scuffed-code/icu4c/source/test/intltest/utxttest.cpp

1648 lines
56 KiB
C++
Raw Normal View History

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/********************************************************************
* COPYRIGHT:
* Copyright (c) 2005-2016, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
/************************************************************************
* Tests for the UText and UTextIterator text abstraction classses
*
************************************************************************/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "unicode/utypes.h"
#include "unicode/utext.h"
#include "unicode/utf8.h"
#include "unicode/ustring.h"
#include "unicode/uchriter.h"
#include "cmemory.h"
#include "cstr.h"
#include "utxttest.h"
static UBool gFailed = FALSE;
static int gTestNum = 0;
// Forward decl
UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status);
#define TEST_ASSERT(x) \
{ if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\
gFailed = TRUE;\
}}
#define TEST_SUCCESS(status) \
{ if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \
gTestNum, __FILE__, __LINE__, u_errorName(status)); \
gFailed = TRUE;\
}}
UTextTest::UTextTest() {
}
UTextTest::~UTextTest() {
}
void
UTextTest::runIndexedTest(int32_t index, UBool exec,
const char* &name, char* /*par*/) {
switch (index) {
case 0: name = "TextTest";
if (exec) TextTest(); break;
case 1: name = "ErrorTest";
if (exec) ErrorTest(); break;
case 2: name = "FreezeTest";
if (exec) FreezeTest(); break;
case 3: name = "Ticket5560";
if (exec) Ticket5560(); break;
case 4: name = "Ticket6847";
if (exec) Ticket6847(); break;
case 5: name = "Ticket10562";
if (exec) Ticket10562(); break;
case 6: name = "Ticket10983";
if (exec) Ticket10983(); break;
case 7: name = "Ticket12130";
if (exec) Ticket12130(); break;
case 8: name = "Ticket12888";
if (exec) Ticket12888(); break;
default: name = ""; break;
}
}
//
// Quick and dirty random number generator.
// (don't use library so that results are portable.
static uint32_t m_seed = 1;
static uint32_t m_rand()
{
m_seed = m_seed * 1103515245 + 12345;
return (uint32_t)(m_seed/65536) % 32768;
}
//
// TextTest()
//
// Top Level function for UText testing.
// Specifies the strings to be tested, with the acutal testing itself
// being carried out in another function, TestString().
//
void UTextTest::TextTest() {
int32_t i, j;
TestString("abcd\\U00010001xyz");
TestString("");
// Supplementary chars at start or end
TestString("\\U00010001");
TestString("abc\\U00010001");
TestString("\\U00010001abc");
// Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries
UnicodeString s;
for (i=1; i<60; i++) {
s.truncate(0);
for (j=0; j<i; j++) {
if (j+0x30 == 0x5c) {
// backslash. Needs to be escaped
s.append((UChar)0x5c);
}
s.append(UChar(j+0x30));
}
TestString(s);
}
// Test strings with odd-aligned supplementary chars,
// looking for glitches at buffer boundaries
for (i=1; i<60; i++) {
s.truncate(0);
s.append((UChar)0x41);
for (j=0; j<i; j++) {
s.append(UChar32(j+0x11000));
}
TestString(s);
}
// String of chars of randomly varying size in utf-8 representation.
// Exercise the mapping, and the varying sized buffer.
//
s.truncate(0);
UChar32 c1 = 0;
UChar32 c2 = 0x100;
UChar32 c3 = 0xa000;
UChar32 c4 = 0x11000;
for (i=0; i<1000; i++) {
int len8 = m_rand()%4 + 1;
switch (len8) {
case 1:
c1 = (c1+1)%0x80;
// don't put 0 into string (0 terminated strings for some tests)
// don't put '\', will cause unescape() to fail.
if (c1==0x5c || c1==0) {
c1++;
}
s.append(c1);
break;
case 2:
s.append(c2++);
break;
case 3:
s.append(c3++);
break;
case 4:
s.append(c4++);
break;
}
}
TestString(s);
}
//
// TestString() Run a suite of UText tests on a string.
// The test string is unescaped before use.
//
void UTextTest::TestString(const UnicodeString &s) {
int32_t i;
int32_t j;
UChar32 c;
int32_t cpCount = 0;
UErrorCode status = U_ZERO_ERROR;
UText *ut = NULL;
int32_t saLen;
UnicodeString sa = s.unescape();
saLen = sa.length();
//
// Build up a mapping between code points and UTF-16 code unit indexes.
//
m *cpMap = new m[sa.length() + 1];
j = 0;
for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) {
c = sa.char32At(i);
cpMap[j].nativeIdx = i;
cpMap[j].cp = c;
j++;
cpCount++;
}
cpMap[j].nativeIdx = i; // position following the last char in utf-16 string.
