scuffed-code/icu4c/source/i18n/rbbi.cpp

394 lines
14 KiB
C++

/*
**********************************************************************
* Copyright (C) 1999 Alan Liu and others. All rights reserved.
**********************************************************************
* Date Name Description
* 10/22/99 alan Creation.
**********************************************************************
*/
#include "rbbi.h"
#include "rbbi_bld.h"
/**
* A token used as a character-category value to identify ignore characters
*/
int8_t RuleBasedBreakIterator::IGNORE = -1;
/**
* The state number of the starting state
*/
int16_t RuleBasedBreakIterator::START_STATE = 1;
/**
* The state-transition value indicating "stop"
*/
int16_t RuleBasedBreakIterator::STOP_STATE = 0;
//=======================================================================
// constructors
//=======================================================================
/**
* Constructs a RuleBasedBreakIterator according to the description
* provided. If the description is malformed, throws an
* IllegalArgumentException. Normally, instead of constructing a
* RuleBasedBreakIterator directory, you'll use the factory methods
* on BreakIterator to create one indirectly from a description
* in the framework's resource files. You'd use this when you want
* special behavior not provided by the built-in iterators.
*/
RuleBasedBreakIterator::RuleBasedBreakIterator(const UnicodeString& description) {
this.description = description;
// the actual work is done by the Builder class
Builder builder;
builder.buildBreakIterator(*this, description);
}
//=======================================================================
// boilerplate
//=======================================================================
/**
* Clones this iterator.
* @return A newly-constructed RuleBasedBreakIterator with the same
* behavior as this one.
*/
RuleBasedBreakIterator* RuleBasedBreakIterator::clone() const {
return new RuleBasedBreakIterator(*this);
}
/**
* Returns true if both BreakIterators are of the same class, have the same
* rules, and iterate over the same text.
*/
bool_t RuleBasedBreakIterator::operator==(const RuleBasedBreakIterator& that) {
return description.equals(((RuleBasedBreakIterator)that).description)
&& text.equals(((RuleBasedBreakIterator)that).text);
}
/**
* Returns the description used to create this iterator
*/
UnicodeString RuleBasedBreakIterator::toString() {
return description;
}
/**
* Compute a hashcode for this BreakIterator
* @return A hash code
*/
int32_t RuleBasedBreakIterator::hashCode() {
return description.hashCode();
}
//=======================================================================
// BreakIterator overrides
//=======================================================================
/**
* Sets the current iteration position to the beginning of the text.
* (i.e., the CharacterIterator's starting offset).
* @return The offset of the beginning of the text.
*/
int32_t RuleBasedBreakIterator::first() {
CharacterIterator t = getText();
t.first();
return t.getIndex();
}
/**
* Sets the current iteration position to the end of the text.
* (i.e., the CharacterIterator's ending offset).
* @return The text's past-the-end offset.
*/
int32_t RuleBasedBreakIterator::last() {
CharacterIterator t = getText();
// I'm not sure why, but t.last() returns the offset of the last character,
// rather than the past-the-end offset
t.setIndex(t.getEndIndex());
return t.getIndex();
}
/**
* Advances the iterator either forward or backward the specified number of steps.
* Negative values move backward, and positive values move forward. This is
* equivalent to repeatedly calling next() or previous().
* @param n The number of steps to move. The sign indicates the direction
* (negative is backwards, and positive is forwards).
* @return The character offset of the boundary position n boundaries away from
* the current one.
*/
int32_t RuleBasedBreakIterator::next(int32_t n) {
int32_t result = current();
while (n > 0) {
result = handleNext();
--n;
}
while (n < 0) {
result = previous();
++n;
}
return result;
}
/**
* Advances the iterator to the next boundary position.
* @return The position of the first boundary after this one.
*/
int32_t RuleBasedBreakIterator::next() {
return handleNext();
}
/**
* Advances the iterator backwards, to the last boundary preceding this one.
* @return The position of the last boundary position preceding this one.
*/
int32_t RuleBasedBreakIterator::previous() {
// if we're already sitting at the beginning of the text, return DONE
CharacterIterator text = getText();
if (current() == text.getBeginIndex())
return BreakIterator.DONE;
// set things up. handlePrevious() will back us up to some valid
// break position before the current position (we back our internal
// iterator up one step to prevent handlePrevious() from returning
// the current position), but not necessarily the last one before
// where we started
int32_t start = current();
text.previous();
int32_t lastResult = handlePrevious();
int32_t result = lastResult;
// iterate forward from the known break position until we pass our
// starting point. The last break position before the starting
// point is our return value
while (result != BreakIterator.DONE && result < start) {
lastResult = result;
result = handleNext();
}
// set the current iteration position to be the last break position
// before where we started, and then return that value
text.setIndex(lastResult);
return lastResult;
}
/**
* Sets the iterator to refer to the first boundary position following
* the specified position.
* @offset The position from which to begin searching for a break position.
* @return The position of the first break after the current position.
*/
int32_t RuleBasedBreakIterator::following(int32_t offset) {
// if the offset passed in is already past the end of the text,
// just return DONE
CharacterIterator text = getText();
if (offset == text.getEndIndex())
return BreakIterator.DONE;
// otherwise, set our internal iteration position (temporarily)
// to the position passed in. If this is the _beginning_ position,
// then we can just use next() to get our return value
text.setIndex(offset);
if (offset == text.getBeginIndex())
return handleNext();
// otherwise, we have to sync up first. Use handlePrevious() to back
// us up to a known break position before the specified position (if
// we can determine that the specified position is a break position,
// we don't back up at all). This may or may not be the last break
// position at or before our starting position. Advance forward
// from here until we've passed the starting position. The position
// we stop on will be the first break position after the specified one.
int32_t result = handlePrevious();
while (result != BreakIterator.DONE && result <= offset)
result = handleNext();
return result;
}
/**
* Sets the iterator to refer to the last boundary position before the
* specified position.
