skia2/modules/canvaskit/matrix.js

535 lines
17 KiB
JavaScript
Raw Normal View History

/*
* Add some helpers for matrices. This is ported from SkMatrix.cpp and others
* to save complexity and overhead of going back and forth between C++ and JS layers.
* I would have liked to use something like DOMMatrix, except it
* isn't widely supported (would need polyfills) and it doesn't
* have a mapPoints() function (which could maybe be tacked on here).
* If DOMMatrix catches on, it would be worth re-considering this usage.
*/
CanvasKit.Matrix = {};
function sdot() { // to be called with an even number of scalar args
var acc = 0;
for (var i=0; i < arguments.length-1; i+=2) {
acc += arguments[i] * arguments[i+1];
}
return acc;
}
// Private general matrix functions used in both 3x3s and 4x4s.
// Return a square identity matrix of size n.
var identityN = function(n) {
var size = n*n;
var m = new Array(size);
while(size--) {
m[size] = size%(n+1) === 0 ? 1.0 : 0.0;
}
return m;
};
// Stride, a function for compactly representing several ways of copying an array into another.
// Write vector `v` into matrix `m`. `m` is a matrix encoded as an array in row-major
// order. Its width is passed as `width`. `v` is an array with length < (m.length/width).
// An element of `v` is copied into `m` starting at `offset` and moving `colStride` cols right
// each row.
//
// For example, a width of 4, offset of 3, and stride of -1 would put the vector here.
// _ _ 0 _
// _ 1 _ _
// 2 _ _ _
// _ _ _ 3
//
var stride = function(v, m, width, offset, colStride) {
for (var i=0; i<v.length; i++) {
m[i * width + // column
(i * colStride + offset + width) % width // row
] = v[i];
}
return m;
};
CanvasKit.Matrix.identity = function() {
return identityN(3);
};
// Return the inverse (if it exists) of this matrix.
// Otherwise, return null.
CanvasKit.Matrix.invert = function(m) {
// Find the determinant by the sarrus rule. https://en.wikipedia.org/wiki/Rule_of_Sarrus
var det = m[0]*m[4]*m[8] + m[1]*m[5]*m[6] + m[2]*m[3]*m[7]
- m[2]*m[4]*m[6] - m[1]*m[3]*m[8] - m[0]*m[5]*m[7];
if (!det) {
Debug('Warning, uninvertible matrix');
return null;
}
// Return the inverse by the formula adj(m)/det.
// adj (adjugate) of a 3x3 is the transpose of it's cofactor matrix.
// a cofactor matrix is a matrix where each term is +-det(N) where matrix N is the 2x2 formed
// by removing the row and column we're currently setting from the source.
// the sign alternates in a checkerboard pattern with a `+` at the top left.
// that's all been combined here into one expression.
return [
(m[4]*m[8] - m[5]*m[7])/det, (m[2]*m[7] - m[1]*m[8])/det, (m[1]*m[5] - m[2]*m[4])/det,
(m[5]*m[6] - m[3]*m[8])/det, (m[0]*m[8] - m[2]*m[6])/det, (m[2]*m[3] - m[0]*m[5])/det,
(m[3]*m[7] - m[4]*m[6])/det, (m[1]*m[6] - m[0]*m[7])/det, (m[0]*m[4] - m[1]*m[3])/det,
];
};
// Maps the given points according to the passed in matrix.
// Results are done in place.
// See SkMatrix.h::mapPoints for the docs on the math.
CanvasKit.Matrix.mapPoints = function(matrix, ptArr) {
if (IsDebug && (ptArr.length % 2)) {
throw 'mapPoints requires an even length arr';
}
for (var i = 0; i < ptArr.length; i+=2) {
var x = ptArr[i], y = ptArr[i+1];
// Gx+Hy+I
var denom = matrix[6]*x + matrix[7]*y + matrix[8];
// Ax+By+C
var xTrans = matrix[0]*x + matrix[1]*y + matrix[2];
// Dx+Ey+F
var yTrans = matrix[3]*x + matrix[4]*y + matrix[5];
ptArr[i] = xTrans/denom;
ptArr[i+1] = yTrans/denom;
}
return ptArr;
};
function isnumber(val) { return !isNaN(val); }
// generalized iterative algorithm for multiplying two matrices.
