2012-08-27 14:11:33 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2012 Google Inc.
|
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
|
|
* found in the LICENSE file.
|
|
|
|
*/
|
2012-02-03 22:07:47 +00:00
|
|
|
#include "CurveIntersection.h"
|
2012-01-10 21:46:10 +00:00
|
|
|
#include "Intersections.h"
|
2012-02-03 22:07:47 +00:00
|
|
|
#include "IntersectionUtilities.h"
|
2012-01-10 21:46:10 +00:00
|
|
|
#include "LineIntersection.h"
|
|
|
|
|
2012-12-10 14:50:04 +00:00
|
|
|
static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections
|
|
|
|
|
2012-02-03 22:07:47 +00:00
|
|
|
class CubicIntersections : public Intersections {
|
|
|
|
public:
|
|
|
|
|
2012-08-23 18:14:13 +00:00
|
|
|
CubicIntersections(const Cubic& c1, const Cubic& c2, Intersections& i)
|
2012-02-03 22:07:47 +00:00
|
|
|
: cubic1(c1)
|
|
|
|
, cubic2(c2)
|
|
|
|
, intersections(i)
|
2012-08-23 18:14:13 +00:00
|
|
|
, depth(0)
|
2012-02-03 22:07:47 +00:00
|
|
|
, splits(0) {
|
|
|
|
}
|
|
|
|
|
|
|
|
bool intersect() {
|
|
|
|
double minT1, minT2, maxT1, maxT2;
|
|
|
|
if (!bezier_clip(cubic2, cubic1, minT1, maxT1)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (!bezier_clip(cubic1, cubic2, minT2, maxT2)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
int split;
|
|
|
|
if (maxT1 - minT1 < maxT2 - minT2) {
|
|
|
|
intersections.swap();
|
|
|
|
minT2 = 0;
|
|
|
|
maxT2 = 1;
|
|
|
|
split = maxT1 - minT1 > tClipLimit;
|
|
|
|
} else {
|
|
|
|
minT1 = 0;
|
|
|
|
maxT1 = 1;
|
|
|
|
split = (maxT2 - minT2 > tClipLimit) << 1;
|
|
|
|
}
|
|
|
|
return chop(minT1, maxT1, minT2, maxT2, split);
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-02-03 22:07:47 +00:00
|
|
|
bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
|
|
|
|
Cubic smaller, larger;
|
2012-08-23 18:14:13 +00:00
|
|
|
// FIXME: carry last subdivide and reduceOrder result with cubic
|
2012-02-03 22:07:47 +00:00
|
|
|
sub_divide(cubic1, minT1, maxT1, intersections.swapped() ? larger : smaller);
|
|
|
|
sub_divide(cubic2, minT2, maxT2, intersections.swapped() ? smaller : larger);
|
2012-01-10 21:46:10 +00:00
|
|
|
Cubic smallResult;
|
2012-02-03 22:07:47 +00:00
|
|
|
if (reduceOrder(smaller, smallResult,
|
|
|
|
kReduceOrder_NoQuadraticsAllowed) <= 2) {
|
2012-01-10 21:46:10 +00:00
|
|
|
Cubic largeResult;
|
2012-02-03 22:07:47 +00:00
|
|
|
if (reduceOrder(larger, largeResult,
|
|
|
|
kReduceOrder_NoQuadraticsAllowed) <= 2) {
|
2012-01-10 21:46:10 +00:00
|
|
|
const _Line& smallLine = (const _Line&) smallResult;
|
|
|
|
const _Line& largeLine = (const _Line&) largeResult;
|
2012-02-03 22:07:47 +00:00
|
|
|
double smallT[2];
|
|
|
|
double largeT[2];
|
|
|
|
// FIXME: this doesn't detect or deal with coincident lines