// UChar * test, null terminated
status = U_ZERO_ERROR;
UChar *buf = new UChar[saLen+1];
sa.extract(buf, saLen+1, status);
TEST_SUCCESS(status);
ut = utext_openUChars(NULL, buf, -1, &status);
TEST_SUCCESS(status);
TestAccess(sa, ut, cpCount, cpMap);
utext_close(ut);
delete [] buf;
// UChar * test, with length
status = U_ZERO_ERROR;
buf = new UChar[saLen+1];
sa.extract(buf, saLen+1, status);
TEST_SUCCESS(status);
ut = utext_openUChars(NULL, buf, saLen, &status);
TEST_SUCCESS(status);
TestAccess(sa, ut, cpCount, cpMap);
utext_close(ut);
delete [] buf;
// UnicodeString test
status = U_ZERO_ERROR;
ut = utext_openUnicodeString(NULL, &sa, &status);
TEST_SUCCESS(status);
TestAccess(sa, ut, cpCount, cpMap);
TestCMR(sa, ut, cpCount, cpMap, cpMap);
utext_close(ut);
// Const UnicodeString test
status = U_ZERO_ERROR;
ut = utext_openConstUnicodeString(NULL, &sa, &status);
TEST_SUCCESS(status);
TestAccess(sa, ut, cpCount, cpMap);
utext_close(ut);
// Replaceable test. (UnicodeString inherits Replaceable)
status = U_ZERO_ERROR;
ut = utext_openReplaceable(NULL, &sa, &status);
TEST_SUCCESS(status);
TestAccess(sa, ut, cpCount, cpMap);
TestCMR(sa, ut, cpCount, cpMap, cpMap);
utext_close(ut);
// Character Iterator Tests
status = U_ZERO_ERROR;
const UChar *cbuf = sa.getBuffer();
CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status);
TEST_SUCCESS(status);
ut = utext_openCharacterIterator(NULL, ci, &status);
TEST_SUCCESS(status);
TestAccess(sa, ut, cpCount, cpMap);
utext_close(ut);
delete ci;
// Fragmented UnicodeString (Chunk size of one)
//
status = U_ZERO_ERROR;
ut = openFragmentedUnicodeString(NULL, &sa, &status);
TEST_SUCCESS(status);
TestAccess(sa, ut, cpCount, cpMap);
utext_close(ut);
//
// UTF-8 test
//
// Convert the test string from UnicodeString to (char *) in utf-8 format
int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8");
char *u8String = new char[u8Len + 1];
sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8");
// Build up the map of code point indices in the utf-8 string
m * u8Map = new m[sa.length() + 1];
i = 0; // native utf-8 index
for (j=0; j<cpCount ; j++) { // code point number
u8Map[j].nativeIdx = i;
U8_NEXT(u8String, i, u8Len, c)
u8Map[j].cp = c;
}
u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string.
// Do the test itself
status = U_ZERO_ERROR;
ut = utext_openUTF8(NULL, u8String, -1, &status);
TEST_SUCCESS(status);
TestAccess(sa, ut, cpCount, u8Map);
utext_close(ut);
delete []cpMap;
delete []u8Map;
delete []u8String;
}
// TestCMR test Copy, Move and Replace operations.
// us UnicodeString containing the test text.
// ut UText containing the same test text.
// cpCount number of code points in the test text.
// nativeMap Mapping from code points to native indexes for the UText.
// u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString.
//
// This function runs a whole series of opertions on each incoming UText.
// The UText is deep-cloned prior to each operation, so that the original UText remains unchanged.
//
void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) {
TEST_ASSERT(utext_isWritable(ut) == TRUE);
int srcLengthType; // Loop variables for selecting the postion and length
int srcPosType; // of the block to operate on within the source text.
int destPosType;
int srcIndex = 0; // Code Point indexes of the block to operate on for
int srcLength = 0; // a specific test.
int destIndex = 0; // Code point index of the destination for a copy/move test.
int32_t nativeStart = 0; // Native unit indexes for a test.
int32_t nativeLimit = 0;
int32_t nativeDest = 0;
int32_t u16Start = 0; // UTF-16 indexes for a test.
int32_t u16Limit = 0; // used when performing the same operation in a Unicode String
int32_t u16Dest = 0;
// Iterate over a whole series of source index, length and a target indexes.
// This is done with code point indexes; these will be later translated to native
// indexes using the cpMap.
for (srcLengthType=1; srcLengthType<=3; srcLengthType++) {
switch (srcLengthType) {
case 1: srcLength = 1; break;
case 2: srcLength = 5; break;
case 3: srcLength = cpCount / 3;
}
for (srcPosType=1; srcPosType<=5; srcPosType++) {
switch (srcPosType) {
case 1: srcIndex = 0; break;
case 2: srcIndex = 1; break;
case 3: srcIndex = cpCount - srcLength; break;
case 4: srcIndex = cpCount - srcLength - 1; break;
case 5: srcIndex = cpCount / 2; break;
}
if (srcIndex < 0 || srcIndex + srcLength > cpCount) {
// filter out bogus test cases -
// those with a source range that falls of an edge of the string.
continue;
}
//
// Copy and move tests.
// iterate over a variety of destination positions.
//
for (destPosType=1; destPosType<=4; destPosType++) {
switch (destPosType) {
case 1: destIndex = 0; break;
case 2: destIndex = 1; break;
case 3: destIndex = srcIndex - 1; break;
case 4: destIndex = srcIndex + srcLength + 1; break;
case 5: destIndex = cpCount-1; break;
case 6: destIndex = cpCount; break;
}
if (destIndex<0 || destIndex>cpCount) {
// filter out bogus test cases.
continue;
}
nativeStart = nativeMap[srcIndex].nativeIdx;
nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx;
nativeDest = nativeMap[destIndex].nativeIdx;
u16Start = u16Map[srcIndex].nativeIdx;
u16Limit = u16Map[srcIndex+srcLength].nativeIdx;
u16Dest = u16Map[destIndex].nativeIdx;
gFailed = FALSE;
TestCopyMove(us, ut, FALSE,
nativeStart, nativeLimit, nativeDest,
u16Start, u16Limit, u16Dest);
TestCopyMove(us, ut, TRUE,
nativeStart, nativeLimit, nativeDest,
u16Start, u16Limit, u16Dest);
if (gFailed) {
return;
}
}
//
// Replace tests.
//
UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text");
for (int32_t replStrLen=0; replStrLen<20; replStrLen++) {
UnicodeString repStr(fullRepString, 0, replStrLen);
TestReplace(us, ut,
nativeStart, nativeLimit,
u16Start, u16Limit,
repStr);
if (gFailed) {
return;
}
}
}
}
}
//
// TestCopyMove run a single test case for utext_copy.
// Test cases are created in TestCMR and dispatched here for execution.
//
void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move,
int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest,
int32_t u16Start, int32_t u16Limit, int32_t u16Dest)
{
UErrorCode status = U_ZERO_ERROR;
UText *targetUT = NULL;
gTestNum++;
gFailed = FALSE;
//
// clone the UText. The test will be run in the cloned copy
// so that we don't alter the original.