function multiply(m1, m2, size) {
if (IsDebug && (!m1.every(isnumber) || !m2.every(isnumber))) {
throw 'Some members of matrices are NaN m1='+m1+', m2='+m2+'';
}
if (IsDebug && (m1.length !== m2.length)) {
throw 'Undefined for matrices of different sizes. m1.length='+m1.length+', m2.length='+m2.length;
}
if (IsDebug && (size*size !== m1.length)) {
throw 'Undefined for non-square matrices. array size was '+size;
}
var result = Array(m1.length);
for (var r = 0; r < size; r++) {
for (var c = 0; c < size; c++) {
// accumulate a sum of m1[r,k]*m2[k, c]
var acc = 0;
for (var k = 0; k < size; k++) {
acc += m1[size * r + k] * m2[size * k + c];
}
result[r * size + c] = acc;
}
}
return result;
}
// Accept an integer indicating the size of the matrices being multiplied (3 for 3x3), and any
// number of matrices following it.
function multiplyMany(size, listOfMatrices) {
if (IsDebug && (listOfMatrices.length < 2)) {
throw 'multiplication expected two or more matrices';
}
var result = multiply(listOfMatrices[0], listOfMatrices[1], size);
var next = 2;
while (next < listOfMatrices.length) {
result = multiply(result, listOfMatrices[next], size);
next++;
}
return result;
}
// Accept any number 3x3 of matrices as arguments, multiply them together.
// Matrix multiplication is associative but not commutative. the order of the arguments
// matters, but it does not matter that this implementation multiplies them left to right.
CanvasKit.Matrix.multiply = function() {
return multiplyMany(3, arguments);
};
// Return a matrix representing a rotation by n radians.
// px, py optionally say which point the rotation should be around
// with the default being (0, 0);
CanvasKit.Matrix.rotated = function(radians, px, py) {
px = px || 0;
py = py || 0;
var sinV = Math.sin(radians);
var cosV = Math.cos(radians);
return [
cosV, -sinV, sdot( sinV, py, 1 - cosV, px),
sinV, cosV, sdot(-sinV, px, 1 - cosV, py),
0, 0, 1,
];
};
CanvasKit.Matrix.scaled = function(sx, sy, px, py) {
px = px || 0;
py = py || 0;
var m = stride([sx, sy], identityN(3), 3, 0, 1);
return stride([px-sx*px, py-sy*py], m, 3, 2, 0);
};
CanvasKit.Matrix.skewed = function(kx, ky, px, py) {
px = px || 0;
py = py || 0;
var m = stride([kx, ky], identityN(3), 3, 1, -1);
return stride([-kx*px, -ky*py], m, 3, 2, 0);
};
CanvasKit.Matrix.translated = function(dx, dy) {
return stride(arguments, identityN(3), 3, 2, 0);
};
// Functions for manipulating vectors.
// Loosely based off of SkV3 in SkM44.h but skia also has SkVec2 and Skv4. This combines them and
// works on vectors of any length.
CanvasKit.Vector = {};
CanvasKit.Vector.dot = function(a, b) {
if (IsDebug && (a.length !== b.length)) {
throw 'Cannot perform dot product on arrays of different length ('+a.length+' vs '+b.length+')';
}
return a.map(function(v, i) { return v*b[i] }).reduce(function(acc, cur) { return acc + cur; });
};
CanvasKit.Vector.lengthSquared = function(v) {
return CanvasKit.Vector.dot(v, v);
};
CanvasKit.Vector.length = function(v) {
return Math.sqrt(CanvasKit.Vector.lengthSquared(v));
};
CanvasKit.Vector.mulScalar = function(v, s) {
return v.map(function(i) { return i*s });
};
CanvasKit.Vector.add = function(a, b) {
return a.map(function(v, i) { return v+b[i] });
};
CanvasKit.Vector.sub = function(a, b) {
return a.map(function(v, i) { return v-b[i]; });
};
CanvasKit.Vector.dist = function(a, b) {
return CanvasKit.Vector.length(CanvasKit.Vector.sub(a, b));
};
CanvasKit.Vector.normalize = function(v) {
return CanvasKit.Vector.mulScalar(v, 1/CanvasKit.Vector.length(v));
};
CanvasKit.Vector.cross = function(a, b) {
if (IsDebug && (a.length !== 3 || a.length !== 3)) {
throw 'Cross product is only defined for 3-dimensional vectors (a.length='+a.length+', b.length='+b.length+')';
}
return [
a[1]*b[2] - a[2]*b[1],
a[2]*b[0] - a[0]*b[2],
a[0]*b[1] - a[1]*b[0],
];
};
// Functions for creating and manipulating (row-major) 4x4 matrices. Accepted in place of
// SkM44 in canvas methods, for the same reasons as the 3x3 matrices above.