|
|
|
|
if (!::intersect(smallLine, largeLine, smallT, largeT)) {
|
2012-01-10 21:46:10 +00:00
|
|
|
return false;
|
|
|
|
}
|
2012-02-03 22:07:47 +00:00
|
|
|
if (intersections.swapped()) {
|
2012-08-23 18:14:13 +00:00
|
|
|
smallT[0] = interp(minT2, maxT2, smallT[0]);
|
|
|
|
largeT[0] = interp(minT1, maxT1, largeT[0]);
|
2012-02-03 22:07:47 +00:00
|
|
|
} else {
|
2012-08-23 18:14:13 +00:00
|
|
|
smallT[0] = interp(minT1, maxT1, smallT[0]);
|
|
|
|
largeT[0] = interp(minT2, maxT2, largeT[0]);
|
2012-02-03 22:07:47 +00:00
|
|
|
}
|
|
|
|
intersections.add(smallT[0], largeT[0]);
|
2012-01-10 21:46:10 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
double minT, maxT;
|
|
|
|
if (!bezier_clip(smaller, larger, minT, maxT)) {
|
|
|
|
if (minT == maxT) {
|
2012-02-03 22:07:47 +00:00
|
|
|
if (intersections.swapped()) {
|
|
|
|
minT1 = (minT1 + maxT1) / 2;
|
|
|
|
minT2 = interp(minT2, maxT2, minT);
|
|
|
|
} else {
|
|
|
|
minT1 = interp(minT1, maxT1, minT);
|
|
|
|
minT2 = (minT2 + maxT2) / 2;
|
|
|
|
}
|
|
|
|
intersections.add(minT1, minT2);
|
2012-01-10 21:46:10 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-02-03 22:07:47 +00:00
|
|
|
int split;
|
|
|
|
if (intersections.swapped()) {
|
|
|
|
double newMinT1 = interp(minT1, maxT1, minT);
|
|
|
|
double newMaxT1 = interp(minT1, maxT1, maxT);
|
|
|
|
split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1;
|
|
|
|
#define VERBOSE 0
|
|
|
|
#if VERBOSE
|
|
|
|
printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n",
|
|
|
|
__FUNCTION__, depth, splits, newMinT1, newMaxT1, minT1, maxT1,
|
|
|
|
split);
|
|
|
|
#endif
|
|
|
|
minT1 = newMinT1;
|
|
|
|
maxT1 = newMaxT1;
|
|
|
|
} else {
|
|
|
|
double newMinT2 = interp(minT2, maxT2, minT);
|
|
|
|
double newMaxT2 = interp(minT2, maxT2, maxT);
|
|
|
|
split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit;
|
|
|
|
#if VERBOSE
|
|
|
|
printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n",
|
|
|
|
__FUNCTION__, depth, splits, newMinT2, newMaxT2, minT2, maxT2,
|
|
|
|
split);
|
|
|
|
#endif
|
|
|
|
minT2 = newMinT2;
|
|
|
|
maxT2 = newMaxT2;
|
|
|
|
}
|
|
|
|
return chop(minT1, maxT1, minT2, maxT2, split);
|
2012-01-10 21:46:10 +00:00
|
|
|
}
|
|
|
|
|
2012-02-03 22:07:47 +00:00
|
|
|
bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) {
|
|
|
|
++depth;
|
2012-01-10 21:46:10 +00:00
|
|
|
intersections.swap();
|
2012-02-03 22:07:47 +00:00
|
|
|
if (split) {
|
|
|
|
++splits;
|
|
|
|
if (split & 2) {
|
|
|
|
double middle1 = (maxT1 + minT1) / 2;
|
|
|
|
intersect(minT1, middle1, minT2, maxT2);
|
|
|
|
intersect(middle1, maxT1, minT2, maxT2);
|
|
|
|
} else {
|
|
|
|
double middle2 = (maxT2 + minT2) / 2;
|
|
|
|
intersect(minT1, maxT1, minT2, middle2);