//
targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
TEST_SUCCESS(status);
UnicodeString targetUS(us); // And copy the reference string.
// do the test operation first in the reference
targetUS.copy(u16Start, u16Limit, u16Dest);
if (move) {
// delete out the source range.
if (u16Limit < u16Dest) {
targetUS.removeBetween(u16Start, u16Limit);
} else {
int32_t amtCopied = u16Limit - u16Start;
targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied);
}
}
// Do the same operation in the UText under test
utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status);
if (nativeDest > nativeStart && nativeDest < nativeLimit) {
TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR);
} else {
TEST_SUCCESS(status);
// Compare the results of the two parallel tests
int32_t usi = 0; // UnicodeString postion, utf-16 index.
int64_t uti = 0; // UText position, native index.
int32_t cpi; // char32 position (code point index)
UChar32 usc; // code point from Unicode String
UChar32 utc; // code point from UText
utext_setNativeIndex(targetUT, 0);
for (cpi=0; ; cpi++) {
usc = targetUS.char32At(usi);
utc = utext_next32(targetUT);
if (utc < 0) {
break;
}
TEST_ASSERT(uti == usi);
TEST_ASSERT(utc == usc);
usi = targetUS.moveIndex32(usi, 1);
uti = utext_getNativeIndex(targetUT);
if (gFailed) {
goto cleanupAndReturn;
}
}
int64_t expectedNativeLength = utext_nativeLength(ut);
if (move == FALSE) {
expectedNativeLength += nativeLimit - nativeStart;
}
uti = utext_getNativeIndex(targetUT);
TEST_ASSERT(uti == expectedNativeLength);
}
cleanupAndReturn:
utext_close(targetUT);
}
//
// TestReplace Test a single Replace operation.
//
void UTextTest::TestReplace(
const UnicodeString &us, // reference UnicodeString in which to do the replace
UText *ut, // UnicodeText object under test.
int32_t nativeStart, // Range to be replaced, in UText native units.
int32_t nativeLimit,
int32_t u16Start, // Range to be replaced, in UTF-16 units
int32_t u16Limit, // for use in the reference UnicodeString.
const UnicodeString &repStr) // The replacement string
{
UErrorCode status = U_ZERO_ERROR;
UText *targetUT = NULL;
gTestNum++;
gFailed = FALSE;
//
// clone the target UText. The test will be run in the cloned copy
// so that we don't alter the original.
//
targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
TEST_SUCCESS(status);
UnicodeString targetUS(us); // And copy the reference string.
//
// Do the replace operation in the Unicode String, to
// produce a reference result.
//
targetUS.replace(u16Start, u16Limit-u16Start, repStr);
//
// Do the replace on the UText under test
//
const UChar *rs = repStr.getBuffer();
int32_t rsLen = repStr.length();
int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status);
int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart);
TEST_ASSERT(actualDelta == expectedDelta);
//
// Compare the results
//
int32_t usi = 0; // UnicodeString postion, utf-16 index.
int64_t uti = 0; // UText position, native index.
int32_t cpi; // char32 position (code point index)
UChar32 usc; // code point from Unicode String
UChar32 utc; // code point from UText
int64_t expectedNativeLength = 0;
utext_setNativeIndex(targetUT, 0);
for (cpi=0; ; cpi++) {
usc = targetUS.char32At(usi);
utc = utext_next32(targetUT);
if (utc < 0) {
break;
}
TEST_ASSERT(uti == usi);
TEST_ASSERT(utc == usc);
usi = targetUS.moveIndex32(usi, 1);
uti = utext_getNativeIndex(targetUT);
if (gFailed) {
goto cleanupAndReturn;
}
}
expectedNativeLength = utext_nativeLength(ut) + expectedDelta;
uti = utext_getNativeIndex(targetUT);
TEST_ASSERT(uti == expectedNativeLength);
cleanupAndReturn:
utext_close(targetUT);
}
//
// TestAccess Test the read only access functions on a UText, including cloning.
// The text is accessed in a variety of ways, and compared with
// the reference UnicodeString.
//
void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
// Run the standard tests on the caller-supplied UText.
TestAccessNoClone(us, ut, cpCount, cpMap);
// Re-run tests on a shallow clone.
utext_setNativeIndex(ut, 0);
UErrorCode status = U_ZERO_ERROR;
UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status);
TEST_SUCCESS(status);
TestAccessNoClone(us, shallowClone, cpCount, cpMap);
//
// Rerun again on a deep clone.
// Note that text providers are not required to provide deep cloning,
// so unsupported errors are ignored.
//
status = U_ZERO_ERROR;
utext_setNativeIndex(shallowClone, 0);
UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status);
utext_close(shallowClone);
if (status != U_UNSUPPORTED_ERROR) {
TEST_SUCCESS(status);
TestAccessNoClone(us, deepClone, cpCount, cpMap);
}
utext_close(deepClone);
}
//
// TestAccessNoClone() Test the read only access functions on a UText.
// The text is accessed in a variety of ways, and compared with
// the reference UnicodeString.
//
void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
UErrorCode status = U_ZERO_ERROR;
gTestNum++;
//
// Check the length from the UText
//
int64_t expectedLen = cpMap[cpCount].nativeIdx;
int64_t utlen = utext_nativeLength(ut);
TEST_ASSERT(expectedLen == utlen);
//
// Iterate forwards, verify that we get the correct code points
// at the correct native offsets.
