NULL)
return 0;
int32_t state = START_STATE;
int32_t category = 0;
int32_t lastCategory = 0;
UChar c = text->current();
// loop until we reach the beginning of the text or transition to state 0
while (c != CharacterIterator::DONE && state != STOP_STATE) {
// save the last character's category and look up the current
// character's category
lastCategory = category;
category = tables->lookupCategory(c, this);
// if the current character isn't an ignore character, look up a
// state transition in the backwards state table
if (category != IGNORE)
state = tables->lookupBackwardState(state, category);
// then advance one character backwards
c = text->previous();
}
// if we didn't march off the beginning of the text, we're either one or two
// positions away from the real break position. (One because of the call to
// previous() at the end of the loop above, and another because the character
// that takes us into the stop state will always be the character BEFORE
// the break position.)
if (c != CharacterIterator::DONE) {
if (lastCategory != IGNORE)
text->setIndex(text->getIndex() + 2);
else
text->next();
}
return text->getIndex();
}
void
RuleBasedBreakIterator::reset()
{
// Base-class version of this function is a no-op.
// Subclasses may override with their own reset behavior.
}
// internal type for BufferClone
struct bufferCloneStructUChar
{
uint8_t bi [sizeof(RuleBasedBreakIterator)] ;
uint8_t text [sizeof(UCharCharacterIterator)] ;
};
struct bufferCloneStructString
{
uint8_t bi [sizeof(RuleBasedBreakIterator)] ;
uint8_t text [sizeof(StringCharacterIterator)] ;
};
BreakIterator * RuleBasedBreakIterator::createBufferClone(void *stackBuffer,
int32_t &BufferSize,
UErrorCode &status)
{
RuleBasedBreakIterator * localIterator;
int32_t bufferSizeNeeded;
UBool IterIsUChar;
UBool IterIsString;
if (U_FAILURE(status)){
return 0;
}
if (!this){
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if (text == NULL)
{
bufferSizeNeeded = (int32_t) sizeof(RuleBasedBreakIterator);
IterIsString = IterIsUChar = FALSE;
}
else if (text->getDynamicClassID() == StringCharacterIterator::getStaticClassID())
{
bufferSizeNeeded = (int32_t) sizeof(struct bufferCloneStructString);
IterIsString = TRUE;
IterIsUChar = FALSE;
}
else if (text->getDynamicClassID() == UCharCharacterIterator::getStaticClassID())
{
bufferSizeNeeded = (int32_t) sizeof(struct bufferCloneStructUChar);
IterIsString = FALSE;
IterIsUChar = TRUE;
}
else
{
// code has changed - time to make a real CharacterIterator::CreateBufferClone()
}
if (BufferSize == 0){ /* 'preflighting' request - set needed size into *pBufferSize */
BufferSize = bufferSizeNeeded;
return 0;
}
if (BufferSize < bufferSizeNeeded || !stackBuffer)
{
/* allocate one here...*/
localIterator = new RuleBasedBreakIterator(*this);
status = U_SAFECLONE_ALLOCATED_ERROR;
return localIterator;
}
if (IterIsUChar) {
struct bufferCloneStructUChar * localClone
= (struct bufferCloneStructUChar *)stackBuffer;
localIterator = (RuleBasedBreakIterator *)&localClone->bi;
uprv_memcpy(localIterator, this, sizeof(RuleBasedBreakIterator));
uprv_memcpy(&localClone->text, text, sizeof(UCharCharacterIterator));
localIterator->text = (CharacterIterator *) &localClone->text;
} else if (IterIsString) {
struct bufferCloneStructString * localClone
= (struct bufferCloneStructString *)stackBuffer;
localIterator = (RuleBasedBreakIterator *)&localClone->bi;
uprv_memcpy(localIterator, this, sizeof(RuleBasedBreakIterator));
uprv_memcpy(&localClone->text, text, sizeof(StringCharacterIterator));
localIterator->text = (CharacterIterator *)&localClone->text;
} else {
RuleBasedBreakIterator * localClone
= (RuleBasedBreakIterator *)stackBuffer;
localIterator = localClone;
uprv_memcpy(localIterator, this, sizeof(RuleBasedBreakIterator));
}
localIterator->fBufferClone = TRUE;
return localIterator;
}