|
|
|
|
intersect(minT1, maxT1, middle2, maxT2);
|
2012-01-10 21:46:10 +00:00
|
|
|
}
|
2012-02-03 22:07:47 +00:00
|
|
|
--splits;
|
2012-01-10 21:46:10 +00:00
|
|
|
intersections.swap();
|
2012-02-03 22:07:47 +00:00
|
|
|
--depth;
|
2012-01-10 21:46:10 +00:00
|
|
|
return intersections.intersected();
|
|
|
|
}
|
2012-02-03 22:07:47 +00:00
|
|
|
bool result = intersect(minT1, maxT1, minT2, maxT2);
|
2012-01-10 21:46:10 +00:00
|
|
|
intersections.swap();
|
2012-02-03 22:07:47 +00:00
|
|
|
--depth;
|
2012-01-10 21:46:10 +00:00
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2012-02-03 22:07:47 +00:00
|
|
|
private:
|
|
|
|
|
|
|
|
const Cubic& cubic1;
|
|
|
|
const Cubic& cubic2;
|
|
|
|
Intersections& intersections;
|
|
|
|
int depth;
|
|
|
|
int splits;
|
|
|
|
};
|
|
|
|
|
|
|
|
bool intersect(const Cubic& c1, const Cubic& c2, Intersections& i) {
|
|
|
|
CubicIntersections c(c1, c2, i);
|
|
|
|
return c.intersect();
|
2012-01-10 21:46:10 +00:00
|
|
|
}
|
2012-02-03 22:07:47 +00:00
|
|
|
|
2013-01-17 21:02:47 +00:00
|
|
|
#include "CubicUtilities.h"
|
|
|
|
|
2013-01-19 13:22:39 +00:00
|
|
|
// FIXME: ? if needed, compute the error term from the tangent length
|
|
|
|
static double computeDelta(const Cubic& cubic, double t, double scale) {
|
|
|
|
double attempt = scale / precisionUnit;
|
|
|
|
#if SK_DEBUG
|
|
|
|
double precision = calcPrecision(cubic);
|
|
|
|
_Point dxy;
|
|
|
|
dxdy_at_t(cubic, t, dxy);
|
|
|
|
_Point p1, p2;
|
|
|
|
xy_at_t(cubic, std::max(t - attempt, 0.), p1.x, p1.y);
|
|
|
|
xy_at_t(cubic, std::min(t + attempt, 1.), p2.x, p2.y);
|
|
|
|
double dx = p1.x - p2.x;
|
|
|
|
double dy = p1.y - p2.y;
|
|
|
|
double distSq = dx * dx + dy * dy;
|
|
|
|
double dist = sqrt(distSq);
|
|
|
|
assert(dist > precision);
|
|
|
|
#endif
|
|
|
|
return attempt;
|
|
|
|
}
|
|
|
|
|
2013-01-17 21:02:47 +00:00
|
|
|
// this flavor approximates the cubics with quads to find the intersecting ts
|
|
|
|
// OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used
|
|
|
|
// to create the approximations, could be stored in the cubic segment
|
2013-01-19 13:22:39 +00:00
|
|
|
// FIXME: this strategy needs to intersect the convex hull on either end with the opposite to
|
|
|
|
// account for inset quadratics that cause the endpoint intersection to avoid detection
|
|
|
|
// the segments can be very short -- the length of the maximum quadratic error (precision)
|
|
|
|
// FIXME: this needs to recurse on itself, taking a range of T values and computing the new
|
|
|
|
// t range ala is linear inner. The range can be figured by taking the dx/dy and determining
|
|
|
|
// the fraction that matches the precision. That fraction is the change in t for the smaller cubic.