// ported from C++ code in SkM44.cpp
CanvasKit.M44 = {};
// Create a 4x4 identity matrix
CanvasKit.M44.identity = function() {
return identityN(4);
};
// Anything named vec below is an array of length 3 representing a vector/point in 3D space.
// Create a 4x4 matrix representing a translate by the provided 3-vec
CanvasKit.M44.translated = function(vec) {
return stride(vec, identityN(4), 4, 3, 0);
};
// Create a 4x4 matrix representing a scaling by the provided 3-vec
CanvasKit.M44.scaled = function(vec) {
return stride(vec, identityN(4), 4, 0, 1);
};
// Create a 4x4 matrix representing a rotation about the provided axis 3-vec.
// axis does not need to be normalized.
CanvasKit.M44.rotated = function(axisVec, radians) {
return CanvasKit.M44.rotatedUnitSinCos(
CanvasKit.Vector.normalize(axisVec), Math.sin(radians), Math.cos(radians));
};
// Create a 4x4 matrix representing a rotation about the provided normalized axis 3-vec.
// Rotation is provided redundantly as both sin and cos values.
// This rotate can be used when you already have the cosAngle and sinAngle values
// so you don't have to atan(cos/sin) to call roatated() which expects an angle in radians.
// this does no checking! Behavior for invalid sin or cos values or non-normalized axis vectors
// is incorrect. Prefer rotated().
CanvasKit.M44.rotatedUnitSinCos = function(axisVec, sinAngle, cosAngle) {
var x = axisVec[0];
var y = axisVec[1];
var z = axisVec[2];
var c = cosAngle;
var s = sinAngle;
var t = 1 - c;
return [
t*x*x + c, t*x*y - s*z, t*x*z + s*y, 0,
t*x*y + s*z, t*y*y + c, t*y*z - s*x, 0,
t*x*z - s*y, t*y*z + s*x, t*z*z + c, 0,
0, 0, 0, 1
];
};
// Create a 4x4 matrix representing a camera at eyeVec, pointed at centerVec.
CanvasKit.M44.lookat = function(eyeVec, centerVec, upVec) {
var f = CanvasKit.Vector.normalize(CanvasKit.Vector.sub(centerVec, eyeVec));
var u = CanvasKit.Vector.normalize(upVec);
var s = CanvasKit.Vector.normalize(CanvasKit.Vector.cross(f, u));
var m = CanvasKit.M44.identity();
// set each column's top three numbers
stride(s, m, 4, 0, 0);
stride(CanvasKit.Vector.cross(s, f), m, 4, 1, 0);
stride(CanvasKit.Vector.mulScalar(f, -1), m, 4, 2, 0);
stride(eyeVec, m, 4, 3, 0);
var m2 = CanvasKit.M44.invert(m);
if (m2 === null) {
return CanvasKit.M44.identity();
}
return m2;
};
// Create a 4x4 matrix representing a perspective. All arguments are scalars.
// angle is in radians.
CanvasKit.M44.perspective = function(near, far, angle) {
if (IsDebug && (far <= near)) {
throw 'far must be greater than near when constructing M44 using perspective.';
}
var dInv = 1 / (far - near);
var halfAngle = angle / 2;
var cot = Math.cos(halfAngle) / Math.sin(halfAngle);
return [
cot, 0, 0, 0,
0, cot, 0, 0,
0, 0, (far+near)*dInv, 2*far*near*dInv,
0, 0, -1, 1,
];
};
// Returns the number at the given row and column in matrix m.