//
int i = 0;
int64_t index;
int64_t expectedIndex = 0;
int64_t foundIndex = 0;
UChar32 expectedC;
UChar32 foundC;
int64_t len;
for (i=0; i<cpCount; i++) {
expectedIndex = cpMap[i].nativeIdx;
foundIndex = utext_getNativeIndex(ut);
TEST_ASSERT(expectedIndex == foundIndex);
expectedC = cpMap[i].cp;
foundC = utext_next32(ut);
TEST_ASSERT(expectedC == foundC);
foundIndex = utext_getPreviousNativeIndex(ut);
TEST_ASSERT(expectedIndex == foundIndex);
if (gFailed) {
return;
}
}
foundC = utext_next32(ut);
TEST_ASSERT(foundC == U_SENTINEL);
// Repeat above, using macros
utext_setNativeIndex(ut, 0);
for (i=0; i<cpCount; i++) {
expectedIndex = cpMap[i].nativeIdx;
foundIndex = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(expectedIndex == foundIndex);
expectedC = cpMap[i].cp;
foundC = UTEXT_NEXT32(ut);
TEST_ASSERT(expectedC == foundC);
if (gFailed) {
return;
}
}
foundC = UTEXT_NEXT32(ut);
TEST_ASSERT(foundC == U_SENTINEL);
//
// Forward iteration (above) should have left index at the
// end of the input, which should == length().
//
len = utext_nativeLength(ut);
foundIndex = utext_getNativeIndex(ut);
TEST_ASSERT(len == foundIndex);
//
// Iterate backwards over entire test string
//
len = utext_getNativeIndex(ut);
utext_setNativeIndex(ut, len);
for (i=cpCount-1; i>=0; i--) {
expectedC = cpMap[i].cp;
expectedIndex = cpMap[i].nativeIdx;
int64_t prevIndex = utext_getPreviousNativeIndex(ut);
foundC = utext_previous32(ut);
foundIndex = utext_getNativeIndex(ut);
TEST_ASSERT(expectedIndex == foundIndex);
TEST_ASSERT(expectedC == foundC);
TEST_ASSERT(prevIndex == foundIndex);
if (gFailed) {
return;
}
}
//
// Backwards iteration, above, should have left our iterator
// position at zero, and continued backwards iterationshould fail.
//
foundIndex = utext_getNativeIndex(ut);
TEST_ASSERT(foundIndex == 0);
foundIndex = utext_getPreviousNativeIndex(ut);
TEST_ASSERT(foundIndex == 0);
foundC = utext_previous32(ut);
TEST_ASSERT(foundC == U_SENTINEL);
foundIndex = utext_getNativeIndex(ut);
TEST_ASSERT(foundIndex == 0);
foundIndex = utext_getPreviousNativeIndex(ut);
TEST_ASSERT(foundIndex == 0);
// And again, with the macros
utext_setNativeIndex(ut, len);
for (i=cpCount-1; i>=0; i--) {
expectedC = cpMap[i].cp;
expectedIndex = cpMap[i].nativeIdx;
foundC = UTEXT_PREVIOUS32(ut);
foundIndex = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(expectedIndex == foundIndex);
TEST_ASSERT(expectedC == foundC);
if (gFailed) {
return;
}
}
//
// Backwards iteration, above, should have left our iterator
// position at zero, and continued backwards iterationshould fail.
//
foundIndex = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(foundIndex == 0);
foundC = UTEXT_PREVIOUS32(ut);
TEST_ASSERT(foundC == U_SENTINEL);
foundIndex = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(foundIndex == 0);
if (gFailed) {
return;
}
//
// next32From(), prevous32From(), Iterate in a somewhat random order.
//
int cpIndex = 0;
for (i=0; i<cpCount; i++) {
cpIndex = (cpIndex + 9973) % cpCount;
index = cpMap[cpIndex].nativeIdx;
expectedC = cpMap[cpIndex].cp;
foundC = utext_next32From(ut, index);
TEST_ASSERT(expectedC == foundC);
if (gFailed) {
return;
}
}
cpIndex = 0;
for (i=0; i<cpCount; i++) {
cpIndex = (cpIndex + 9973) % cpCount;
index = cpMap[cpIndex+1].nativeIdx;
expectedC = cpMap[cpIndex].cp;
foundC = utext_previous32From(ut, index);
TEST_ASSERT(expectedC == foundC);
if (gFailed) {
return;
}
}
//
// moveIndex(int32_t delta);
//
// Walk through frontwards, incrementing by one
utext_setNativeIndex(ut, 0);
for (i=1; i<=cpCount; i++) {
utext_moveIndex32(ut, 1);
index = utext_getNativeIndex(ut);
expectedIndex = cpMap[i].nativeIdx;
TEST_ASSERT(expectedIndex == index);
index = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(expectedIndex == index);
}
// Walk through frontwards, incrementing by two
utext_setNativeIndex(ut, 0);
for (i=2; i<cpCount; i+=2) {
utext_moveIndex32(ut, 2);
index = utext_getNativeIndex(ut);
expectedIndex = cpMap[i].nativeIdx;
TEST_ASSERT(expectedIndex == index);
index = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(expectedIndex == index);
}
// walk through the string backwards, decrementing by one.
i = cpMap[cpCount].nativeIdx;
utext_setNativeIndex(ut, i);
for (i=cpCount; i>=0; i--) {
expectedIndex = cpMap[i].nativeIdx;
index = utext_getNativeIndex(ut);
TEST_ASSERT(expectedIndex == index);
index = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(expectedIndex == index);
utext_moveIndex32(ut, -1);
}
// walk through backwards, decrementing by three
i = cpMap[cpCount].nativeIdx;
utext_setNativeIndex(ut, i);
for (i=cpCount; i>=0; i-=3) {
expectedIndex = cpMap[i].nativeIdx;
index = utext_getNativeIndex(ut);
TEST_ASSERT(expectedIndex == index);
index = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(expectedIndex == index);
utext_moveIndex32(ut, -3);
}
//
// Extract
//
int bufSize = us.length() + 10;
UChar *buf = new UChar[bufSize];
status = U_ZERO_ERROR;
expectedLen = us.length();
len = utext_extract(ut, 0, utlen, buf, bufSize, &status);
TEST_SUCCESS(status);
TEST_ASSERT(len == expectedLen);
int compareResult = us.compare(buf, -1);
TEST_ASSERT(compareResult == 0);
status = U_ZERO_ERROR;
len = utext_extract(ut, 0, utlen, NULL, 0, &status);
if (utlen == 0) {
TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
} else {
TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
}
TEST_ASSERT(len == expectedLen);
status = U_ZERO_ERROR;
u_memset(buf, 0x5555, bufSize);
len = utext_extract(ut, 0, utlen, buf, 1, &status);
if (us.length() == 0) {
TEST_SUCCESS(status);
TEST_ASSERT(buf[0] == 0);
} else {
// Buf len == 1, extracting a single 16 bit value.