|
|
|
|
static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
|
|
|
|
double t2s, double t2e, Intersections& i) {
|
|
|
|
Cubic c1, c2;
|
|
|
|
sub_divide(cubic1, t1s, t1e, c1);
|
|
|
|
sub_divide(cubic2, t2s, t2e, c2);
|
2013-01-17 21:02:47 +00:00
|
|
|
SkTDArray<double> ts1;
|
2013-01-19 13:22:39 +00:00
|
|
|
cubic_to_quadratics(c1, calcPrecision(c1), ts1);
|
2013-01-17 21:02:47 +00:00
|
|
|
SkTDArray<double> ts2;
|
2013-01-19 13:22:39 +00:00
|
|
|
cubic_to_quadratics(c2, calcPrecision(c2), ts2);
|
|
|
|
double t1Start = t1s;
|
2013-01-17 21:02:47 +00:00
|
|
|
int ts1Count = ts1.count();
|
|
|
|
for (int i1 = 0; i1 <= ts1Count; ++i1) {
|
2013-01-19 13:22:39 +00:00
|
|
|
const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
|
|
|
|
const double t1 = t1s + (t1e - t1s) * tEnd1;
|
2013-01-17 21:02:47 +00:00
|
|
|
Cubic part1;
|
2013-01-19 13:22:39 +00:00
|
|
|
sub_divide(cubic1, t1Start, t1, part1);
|
2013-01-17 21:02:47 +00:00
|
|
|
Quadratic q1;
|
|
|
|
demote_cubic_to_quad(part1, q1);
|
|
|
|
// start here;
|
|
|
|
// should reduceOrder be looser in this use case if quartic is going to blow up on an
|
|
|
|
// extremely shallow quadratic?
|
|
|
|
Quadratic s1;
|
|
|
|
int o1 = reduceOrder(q1, s1);
|
2013-01-19 13:22:39 +00:00
|
|
|
double t2Start = t2s;
|
2013-01-17 21:02:47 +00:00
|
|
|
int ts2Count = ts2.count();
|
|
|
|
for (int i2 = 0; i2 <= ts2Count; ++i2) {
|
2013-01-19 13:22:39 +00:00
|
|
|
const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
|
|
|
|
const double t2 = t2s + (t2e - t2s) * tEnd2;
|
2013-01-17 21:02:47 +00:00
|
|
|
Cubic part2;
|
2013-01-19 13:22:39 +00:00
|
|
|
sub_divide(cubic2, t2Start, t2, part2);
|
2013-01-17 21:02:47 +00:00
|
|
|
Quadratic q2;
|
|
|
|
demote_cubic_to_quad(part2, q2);
|
|
|
|
Quadratic s2;
|
|
|
|
double o2 = reduceOrder(q2, s2);
|
|
|
|
Intersections locals;
|
|
|
|
if (o1 == 3 && o2 == 3) {
|
|
|
|
intersect2(q1, q2, locals);
|
|
|
|
} else if (o1 <= 2 && o2 <= 2) {
|
2013-01-19 13:22:39 +00:00
|
|
|
locals.fUsed = intersect((const _Line&) s1, (const _Line&) s2, locals.fT[0],
|
|
|
|
locals.fT[1]);
|
2013-01-17 21:02:47 +00:00
|
|
|
} else if (o1 == 3 && o2 <= 2) {
|
2013-01-19 13:22:39 +00:00
|
|
|
intersect(q1, (const _Line&) s2, locals);
|
2013-01-17 21:02:47 +00:00
|
|
|
} else {
|
|
|
|
SkASSERT(o1 <= 2 && o2 == 3);
|
2013-01-19 13:22:39 +00:00
|
|
|
intersect(q2, (const _Line&) s1, locals);
|
|
|
|
for (int s = 0; s < locals.fUsed; ++s) {
|
|
|
|
SkTSwap(locals.fT[0][s], locals.fT[1][s]);
|
2013-01-17 21:02:47 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
|
|
|
|
double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
|
|
|
|
double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
|
2013-01-19 13:22:39 +00:00
|
|
|
// if the computed t is not sufficiently precise, iterate