CanvasKit.M44.rc = function(m, r, c) {
return m[r*4+c];
};
// Accepts any number of 4x4 matrix arguments, multiplies them left to right.
CanvasKit.M44.multiply = function() {
return multiplyMany(4, arguments);
};
// Invert the 4x4 matrix if it is invertible and return it. if not, return null.
// taken from SkM44.cpp (altered to use row-major order)
// m is not altered.
CanvasKit.M44.invert = function(m) {
if (IsDebug && !m.every(isnumber)) {
throw 'some members of matrix are NaN m='+m;
}
var a00 = m[0];
var a01 = m[4];
var a02 = m[8];
var a03 = m[12];
var a10 = m[1];
var a11 = m[5];
var a12 = m[9];
var a13 = m[13];
var a20 = m[2];
var a21 = m[6];
var a22 = m[10];
var a23 = m[14];
var a30 = m[3];
var a31 = m[7];
var a32 = m[11];
var a33 = m[15];
var b00 = a00 * a11 - a01 * a10;
var b01 = a00 * a12 - a02 * a10;
var b02 = a00 * a13 - a03 * a10;
var b03 = a01 * a12 - a02 * a11;
var b04 = a01 * a13 - a03 * a11;
var b05 = a02 * a13 - a03 * a12;
var b06 = a20 * a31 - a21 * a30;
var b07 = a20 * a32 - a22 * a30;
var b08 = a20 * a33 - a23 * a30;
var b09 = a21 * a32 - a22 * a31;
var b10 = a21 * a33 - a23 * a31;
var b11 = a22 * a33 - a23 * a32;
// calculate determinate
var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
var invdet = 1.0 / det;
// bail out if the matrix is not invertible
if (det === 0 || invdet === Infinity) {
Debug('Warning, uninvertible matrix');
return null;
}
b00 *= invdet;
b01 *= invdet;
b02 *= invdet;
b03 *= invdet;
b04 *= invdet;
b05 *= invdet;
b06 *= invdet;
b07 *= invdet;
b08 *= invdet;
b09 *= invdet;
b10 *= invdet;
b11 *= invdet;
// store result in row major order
var tmp = [
a11 * b11 - a12 * b10 + a13 * b09,
a12 * b08 - a10 * b11 - a13 * b07,
a10 * b10 - a11 * b08 + a13 * b06,
a11 * b07 - a10 * b09 - a12 * b06,
a02 * b10 - a01 * b11 - a03 * b09,
a00 * b11 - a02 * b08 + a03 * b07,
a01 * b08 - a00 * b10 - a03 * b06,
a00 * b09 - a01 * b07 + a02 * b06,
a31 * b05 - a32 * b04 + a33 * b03,
a32 * b02 - a30 * b05 - a33 * b01,
a30 * b04 - a31 * b02 + a33 * b00,
a31 * b01 - a30 * b03 - a32 * b00,
a22 * b04 - a21 * b05 - a23 * b03,
a20 * b05 - a22 * b02 + a23 * b01,
a21 * b02 - a20 * b04 - a23 * b00,
a20 * b03 - a21 * b01 + a22 * b00,
];
if (!tmp.every(function(val) { return !isNaN(val) && val !== Infinity && val !== -Infinity; })) {
Debug('inverted matrix contains infinities or NaN '+tmp);
return null;
}
return tmp;
};
CanvasKit.M44.transpose = function(m) {
return [
m[0], m[4], m[8], m[12],
m[1], m[5], m[9], m[13],
m[2], m[6], m[10], m[14],
m[3], m[7], m[11], m[15],
];
};
// Return the inverse of an SkM44. throw an error if it's not invertible
CanvasKit.M44.mustInvert = function(m) {
var m2 = CanvasKit.M44.invert(m);
if (m2 === null) {
throw 'Matrix not invertible';
}
return m2;
};
// returns a matrix that sets up a 3D perspective view from a given camera.