// If the data char is supplementary, it doesn't matter whether the buffer remains unchanged,
// or whether the lead surrogate of the pair is extracted.
// It's a buffer overflow error in either case.
TEST_ASSERT(buf[0] == us.charAt(0) ||
(buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0))));
TEST_ASSERT(buf[1] == 0x5555);
if (us.length() == 1) {
TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
} else {
TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
}
}
delete []buf;
}
//
// ErrorTest() Check various error and edge cases.
//
void UTextTest::ErrorTest()
{
// Close of an unitialized UText. Shouldn't blow up.
{
UText ut;
memset(&ut, 0, sizeof(UText));
utext_close(&ut);
utext_close(NULL);
}
// Double-close of a UText. Shouldn't blow up. UText should still be usable.
{
UErrorCode status = U_ZERO_ERROR;
UText ut = UTEXT_INITIALIZER;
UnicodeString s("Hello, World");
UText *ut2 = utext_openUnicodeString(&ut, &s, &status);
TEST_SUCCESS(status);
TEST_ASSERT(ut2 == &ut);
UText *ut3 = utext_close(&ut);
TEST_ASSERT(ut3 == &ut);
UText *ut4 = utext_close(&ut);
TEST_ASSERT(ut4 == &ut);
utext_openUnicodeString(&ut, &s, &status);
TEST_SUCCESS(status);
utext_close(&ut);
}
// Re-use of a UText, chaining through each of the types of UText
// (If it doesn't blow up, and doesn't leak, it's probably working fine)
{
UErrorCode status = U_ZERO_ERROR;
UText ut = UTEXT_INITIALIZER;
UText *utp;
UnicodeString s1("Hello, World");
UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0};
const char *s3 = "\x66\x67\x68";
utp = utext_openUnicodeString(&ut, &s1, &status);
TEST_SUCCESS(status);
TEST_ASSERT(utp == &ut);
utp = utext_openConstUnicodeString(&ut, &s1, &status);
TEST_SUCCESS(status);
TEST_ASSERT(utp == &ut);
utp = utext_openUTF8(&ut, s3, -1, &status);
TEST_SUCCESS(status);
TEST_ASSERT(utp == &ut);
utp = utext_openUChars(&ut, s2, -1, &status);
TEST_SUCCESS(status);
TEST_ASSERT(utp == &ut);
utp = utext_close(&ut);
TEST_ASSERT(utp == &ut);
utp = utext_openUnicodeString(&ut, &s1, &status);
TEST_SUCCESS(status);
TEST_ASSERT(utp == &ut);
}
// Invalid parameters on open
//
{
UErrorCode status = U_ZERO_ERROR;
UText ut = UTEXT_INITIALIZER;
utext_openUChars(&ut, NULL, 5, &status);
TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
status = U_ZERO_ERROR;
utext_openUChars(&ut, NULL, -1, &status);
TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
status = U_ZERO_ERROR;
utext_openUTF8(&ut, NULL, 4, &status);
TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
status = U_ZERO_ERROR;
utext_openUTF8(&ut, NULL, -1, &status);
TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
}
//
// UTF-8 with malformed sequences.
// These should come through as the Unicode replacement char, \ufffd
//
{
UErrorCode status = U_ZERO_ERROR;
UText *ut = NULL;
const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43";
UChar32 c;
ut = utext_openUTF8(NULL, badUTF8, -1, &status);
TEST_SUCCESS(status);
c = utext_char32At(ut, 1);
TEST_ASSERT(c == 0xfffd);
c = utext_char32At(ut, 3);
TEST_ASSERT(c == 0xfffd);
c = utext_char32At(ut, 5);
TEST_ASSERT(c == 0xfffd);
c = utext_char32At(ut, 6);
TEST_ASSERT(c == 0x43);
UChar buf[10];
int n = utext_extract(ut, 0, 9, buf, 10, &status);
TEST_SUCCESS(status);
TEST_ASSERT(n==5);
TEST_ASSERT(buf[1] == 0xfffd);
TEST_ASSERT(buf[3] == 0xfffd);
TEST_ASSERT(buf[2] == 0x42);
utext_close(ut);
}
//
// isLengthExpensive - does it make the exptected transitions after
// getting the length of a nul terminated string?
//
{
UErrorCode status = U_ZERO_ERROR;
UnicodeString sa("Hello, this is a string");
UBool isExpensive;
UChar sb[100];
memset(sb, 0x20, sizeof(sb));
sb[99] = 0;
UText *uta = utext_openUnicodeString(NULL, &sa, &status);
TEST_SUCCESS(status);
isExpensive = utext_isLengthExpensive(uta);
TEST_ASSERT(isExpensive == FALSE);
utext_close(uta);
UText *utb = utext_openUChars(NULL, sb, -1, &status);
TEST_SUCCESS(status);
isExpensive = utext_isLengthExpensive(utb);
TEST_ASSERT(isExpensive == TRUE);
int64_t len = utext_nativeLength(utb);
TEST_ASSERT(len == 99);
isExpensive = utext_isLengthExpensive(utb);
TEST_ASSERT(isExpensive == FALSE);
utext_close(utb);
}
//
// Index to positions not on code point boundaries.
//
{
const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86";
int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9};
int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9};
int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5};
UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1};
UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146};
// extractLen is the size, in UChars, of what will be extracted between index and index+1.
