skia2/include/core/SkPixelRef.h

194 lines
6.2 KiB
C
Raw Normal View History

/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SkPixelRef_DEFINED
#define SkPixelRef_DEFINED
#include "SkRefCnt.h"
#include "SkString.h"
class SkBitmap;
class SkColorTable;
struct SkIRect;
class SkMutex;
class SkFlattenableReadBuffer;
class SkFlattenableWriteBuffer;
// this is an opaque class, not interpreted by skia
class SkGpuTexture;
/** \class SkPixelRef
This class is the smart container for pixel memory, and is used with
SkBitmap. A pixelref is installed into a bitmap, and then the bitmap can
access the actual pixel memory by calling lockPixels/unlockPixels.
This class can be shared/accessed between multiple threads.
*/
class SkPixelRef : public SkRefCnt {
public:
explicit SkPixelRef(SkMutex* mutex = NULL);
/** Return the pixel memory returned from lockPixels, or null if the
lockCount is 0.
*/
void* pixels() const { return fPixels; }
/** Return the current colorTable (if any) if pixels are locked, or null.
*/
SkColorTable* colorTable() const { return fColorTable; }
/** Return the current lockcount (defaults to 0)
*/
int getLockCount() const { return fLockCount; }
/** Call to access the pixel memory, which is returned. Balance with a call
to unlockPixels().
*/
void lockPixels();
/** Call to balanace a previous call to lockPixels(). Returns the pixels
(or null) after the unlock. NOTE: lock calls can be nested, but the
matching number of unlock calls must be made in order to free the
memory (if the subclass implements caching/deferred-decoding.)
*/
void unlockPixels();
/** Returns a non-zero, unique value corresponding to the pixels in this
pixelref. Each time the pixels are changed (and notifyPixelsChanged is
called), a different generation ID will be returned.
*/
uint32_t getGenerationID() const;
/** Call this if you have changed the contents of the pixels. This will in-
turn cause a different generation ID value to be returned from
getGenerationID().
*/
void notifyPixelsChanged();
/** Returns true if this pixelref is marked as immutable, meaning that the
contents of its pixels will not change for the lifetime of the pixelref.
*/
bool isImmutable() const { return fIsImmutable; }
/** Marks this pixelref is immutable, meaning that the contents of its
pixels will not change for the lifetime of the pixelref. This state can
be set on a pixelref, but it cannot be cleared once it is set.
*/
void setImmutable();
/** Return the optional URI string associated with this pixelref. May be
null.
*/
const char* getURI() const { return fURI.size() ? fURI.c_str() : NULL; }
/** Copy a URI string to this pixelref, or clear the URI if the uri is null
*/
void setURI(const char uri[]) {
fURI.set(uri);
}
/** Copy a URI string to this pixelref
*/
void setURI(const char uri[], size_t len) {
fURI.set(uri, len);
}
/** Assign a URI string to this pixelref.
*/
void setURI(const SkString& uri) { fURI = uri; }
/** Are we really wrapping a texture instead of a bitmap?
*/
virtual SkGpuTexture* getTexture() { return NULL; }
bool readPixels(SkBitmap* dst, const SkIRect* subset = NULL);
// serialization
typedef SkPixelRef* (*Factory)(SkFlattenableReadBuffer&);
virtual Factory getFactory() const { return NULL; }
virtual void flatten(SkFlattenableWriteBuffer&) const;
#ifdef ANDROID
/**
* Acquire a "global" ref on this object.
* The default implementation just calls ref(), but subclasses can override
* this method to implement additional behavior.
*/
virtual void globalRef(void* data=NULL);
/**
* Release a "global" ref on this object.
* The default implementation just calls unref(), but subclasses can override
* this method to implement additional behavior.
*/
virtual void globalUnref();
#endif
static Factory NameToFactory(const char name[]);
static const char* FactoryToName(Factory);
static void Register(const char name[], Factory);
class Registrar {
public:
Registrar(const char name[], Factory factory) {
SkPixelRef::Register(name, factory);
}
};
protected:
/** Called when the lockCount goes from 0 to 1. The caller will have already
acquire a mutex for thread safety, so this method need not do that.
*/
virtual void* onLockPixels(SkColorTable**) = 0;
/** Called when the lock count goes from 1 to 0. The caller will have
already acquire a mutex for thread safety, so this method need not do
that.
*/
virtual void onUnlockPixels() = 0;
/**
* For pixelrefs that don't have access to their raw pixels, they may be
* able to make a copy of them (e.g. if the pixels are on the GPU).
*
* The base class implementation returns false;
*/
virtual bool onReadPixels(SkBitmap* dst, const SkIRect* subsetOrNull);
/** Return the mutex associated with this pixelref. This value is assigned
in the constructor, and cannot change during the lifetime of the object.
*/
SkMutex* mutex() const { return fMutex; }
SkPixelRef(SkFlattenableReadBuffer&, SkMutex*);
private:
SkMutex* fMutex; // must remain in scope for the life of this object
void* fPixels;
SkColorTable* fColorTable; // we do not track ownership, subclass does
int fLockCount;
mutable uint32_t fGenerationID;
SkString fURI;
// can go from false to true, but never from true to false
bool fIsImmutable;
};
#endif