2011-07-28 14:26:00 +00:00
|
|
|
|
2008-12-17 15:59:43 +00:00
|
|
|
/*
|
2011-07-28 14:26:00 +00:00
|
|
|
* Copyright 2006 The Android Open Source Project
|
2008-12-17 15:59:43 +00:00
|
|
|
*
|
2011-07-28 14:26:00 +00:00
|
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
|
|
* found in the LICENSE file.
|
2008-12-17 15:59:43 +00:00
|
|
|
*/
|
|
|
|
|
2011-07-28 14:26:00 +00:00
|
|
|
|
2008-12-17 15:59:43 +00:00
|
|
|
#ifndef SkMath_DEFINED
|
|
|
|
#define SkMath_DEFINED
|
|
|
|
|
|
|
|
#include "SkTypes.h"
|
|
|
|
|
2013-12-30 14:40:38 +00:00
|
|
|
// 64bit -> 32bit utilities
|
|
|
|
|
|
|
|
// Handy util that can be passed two ints, and will automatically promote to
|
|
|
|
// 64bits before the multiply, so the caller doesn't have to remember to cast
|
|
|
|
// e.g. (int64_t)a * b;
|
|
|
|
static inline int64_t sk_64_mul(int64_t a, int64_t b) {
|
|
|
|
return a * b;
|
|
|
|
}
|
|
|
|
|
2012-08-07 21:35:13 +00:00
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
2008-12-17 15:59:43 +00:00
|
|
|
|
2014-04-19 22:12:35 +00:00
|
|
|
/**
|
|
|
|
* Computes numer1 * numer2 / denom in full 64 intermediate precision.
|
|
|
|
* It is an error for denom to be 0. There is no special handling if
|
|
|
|
* the result overflows 32bits.
|
|
|
|
*/
|
|
|
|
static inline int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) {
|
|
|
|
SkASSERT(denom);
|
2014-04-20 03:04:55 +00:00
|
|
|
|
2014-04-19 22:12:35 +00:00
|
|
|
int64_t tmp = sk_64_mul(numer1, numer2) / denom;
|
2017-09-20 15:56:00 +00:00
|
|
|
return SkTo<int32_t>(tmp);
|
2014-04-19 22:12:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return the integer square root of value, with a bias of bitBias
|
|
|
|
*/
|
|
|
|
int32_t SkSqrtBits(int32_t value, int bitBias);
|
|
|
|
|
|
|
|
/** Return the integer square root of n, treated as a SkFixed (16.16)
|
|
|
|
*/
|
|
|
|
#define SkSqrt32(n) SkSqrtBits(n, 15)
|
|
|
|
|
2012-08-07 21:35:13 +00:00
|
|
|
/**
|
|
|
|
* Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches)
|
|
|
|
*/
|
2008-12-17 15:59:43 +00:00
|
|
|
static inline int SkClampPos(int value) {
|
|
|
|
return value & ~(value >> 31);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Given an integer and a positive (max) integer, return the value
|
2012-08-07 21:35:13 +00:00
|
|
|
* pinned against 0 and max, inclusive.
|
|
|
|
* @param value The value we want returned pinned between [0...max]
|
|
|
|
* @param max The positive max value
|
|
|
|
* @return 0 if value < 0, max if value > max, else value
|
|
|
|
*/
|
2008-12-17 15:59:43 +00:00
|
|
|
static inline int SkClampMax(int value, int max) {
|
|
|
|
// ensure that max is positive
|
|
|
|
SkASSERT(max >= 0);
|
|
|
|
if (value < 0) {
|
|
|
|
value = 0;
|
|
|
|
}
|
|
|
|
if (value > max) {
|
|
|
|
value = max;
|
|
|
|
}
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
2012-08-07 21:35:13 +00:00
|
|
|
/**
|
|
|
|
* Returns true if value is a power of 2. Does not explicitly check for
|
|
|
|
* value <= 0.
|
2010-12-20 18:26:13 +00:00
|
|
|
*/
|
2016-08-16 16:36:18 +00:00
|
|
|
template <typename T> constexpr inline bool SkIsPow2(T value) {
|
2010-12-20 18:26:13 +00:00
|
|
|
return (value & (value - 1)) == 0;
|
|
|
|
}
|
|
|
|
|
2008-12-17 15:59:43 +00:00
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
2012-08-07 21:35:13 +00:00
|
|
|
/**
|
|
|
|
* Return a*b/((1 << shift) - 1), rounding any fractional bits.
|
|
|
|
* Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8
|
2008-12-17 15:59:43 +00:00
|
|
|
*/
|
2013-04-22 20:21:56 +00:00
|
|
|
static inline unsigned SkMul16ShiftRound(U16CPU a, U16CPU b, int shift) {
|
2008-12-17 15:59:43 +00:00
|
|
|
SkASSERT(a <= 32767);
|
|
|
|
SkASSERT(b <= 32767);
|
|
|
|
SkASSERT(shift > 0 && shift <= 8);
|
2015-08-07 15:48:12 +00:00
|
|
|
unsigned prod = a*b + (1 << (shift - 1));
|
2008-12-17 15:59:43 +00:00
|
|
|
return (prod + (prod >> shift)) >> shift;
|
|
|
|
}
|
|
|
|
|
2012-08-07 21:35:13 +00:00
|
|
|
/**
|
2013-04-22 20:21:56 +00:00
|
|
|
* Return a*b/255, rounding any fractional bits.
|
|
|
|
* Only valid if a and b are unsigned and <= 32767.
|
2009-06-22 17:38:10 +00:00
|
|
|
*/
|
2013-04-22 20:21:56 +00:00
|
|
|
static inline U8CPU SkMulDiv255Round(U16CPU a, U16CPU b) {
|
|
|
|
SkASSERT(a <= 32767);
|
|
|
|
SkASSERT(b <= 32767);
|
2015-08-07 15:48:12 +00:00
|
|
|
unsigned prod = a*b + 128;
|
2009-06-22 17:38:10 +00:00
|
|
|
return (prod + (prod >> 8)) >> 8;
|
|
|
|
}
|
|
|
|
|
2013-09-26 19:22:54 +00:00
|
|
|
/**
|
|
|
|
* Stores numer/denom and numer%denom into div and mod respectively.
|
|
|
|
*/
|
|
|
|
template <typename In, typename Out>
|
|
|
|
inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) {
|
2014-06-03 19:07:31 +00:00
|
|
|
#ifdef SK_CPU_ARM32
|
2013-09-26 19:22:54 +00:00
|
|
|
// If we wrote this as in the else branch, GCC won't fuse the two into one
|
|
|
|
// divmod call, but rather a div call followed by a divmod. Silly! This
|
|
|
|
// version is just as fast as calling __aeabi_[u]idivmod manually, but with
|
|
|
|
// prettier code.
|
|
|
|
//
|
|
|
|
// This benches as around 2x faster than the code in the else branch.
|
|
|
|
const In d = numer/denom;
|
|
|
|
*div = static_cast<Out>(d);
|
|
|
|
*mod = static_cast<Out>(numer-d*denom);
|
|
|
|
#else
|
|
|
|
// On x86 this will just be a single idiv.
|
|
|
|
*div = static_cast<Out>(numer/denom);
|
|
|
|
*mod = static_cast<Out>(numer%denom);
|
2014-06-03 19:07:31 +00:00
|
|
|
#endif
|
2013-09-26 19:22:54 +00:00
|
|
|
}
|
|
|
|
|
2008-12-17 15:59:43 +00:00
|
|
|
#endif
|