// is zero when both index positions lie within the same code point.
int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0};
UErrorCode status = U_ZERO_ERROR;
UText *ut = utext_openUTF8(NULL, u8str, -1, &status);
TEST_SUCCESS(status);
// Check setIndex
int32_t i;
int32_t startMapLimit = UPRV_LENGTHOF(startMap);
for (i=0; i<startMapLimit; i++) {
utext_setNativeIndex(ut, i);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == startMap[i]);
cpIndex = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(cpIndex == startMap[i]);
}
// Check char32At
for (i=0; i<startMapLimit; i++) {
UChar32 c32 = utext_char32At(ut, i);
TEST_ASSERT(c32 == c32Map[i]);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == startMap[i]);
}
// Check utext_next32From
for (i=0; i<startMapLimit; i++) {
UChar32 c32 = utext_next32From(ut, i);
TEST_ASSERT(c32 == c32Map[i]);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == nextMap[i]);
}
// check utext_previous32From
for (i=0; i<startMapLimit; i++) {
gTestNum++;
UChar32 c32 = utext_previous32From(ut, i);
TEST_ASSERT(c32 == pr32Map[i]);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == prevMap[i]);
}
// check Extract
// Extract from i to i+1, which may be zero or one code points,
// depending on whether the indices straddle a cp boundary.
for (i=0; i<startMapLimit; i++) {
UChar buf[3];
status = U_ZERO_ERROR;
int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
TEST_SUCCESS(status);
TEST_ASSERT(extractedLen == exLen[i]);
if (extractedLen > 0) {
UChar32 c32;
/* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
TEST_ASSERT(c32 == c32Map[i]);
}
}
utext_close(ut);
}
{ // Similar test, with utf16 instead of utf8
// TODO: merge the common parts of these tests.
UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6};
int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6};
int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4};
UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1};
UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000};
int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,};
u16str = u16str.unescape();
UErrorCode status = U_ZERO_ERROR;
UText *ut = utext_openUnicodeString(NULL, &u16str, &status);
TEST_SUCCESS(status);
int32_t startMapLimit = UPRV_LENGTHOF(startMap);
int i;
for (i=0; i<startMapLimit; i++) {
utext_setNativeIndex(ut, i);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == startMap[i]);
}
// Check char32At
for (i=0; i<startMapLimit; i++) {
UChar32 c32 = utext_char32At(ut, i);
TEST_ASSERT(c32 == c32Map[i]);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == startMap[i]);
}
// Check utext_next32From
for (i=0; i<startMapLimit; i++) {
UChar32 c32 = utext_next32From(ut, i);
TEST_ASSERT(c32 == c32Map[i]);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == nextMap[i]);
}
// check utext_previous32From
for (i=0; i<startMapLimit; i++) {
UChar32 c32 = utext_previous32From(ut, i);
TEST_ASSERT(c32 == pr32Map[i]);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == prevMap[i]);
}
// check Extract
// Extract from i to i+1, which may be zero or one code points,
// depending on whether the indices straddle a cp boundary.
for (i=0; i<startMapLimit; i++) {
UChar buf[3];
status = U_ZERO_ERROR;
int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
TEST_SUCCESS(status);
TEST_ASSERT(extractedLen == exLen[i]);
if (extractedLen > 0) {
UChar32 c32;
/* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
TEST_ASSERT(c32 == c32Map[i]);
}
}
utext_close(ut);
}
{ // Similar test, with UText over Replaceable
// TODO: merge the common parts of these tests.
UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6};
int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6};
int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4};
UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1};
UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000};
int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,};
u16str = u16str.unescape();
UErrorCode status = U_ZERO_ERROR;
UText *ut = utext_openReplaceable(NULL, &u16str, &status);
TEST_SUCCESS(status);
int32_t startMapLimit = UPRV_LENGTHOF(startMap);
int i;
for (i=0; i<startMapLimit; i++) {
utext_setNativeIndex(ut, i);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == startMap[i]);
}
// Check char32At
for (i=0; i<startMapLimit; i++) {
UChar32 c32 = utext_char32At(ut, i);
TEST_ASSERT(c32 == c32Map[i]);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == startMap[i]);
}
// Check utext_next32From
for (i=0; i<startMapLimit; i++) {
UChar32 c32 = utext_next32From(ut, i);
TEST_ASSERT(c32 == c32Map[i]);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == nextMap[i]);
}
// check utext_previous32From
for (i=0; i<startMapLimit; i++) {
UChar32 c32 = utext_previous32From(ut, i);
TEST_ASSERT(c32 == pr32Map[i]);
int64_t cpIndex = utext_getNativeIndex(ut);
TEST_ASSERT(cpIndex == prevMap[i]);
}
// check Extract
// Extract from i to i+1, which may be zero or one code points,
// depending on whether the indices straddle a cp boundary.
for (i=0; i<startMapLimit; i++) {
UChar buf[3];
status = U_ZERO_ERROR;
int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
TEST_SUCCESS(status);
TEST_ASSERT(extractedLen == exLen[i]);
if (extractedLen > 0) {
UChar32 c32;
/* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
TEST_ASSERT(c32 == c32Map[i]);
}
}
utext_close(ut);
}
}
void UTextTest::FreezeTest() {
// Check isWritable() and freeze() behavior.