//
// area - a rect describing the viewport. (0, 0, canvas_width, canvas_height) suggested
// zscale - a scalar describing the scale of the z axis. min(width, height)/2 suggested
// cam - an object with the following attributes
// const cam = {
// 'eye' : [0, 0, 1 / Math.tan(Math.PI / 24) - 1], // a 3D point locating the camera
// 'coa' : [0, 0, 0], // center of attention - the 3D point the camera is looking at.
// 'up' : [0, 1, 0], // a unit vector pointing in the camera's up direction, because eye and
// // coa alone leave roll unspecified.
// 'near' : 0.02, // near clipping plane
// 'far' : 4, // far clipping plane
// 'angle': Math.PI / 12, // field of view in radians
// };
CanvasKit.M44.setupCamera = function(area, zscale, cam) {
var camera = CanvasKit.M44.lookat(cam['eye'], cam['coa'], cam['up']);
var perspective = CanvasKit.M44.perspective(cam['near'], cam['far'], cam['angle']);
var center = [(area[0] + area[2])/2, (area[1] + area[3])/2, 0];
var viewScale = [(area[2] - area[0])/2, (area[3] - area[1])/2, zscale];
var viewport = CanvasKit.M44.multiply(
CanvasKit.M44.translated(center),
CanvasKit.M44.scaled(viewScale));
return CanvasKit.M44.multiply(
viewport, perspective, camera, CanvasKit.M44.mustInvert(viewport));
};
// An ColorMatrix is a 4x4 color matrix that transforms the 4 color channels
// with a 1x4 matrix that post-translates those 4 channels.
// For example, the following is the layout with the scale (S) and post-transform
// (PT) items indicated.
// RS, 0, 0, 0 | RPT
// 0, GS, 0, 0 | GPT
// 0, 0, BS, 0 | BPT
// 0, 0, 0, AS | APT
//
// Much of this was hand-transcribed from SkColorMatrix.cpp, because it's easier to
// deal with a Float32Array of length 20 than to try to expose the SkColorMatrix object.
var rScale = 0;
var gScale = 6;
var bScale = 12;
var aScale = 18;
var rPostTrans = 4;
var gPostTrans = 9;
var bPostTrans = 14;
var aPostTrans = 19;
CanvasKit.ColorMatrix = {};
CanvasKit.ColorMatrix.identity = function() {
var m = new Float32Array(20);
m[rScale] = 1;
m[gScale] = 1;
m[bScale] = 1;
m[aScale] = 1;
return m;
};
CanvasKit.ColorMatrix.scaled = function(rs, gs, bs, as) {
var m = new Float32Array(20);
m[rScale] = rs;
m[gScale] = gs;
m[bScale] = bs;
m[aScale] = as;
return m;
};
var rotateIndices = [
[6, 7, 11, 12],
[0, 10, 2, 12],
[0, 1, 5, 6],
];
// axis should be 0, 1, 2 for r, g, b
CanvasKit.ColorMatrix.rotated = function(axis, sine, cosine) {
var m = CanvasKit.ColorMatrix.identity();
var indices = rotateIndices[axis];
m[indices[0]] = cosine;
m[indices[1]] = sine;
m[indices[2]] = -sine;
m[indices[3]] = cosine;
return m;
};
// m is a ColorMatrix (i.e. a Float32Array), and this sets the 4 "special"
// params that will translate the colors after they are multiplied by the 4x4 matrix.
CanvasKit.ColorMatrix.postTranslate = function(m, dr, dg, db, da) {
m[rPostTrans] += dr;
m[gPostTrans] += dg;
m[bPostTrans] += db;
m[aPostTrans] += da;
return m;
};
// concat returns a new ColorMatrix that is the result of multiplying outer*inner
CanvasKit.ColorMatrix.concat = function(outer, inner) {
var m = new Float32Array(20);
var index = 0;
for (var j = 0; j < 20; j += 5) {
for (var i = 0; i < 4; i++) {
m[index++] = outer[j + 0] * inner[i + 0] +
outer[j + 1] * inner[i + 5] +
outer[j + 2] * inner[i + 10] +
outer[j + 3] * inner[i + 15];
}
m[index++] = outer[j + 0] * inner[4] +
outer[j + 1] * inner[9] +
outer[j + 2] * inner[14] +
outer[j + 3] * inner[19] +
outer[j + 4];
}
return m;
};