|
|
|
|
_Point p1, p2;
|
|
|
|
xy_at_t(cubic1, to1, p1.x, p1.y);
|
|
|
|
xy_at_t(cubic2, to2, p2.x, p2.y);
|
|
|
|
if (p1.approximatelyEqual(p2)) {
|
|
|
|
i.insert(i.swapped() ? to2 : to1, i.swapped() ? to1 : to2);
|
|
|
|
} else {
|
|
|
|
double dt1 = computeDelta(cubic1, to1, t1e - t1s);
|
|
|
|
double dt2 = computeDelta(cubic2, to2, t2e - t2s);
|
|
|
|
i.swap();
|
|
|
|
intersect2(cubic2, std::max(to2 - dt2, 0.), std::min(to2 + dt2, 1.),
|
|
|
|
cubic1, std::max(to1 - dt1, 0.), std::min(to1 + dt1, 1.), i);
|
|
|
|
i.swap();
|
|
|
|
}
|
2013-01-17 21:02:47 +00:00
|
|
|
}
|
|
|
|
t2Start = t2;
|
|
|
|
}
|
|
|
|
t1Start = t1;
|
|
|
|
}
|
|
|
|
return i.intersected();
|
|
|
|
}
|
|
|
|
|
2013-01-19 13:22:39 +00:00
|
|
|
static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2,
|
|
|
|
Intersections& i) {
|
|
|
|
_Line line1;
|
|
|
|
line1[0] = line1[1] = cubic1[start ? 0 : 3];
|
|
|
|
_Point dxy1 = line1[0] - cubic1[start ? 1 : 2];
|
|
|
|
dxy1 /= precisionUnit;
|
|
|
|
line1[1] += dxy1;
|
|
|
|
_Rect line1Bounds;
|
|
|
|
line1Bounds.setBounds(line1);
|
|
|
|
if (!bounds2.intersects(line1Bounds)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
_Line line2;
|
|
|
|
line2[0] = line2[1] = line1[0];
|
|
|
|
_Point dxy2 = line2[0] - cubic1[start ? 3 : 0];
|
|
|
|
dxy2 /= precisionUnit;
|
|
|
|
line2[1] += dxy2;
|
|
|
|
#if 0 // this is so close to the first bounds test it isn't worth the short circuit test
|
|
|
|
_Rect line2Bounds;
|
|
|
|
line2Bounds.setBounds(line2);
|
|
|
|
if (!bounds2.intersects(line2Bounds)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
Intersections local1;
|
|
|
|
if (!intersect(cubic2, line1, local1)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
Intersections local2;
|
|
|
|
if (!intersect(cubic2, line2, local2)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
double tMin, tMax;
|
|
|
|
tMin = tMax = local1.fT[0][0];
|
|
|
|
for (int index = 1; index < local1.fUsed; ++index) {
|
|
|
|
tMin = std::min(tMin, local1.fT[0][index]);
|
|
|
|
tMax = std::max(tMax, local1.fT[0][index]);
|
|
|
|
}
|
|
|
|
for (int index = 1; index < local2.fUsed; ++index) {
|
|
|
|
tMin = std::min(tMin, local2.fT[0][index]);
|
|
|
|
tMax = std::max(tMax, local2.fT[0][index]);
|
|
|
|
}
|
|
|
|
return intersect2(cubic1, start ? 0 : 1, start ? 1.0 / precisionUnit : 1 - 1.0 / precisionUnit,
|
|
|
|
cubic2, tMin, tMax, i);
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME: add intersection of convex null on cubics' ends with the opposite cubic. The hull line
|
|
|
|
// segments can be constructed to be only as long as the calculated precision suggests. If the hull
|
|
|
|
// line segments intersect the cubic, then use the intersections to construct a subdivision for
|
|
|
|
// quadratic curve fitting.