//
UnicodeString ustr("Hello, World.");
const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0};
const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0};
UErrorCode status = U_ZERO_ERROR;
UText *ut = NULL;
UText *ut2 = NULL;
ut = utext_openUTF8(ut, u8str, -1, &status);
TEST_SUCCESS(status);
UBool writable = utext_isWritable(ut);
TEST_ASSERT(writable == FALSE);
utext_copy(ut, 1, 2, 0, TRUE, &status);
TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
status = U_ZERO_ERROR;
ut = utext_openUChars(ut, u16str, -1, &status);
TEST_SUCCESS(status);
writable = utext_isWritable(ut);
TEST_ASSERT(writable == FALSE);
utext_copy(ut, 1, 2, 0, TRUE, &status);
TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
status = U_ZERO_ERROR;
ut = utext_openUnicodeString(ut, &ustr, &status);
TEST_SUCCESS(status);
writable = utext_isWritable(ut);
TEST_ASSERT(writable == TRUE);
utext_freeze(ut);
writable = utext_isWritable(ut);
TEST_ASSERT(writable == FALSE);
utext_copy(ut, 1, 2, 0, TRUE, &status);
TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
status = U_ZERO_ERROR;
ut = utext_openUnicodeString(ut, &ustr, &status);
TEST_SUCCESS(status);
ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false
TEST_SUCCESS(status);
writable = utext_isWritable(ut2);
TEST_ASSERT(writable == TRUE);
ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true
TEST_SUCCESS(status);
writable = utext_isWritable(ut2);
TEST_ASSERT(writable == FALSE);
utext_copy(ut2, 1, 2, 0, TRUE, &status);
TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
status = U_ZERO_ERROR;
ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status);
TEST_SUCCESS(status);
writable = utext_isWritable(ut);
TEST_ASSERT(writable == FALSE);
utext_copy(ut, 1, 2, 0, TRUE, &status);
TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
// Deep Clone of a frozen UText should re-enable writing in the copy.
status = U_ZERO_ERROR;
ut = utext_openUnicodeString(ut, &ustr, &status);
TEST_SUCCESS(status);
utext_freeze(ut);
ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone
TEST_SUCCESS(status);
writable = utext_isWritable(ut2);
TEST_ASSERT(writable == TRUE);
// Deep clone of a frozen UText, where the base type is intrinsically non-writable,
// should NOT enable writing in the copy.
status = U_ZERO_ERROR;
ut = utext_openUChars(ut, u16str, -1, &status);
TEST_SUCCESS(status);
utext_freeze(ut);
ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone
TEST_SUCCESS(status);
writable = utext_isWritable(ut2);
TEST_ASSERT(writable == FALSE);
// cleanup
utext_close(ut);
utext_close(ut2);
}
//
// Fragmented UText
// A UText type that works with a chunk size of 1.
// Intended to test for edge cases.
// Input comes from a UnicodeString.
//
// ut.b the character. Put into both halves.
//
U_CDECL_BEGIN
static UBool U_CALLCONV
fragTextAccess(UText *ut, int64_t index, UBool forward) {
const UnicodeString *us = (const UnicodeString *)ut->context;
UChar c;
int32_t length = us->length();
if (forward && index>=0 && index<length) {
c = us->charAt((int32_t)index);
ut->b = c | c<<16;
ut->chunkOffset = 0;
ut->chunkLength = 1;
ut->chunkNativeStart = index;
ut->chunkNativeLimit = index+1;
return true;
}
if (!forward && index>0 && index <=length) {
c = us->charAt((int32_t)index-1);
ut->b = c | c<<16;
ut->chunkOffset = 1;
ut->chunkLength = 1;
ut->chunkNativeStart = index-1;
ut->chunkNativeLimit = index;
return true;
}
ut->b = 0;
ut->chunkOffset = 0;
ut->chunkLength = 0;
if (index <= 0) {
ut->chunkNativeStart = 0;
ut->chunkNativeLimit = 0;
} else {
ut->chunkNativeStart = length;
ut->chunkNativeLimit = length;
}
return false;
}
// Function table to be used with this fragmented text provider.
// Initialized in the open function.
static UTextFuncs fragmentFuncs;
// Clone function for fragmented text provider.
// Didn't really want to provide this, but it's easier to provide it than to keep it
// out of the tests.
//
UText *
cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
if (U_FAILURE(*status)) {
return NULL;
}
if (deep) {
*status = U_UNSUPPORTED_ERROR;
return NULL;
}
dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status);
utext_setNativeIndex(dest, utext_getNativeIndex(src));
return dest;
}
U_CDECL_END
// Open function for the fragmented text provider.
UText *
openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
ut = utext_openUnicodeString(ut, s, status);
if (U_FAILURE(*status)) {
return ut;
}
// Copy of the function table from the stock UnicodeString UText,
// and replace the entry for the access function.
memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs));
fragmentFuncs.access = fragTextAccess;
fragmentFuncs.clone = cloneFragmentedUnicodeString;
ut->pFuncs = &fragmentFuncs;
ut->chunkContents = (UChar *)&ut->b;
ut->pFuncs->access(ut, 0, TRUE);
return ut;
}
// Regression test for Ticket 5560
// Clone fails to update chunkContentPointer in the cloned copy.
// This is only an issue for UText types that work in a local buffer,
// (UTF-8 wrapper, for example)
//
// The test:
// 1. Create an inital UText
// 2. Deep clone it. Contents should match original.
// 3. Reset original to something different.
// 4. Check that clone contents did not change.