* @offset The position to begin searching for a break from.
* @return The position of the last boundary before the starting position.
*/
int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
// if we start by updating the current iteration position to the
// position specified by the caller, we can just use previous()
// to carry out this operation
CharacterIterator text = getText();
text.setIndex(offset);
return previous();
}
/**
* Returns true if the specfied position is a boundary position. As a side
* effect, leaves the iterator pointing to the first boundary position at
* or after "offset".
* @param offset the offset to check.
* @return True if "offset" is a boundary position.
*/
bool_t RuleBasedBreakIterator::isBoundary(int32_t offset) {
// 0 is always a boundary position (I suspect this code is wrong; I think
// we're supposed to be comparing "offset" against text.getBeginIndex(). )
if (offset == 0)
return TRUE;
// otherwise, we can use following() on the position before the specified
// one and return true of the position we get back is the one the user
// specified
else
return following(offset - 1) == offset;
}
/**
* Returns the current iteration position.
* @return The current iteration position.
*/
int32_t RuleBasedBreakIterator::current() {
return getText().getIndex();
}
/**
* Return a CharacterIterator over the text being analyzed. This version
* of this method returns the actual CharacterIterator we're using internally.
* Changing the state of this iterator can have undefined consequences. If
* you need to change it, clone it first.
* @return An iterator over the text being analyzed.
*/
CharacterIterator RuleBasedBreakIterator::getText() {
// The iterator is initialized pointing to no text at all, so if this
// function is called while we're in that state, we have to fudge an
// an iterator to return.
if (text == 0)
text = new StringCharacterIterator("");
return text;
}
/**
* Set the iterator to analyze a new piece of text. This function resets
* the current iteration position to the beginning of the text.
* @param newText An iterator over the text to analyze.
*/
void RuleBasedBreakIterator::setText(CharacterIterator newText) {
text = newText;
text.first();
}
//=======================================================================
// implementation
//=======================================================================
/**
* This method is the actual implementation of the next() method. All iteration
* vectors through here. This method initializes the state machine to state 1
* and advances through the text character by character until we reach the end
* of the text or the state machine transitions to state 0. We update our return
* value every time the state machine passes through a possible end state.
*/
int32_t RuleBasedBreakIterator::handleNext() {
// if we're already at the end of the text, return DONE.
CharacterIterator text = getText();
if (text.getIndex() == text.getEndIndex())
return BreakIterator.DONE;
// no matter what, we always advance at least one character forward
int32_t result = text.getIndex() + 1;
// begin in state 1
int32_t state = START_STATE;
int32_t category;
UChar c = text.current();
// loop until we reach the end of the text or transition to state 0
while (c != CharacterIterator.DONE && state != STOP_STATE) {
// look up the current character's character category (which tells us
// which column in the state table to look at)
category = lookupCategory(c);
// if the character isn't an ignore character, look up a state
// transition in the state table
if (category != IGNORE) {
state = lookupState(state, category);
}
// if the state we've just transitioned to is an accepting state,
// update our return value to be the current iteration position
if (endStates[state])
result = text.getIndex() + 1;
c = text.next();
}
text.setIndex(result);
return result;
}
/**
* This method backs the iterator back up to a "safe position" in the text.
* This is a position that we know, without any context, must be a break position.
* The various calling methods then iterate forward from this safe position to
* the appropriate position to return. (For more information, see the description
* of buildBackwardsStateTable() in RuleBasedBreakIterator.Builder.)
*/
int32_t RuleBasedBreakIterator::handlePrevious() {
CharacterIterator text = getText();
int32_t state = START_STATE;
int32_t category = 0;
int32_t lastCategory = 0;
UChar c = text.current();
// loop until we reach the beginning of the text or transition to state 0
while (c != CharacterIterator.DONE && state != STOP_STATE) {
// save the last character's category and look up the current
// character's category
lastCategory = category;
category = lookupCategory(c);
// if the current character isn't an ignore character, look up a
// state transition in the backwards state table
if (category != IGNORE)
state = lookupBackwardState(state, category);
// then advance one character backwards
c = text.previous();
}
// if we didn't march off the beginning of the text, we're either one or two
// positions away from the real break position. (One because of the call to
// previous() at the end of the loop above, and another because the character
// that takes us into the stop state will always be the character BEFORE
// the break position.)
if (c != CharacterIterator.DONE) {
if (lastCategory != IGNORE)
text.setIndex(text.getIndex() + 2);
else
text.next();
}
return text.getIndex();
}
/**
* Looks up a character's category (i.e., its category for breaking purposes,
* not its Unicode category)
*/
int32_t RuleBasedBreakIterator::lookupCategory(UChar c) {
return UCharCategoryTable.elementAt(c);
}
/**
* Given a current state and a character category, looks up the
* next state to transition to in the state table.
*/
int32_t RuleBasedBreakIterator::lookupState(int32_t state, int32_t category) {
return stateTable[state * numCategories + category];
}
/**
* Given a current state and a character category, looks up the
* next state to transition to in the backwards state table.
*/
int32_t RuleBasedBreakIterator::lookupBackwardState(int32_t state, int32_t category) {
return backwardsStateTable[state * numCategories + category];
}