|
|
|
|
bool intersect2(const Cubic& c1, const Cubic& c2, Intersections& i) {
|
|
|
|
bool result = intersect2(c1, 0, 1, c2, 0, 1, i);
|
|
|
|
// FIXME: pass in cached bounds from caller
|
|
|
|
_Rect c1Bounds, c2Bounds;
|
|
|
|
c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
|
|
|
|
c2Bounds.setBounds(c2);
|
|
|
|
result |= intersectEnd(c1, false, c2, c2Bounds, i);
|
|
|
|
result |= intersectEnd(c1, true, c2, c2Bounds, i);
|
|
|
|
result |= intersectEnd(c2, false, c1, c1Bounds, i);
|
|
|
|
result |= intersectEnd(c2, true, c1, c1Bounds, i);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-01-17 21:02:47 +00:00
|
|
|
int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) {
|
|
|
|
SkTDArray<double> ts;
|
|
|
|
double precision = calcPrecision(cubic);
|
|
|
|
cubic_to_quadratics(cubic, precision, ts);
|
|
|
|
double tStart = 0;
|
|
|
|
Cubic part;
|
|
|
|
int tsCount = ts.count();
|
|
|
|
for (int idx = 0; idx <= tsCount; ++idx) {
|
|
|
|
double t = idx < tsCount ? ts[idx] : 1;
|
|
|
|
Quadratic q1;
|
|
|
|
sub_divide(cubic, tStart, t, part);
|
|
|
|
demote_cubic_to_quad(part, q1);
|
|
|
|
Intersections locals;
|
|
|
|
intersect2(q1, quad, locals);
|
|
|
|
for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
|
|
|
|
double globalT = tStart + (t - tStart) * locals.fT[0][tIdx];
|
|
|
|
i.insertOne(globalT, 0);
|
|
|
|
globalT = locals.fT[1][tIdx];
|
|
|
|
i.insertOne(globalT, 1);
|
|
|
|
}
|
|
|
|
tStart = t;
|
|
|
|
}
|
|
|
|
return i.used();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool intersect(const Cubic& cubic, Intersections& i) {
|
|
|
|
SkTDArray<double> ts;
|
|
|
|
double precision = calcPrecision(cubic);
|
|
|
|
cubic_to_quadratics(cubic, precision, ts);
|
|
|
|
int tsCount = ts.count();
|
|
|
|
if (tsCount == 1) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
double t1Start = 0;
|
|
|
|
Cubic part;
|
|
|
|
for (int idx = 0; idx < tsCount; ++idx) {
|
|
|
|
double t1 = ts[idx];
|
|
|
|
Quadratic q1;
|
|
|
|
sub_divide(cubic, t1Start, t1, part);
|
|
|
|
demote_cubic_to_quad(part, q1);
|
|
|
|
double t2Start = t1;
|
|
|
|
for (int i2 = idx + 1; i2 <= tsCount; ++i2) {
|
|
|
|
const double t2 = i2 < tsCount ? ts[i2] : 1;
|
|
|
|
Quadratic q2;
|
|
|
|
sub_divide(cubic, t2Start, t2, part);
|
|
|
|
demote_cubic_to_quad(part, q2);
|
|
|
|
Intersections locals;
|
|
|
|
intersect2(q1, q2, locals);
|
|
|
|
for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
|
|
|
|
// discard intersections at cusp? (maximum curvature)
|
|
|
|
double t1sect = locals.fT[0][tIdx];
|
|
|
|
double t2sect = locals.fT[1][tIdx];
|
|
|
|
if (idx + 1 == i2 && t1sect == 1 && t2sect == 0) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
double to1 = t1Start + (t1 - t1Start) * t1sect;
|
|
|
|
double to2 = t2Start + (t2 - t2Start) * t2sect;
|
|
|
|
i.insert(to1, to2);
|
|
|
|
}
|
|
|
|
t2Start = t2;
|
|
|
|
}
|
|
|
|
t1Start = t1;
|
|
|
|
}
|
|
|
|
return i.intersected();
|
|
|
|
}
|