//
void UTextTest::Ticket5560() {
/* The following two strings are in UTF-8 even on EBCDIC platforms. */
static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */
static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */
UErrorCode status = U_ZERO_ERROR;
UText ut1 = UTEXT_INITIALIZER;
UText ut2 = UTEXT_INITIALIZER;
utext_openUTF8(&ut1, s1, -1, &status);
UChar c = utext_next32(&ut1);
TEST_ASSERT(c == 0x41); // c == 'A'
utext_clone(&ut2, &ut1, TRUE, FALSE, &status);
TEST_SUCCESS(status);
c = utext_next32(&ut2);
TEST_ASSERT(c == 0x42); // c == 'B'
c = utext_next32(&ut1);
TEST_ASSERT(c == 0x42); // c == 'B'
utext_openUTF8(&ut1, s2, -1, &status);
c = utext_next32(&ut1);
TEST_ASSERT(c == 0x31); // c == '1'
c = utext_next32(&ut2);
TEST_ASSERT(c == 0x43); // c == 'C'
utext_close(&ut1);
utext_close(&ut2);
}
// Test for Ticket 6847
//
void UTextTest::Ticket6847() {
const int STRLEN = 90;
UChar s[STRLEN+1];
u_memset(s, 0x41, STRLEN);
s[STRLEN] = 0;
UErrorCode status = U_ZERO_ERROR;
UText *ut = utext_openUChars(NULL, s, -1, &status);
utext_setNativeIndex(ut, 0);
int32_t count = 0;
UChar32 c = 0;
int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(nativeIndex == 0);
while ((c = utext_next32(ut)) != U_SENTINEL) {
TEST_ASSERT(c == 0x41);
TEST_ASSERT(count < STRLEN);
if (count >= STRLEN) {
break;
}
count++;
nativeIndex = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(nativeIndex == count);
}
TEST_ASSERT(count == STRLEN);
nativeIndex = UTEXT_GETNATIVEINDEX(ut);
TEST_ASSERT(nativeIndex == STRLEN);
utext_close(ut);
}
void UTextTest::Ticket10562() {
// Note: failures show as a heap error when the test is run under valgrind.
UErrorCode status = U_ZERO_ERROR;
const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41";
UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status);
TEST_SUCCESS(status);
UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status);
TEST_SUCCESS(status);
UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status);
TEST_SUCCESS(status);
utext_close(shallowClone);
utext_close(deepClone);
utext_close(utf8Text);
status = U_ZERO_ERROR;
UnicodeString usString("Hello, World.");
UText *usText = utext_openUnicodeString(NULL, &usString, &status);
TEST_SUCCESS(status);
UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status);
TEST_SUCCESS(status);
UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status);
TEST_SUCCESS(status);
utext_close(usShallowClone);
utext_close(usDeepClone);
utext_close(usText);
}
void UTextTest::Ticket10983() {
// Note: failure shows as a seg fault when the defect is present.
UErrorCode status = U_ZERO_ERROR;
UnicodeString s("Hello, World");
UText *ut = utext_openConstUnicodeString(NULL, &s, &status);
TEST_SUCCESS(status);
status = U_INVALID_STATE_ERROR;
UText *cloned = utext_clone(NULL, ut, TRUE, TRUE, &status);
TEST_ASSERT(cloned == NULL);
TEST_ASSERT(status == U_INVALID_STATE_ERROR);
utext_close(ut);
}
// Ticket 12130 - extract on a UText wrapping a null terminated UChar * string
// leaves the iteration position set incorrectly when the
// actual string length is not yet known.
//
// The test text needs to be long enough that UText defers getting the length.
void UTextTest::Ticket12130() {
UErrorCode status = U_ZERO_ERROR;
const char *text8 =
"Fundamentally, computers just deal with numbers. They store letters and other characters "
"by assigning a number for each one. Before Unicode was invented, there were hundreds "
"of different encoding systems for assigning these numbers. No single encoding could "
"contain enough characters: for example, the European Union alone requires several "
"different encodings to cover all its languages. Even for a single language like "
"English no single encoding was adequate for all the letters, punctuation, and technical "
"symbols in common use.";
UnicodeString str(text8);
const UChar *ustr = str.getTerminatedBuffer();
UText ut = UTEXT_INITIALIZER;
utext_openUChars(&ut, ustr, -1, &status);
UChar extractBuffer[50];
for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) {
int32_t endIdx = startIdx + 20;
u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer));
utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status);
if (U_FAILURE(status)) {
errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status));
return;
}
int64_t ni = utext_getNativeIndex(&ut);
int64_t expectedni = startIdx + 20;
if (expectedni > str.length()) {
expectedni = str.length();
}
if (expectedni != ni) {
errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni);
}
if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) {
errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"",
__FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))());
}
}
utext_close(&ut);
// Similar utext extract, this time with the string length provided to the UText in advance,
// and a buffer of larger than required capacity.
utext_openUChars(&ut, ustr, str.length(), &status);
for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) {
int32_t endIdx = startIdx + 20;
u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer));
utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status);
if (U_FAILURE(status)) {
errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status));
return;
}
int64_t ni = utext_getNativeIndex(&ut);
int64_t expectedni = startIdx + 20;
if (expectedni > str.length()) {
expectedni = str.length();
}
if (expectedni != ni) {
errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni);
}
if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) {
errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"",
__FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))());
}
}
utext_close(&ut);
}
// Ticket 12888: bad handling of illegal utf-8 containing many instances of the archaic, now illegal,
// six byte utf-8 forms. Original implementation had an assumption that
// there would be at most three utf-8 bytes per UTF-16 code unit.
// The five and six byte sequences map to a single replacement character.
void UTextTest::Ticket12888() {
const char *badString =
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"
"\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80";
UErrorCode status = U_ZERO_ERROR;
LocalUTextPointer ut(utext_openUTF8(NULL, badString, -1, &status));
TEST_SUCCESS(status);
for (;;) {
UChar32 c = utext_next32(ut.getAlias());
if (c == U_SENTINEL) {
break;
}
}
int32_t endIdx = utext_getNativeIndex(ut.getAlias());
if (endIdx != (int32_t)strlen(badString)) {
errln("%s:%d expected=%d, actual=%d", __FILE__, __LINE__, strlen(badString), endIdx);
return;
}
for (int32_t prevIndex = endIdx; prevIndex>0;) {
UChar32 c = utext_previous32(ut.getAlias());
int32_t currentIndex = utext_getNativeIndex(ut.getAlias());
if (c != 0xfffd) {
errln("%s:%d (expected, actual, index) = (%d, %d, %d)\n",
__FILE__, __LINE__, 0xfffd, c, currentIndex);
break;
}
if (currentIndex != prevIndex - 6) {
errln("%s:%d: wrong index. Expected, actual = %d, %d",
__FILE__, __LINE__, prevIndex - 6, currentIndex);
break;
}
prevIndex = currentIndex;
}
}