2012-08-27 14:11:33 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2012 Google Inc.
|
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
|
|
* found in the LICENSE file.
|
|
|
|
*/
|
2012-02-03 22:07:47 +00:00
|
|
|
#include "CurveIntersection.h"
|
2012-07-02 20:27:02 +00:00
|
|
|
#include "CurveUtilities.h"
|
2012-01-10 21:46:10 +00:00
|
|
|
#include "LineParameters.h"
|
|
|
|
#include <algorithm> // used for std::swap
|
|
|
|
|
2012-09-14 14:19:30 +00:00
|
|
|
#define DEBUG_BEZIER_CLIP 1
|
|
|
|
|
2012-01-10 21:46:10 +00:00
|
|
|
// return false if unable to clip (e.g., unable to create implicit line)
|
|
|
|
// caller should subdivide, or create degenerate if the values are too small
|
|
|
|
bool bezier_clip(const Quadratic& q1, const Quadratic& q2, double& minT, double& maxT) {
|
|
|
|
minT = 1;
|
|
|
|
maxT = 0;
|
|
|
|
// determine normalized implicit line equation for pt[0] to pt[3]
|
|
|
|
// of the form ax + by + c = 0, where a*a + b*b == 1
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-01-10 21:46:10 +00:00
|
|
|
// find the implicit line equation parameters
|
|
|
|
LineParameters endLine;
|
|
|
|
endLine.quadEndPoints(q1);
|
|
|
|
if (!endLine.normalize()) {
|
|
|
|
printf("line cannot be normalized: need more code here\n");
|
2012-08-28 20:44:43 +00:00
|
|
|
assert(0);
|
2012-01-10 21:46:10 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
double distance = endLine.controlPtDistance(q1);
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-01-10 21:46:10 +00:00
|
|
|
// find fat line
|
|
|
|
double top = 0;
|
|
|
|
double bottom = distance / 2; // http://students.cs.byu.edu/~tom/557/text/cic.pdf (7.6)
|
|
|
|
if (top > bottom) {
|
|
|
|
std::swap(top, bottom);
|
|
|
|
}
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-01-10 21:46:10 +00:00
|
|
|
// compute intersecting candidate distance
|
|
|
|
Quadratic distance2y; // points with X of (0, 1/2, 1)
|
|
|
|
endLine.quadDistanceY(q2, distance2y);
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-01-10 21:46:10 +00:00
|
|
|
int flags = 0;
|
|
|
|
if (approximately_lesser(distance2y[0].y, top)) {
|
|
|
|
flags |= kFindTopMin;
|
|
|
|
} else if (approximately_greater(distance2y[0].y, bottom)) {
|
|
|
|
flags |= kFindBottomMin;
|
|
|
|
} else {
|
|
|
|
minT = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (approximately_lesser(distance2y[2].y, top)) {
|
|
|
|
flags |= kFindTopMax;
|
|
|
|
} else if (approximately_greater(distance2y[2].y, bottom)) {
|
|
|
|
flags |= kFindBottomMax;
|
|
|
|
} else {
|
|
|
|
maxT = 1;
|
|
|
|
}
|
|
|
|
// Find the intersection of distance convex hull and fat line.
|
2012-01-25 18:57:23 +00:00
|
|
|
int idx = 0;
|
|
|
|
do {
|
|
|
|
int next = idx + 1;
|
|
|
|
if (next == 3) {
|
|
|
|
next = 0;
|
|
|
|
}
|
|
|
|
x_at(distance2y[idx], distance2y[next], top, bottom, flags, minT, maxT);
|
|
|
|
idx = next;
|
2012-08-23 18:14:13 +00:00
|
|
|
} while (idx);
|
2012-09-14 14:19:30 +00:00
|
|
|
#if DEBUG_BEZIER_CLIP
|
|
|
|
_Rect r1, r2;
|
|
|
|
r1.setBounds(q1);
|
|
|
|
r2.setBounds(q2);
|
|
|
|
_Point testPt = {0.487, 0.337};
|
|
|
|
if (r1.contains(testPt) && r2.contains(testPt)) {
|
|
|
|
printf("%s q1=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
|
|
|
|
" q2=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) minT=%1.9g maxT=%1.9g\n",
|
|
|
|
__FUNCTION__, q1[0].x, q1[0].y, q1[1].x, q1[1].y, q1[2].x, q1[2].y,
|
|
|
|
q2[0].x, q2[0].y, q2[1].x, q2[1].y, q2[2].x, q2[2].y, minT, maxT);
|
|
|
|
}
|
|
|
|
#endif
|
2012-01-10 21:46:10 +00:00
|
|
|
return minT < maxT; // returns false if distance shows no intersection
|
|
|
|
}
|