skia2/src/core/SkValidatingReadBuffer.cpp

265 lines
7.8 KiB
C++
Raw Normal View History

/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkErrorInternals.h"
#include "SkValidatingReadBuffer.h"
#include "SkStream.h"
#include "SkTypeface.h"
SkValidatingReadBuffer::SkValidatingReadBuffer(const void* data, size_t size) :
fError(false) {
this->setMemory(data, size);
this->setFlags(SkFlattenableReadBuffer::kValidation_Flag);
}
SkValidatingReadBuffer::~SkValidatingReadBuffer() {
}
void SkValidatingReadBuffer::validate(bool isValid) {
if (!fError && !isValid) {
// When an error is found, send the read cursor to the end of the stream
fReader.skip(fReader.available());
fError = true;
}
}
void SkValidatingReadBuffer::setMemory(const void* data, size_t size) {
this->validate(IsPtrAlign4(data) && (SkAlign4(size) == size));
if (!fError) {
fReader.setMemory(data, size);
}
}
const void* SkValidatingReadBuffer::skip(size_t size) {
size_t inc = SkAlign4(size);
const void* addr = fReader.peek();
this->validate(IsPtrAlign4(addr) && fReader.isAvailable(inc));
if (!fError) {
fReader.skip(size);
}
return addr;
}
// All the methods in this file funnel down into either readInt(), readScalar() or skip(),
// followed by a memcpy. So we've got all our validation in readInt(), readScalar() and skip();
// if they fail they'll return a zero value or skip nothing, respectively, and set fError to
// true, which the caller should check to see if an error occurred during the read operation.
bool SkValidatingReadBuffer::readBool() {
uint32_t value = this->readInt();
// Boolean value should be either 0 or 1
this->validate(!(value & ~1));
return value != 0;
}
SkColor SkValidatingReadBuffer::readColor() {
return this->readInt();
}
SkFixed SkValidatingReadBuffer::readFixed() {
return this->readInt();
}
int32_t SkValidatingReadBuffer::readInt() {
const size_t inc = sizeof(int32_t);
this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc));
return fError ? 0 : fReader.readInt();
}
SkScalar SkValidatingReadBuffer::readScalar() {
const size_t inc = sizeof(SkScalar);
this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc));
return fError ? 0 : fReader.readScalar();
}
uint32_t SkValidatingReadBuffer::readUInt() {
return this->readInt();
}
int32_t SkValidatingReadBuffer::read32() {
return this->readInt();
}
void SkValidatingReadBuffer::readString(SkString* string) {
const size_t len = this->readInt();
const void* ptr = fReader.peek();
const char* cptr = (const char*)ptr;
// skip over the string + '\0' and then pad to a multiple of 4
const size_t alignedSize = SkAlign4(len + 1);
this->skip(alignedSize);
this->validate(cptr[len] == '\0');
if (!fError) {
string->set(cptr, len);
}
}
void* SkValidatingReadBuffer::readEncodedString(size_t* length, SkPaint::TextEncoding encoding) {
const int32_t encodingType = fReader.readInt();
this->validate(encodingType == encoding);
*length = this->readInt();
const void* ptr = this->skip(SkAlign4(*length));
void* data = NULL;
if (!fError) {
data = sk_malloc_throw(*length);
memcpy(data, ptr, *length);
}
return data;
}
void SkValidatingReadBuffer::readPoint(SkPoint* point) {
point->fX = fReader.readScalar();
point->fY = fReader.readScalar();
}
void SkValidatingReadBuffer::readMatrix(SkMatrix* matrix) {
size_t size = 0;
if (!fError) {
size = matrix->readFromMemory(fReader.peek(), fReader.available());
this->validate((SkAlign4(size) != size) || (0 == size));
}
if (!fError) {
(void)this->skip(size);
}
}
void SkValidatingReadBuffer::readIRect(SkIRect* rect) {
const void* ptr = this->skip(sizeof(SkIRect));
if (!fError) {
memcpy(rect, ptr, sizeof(SkIRect));
}
}
void SkValidatingReadBuffer::readRect(SkRect* rect) {
const void* ptr = this->skip(sizeof(SkRect));
if (!fError) {
memcpy(rect, ptr, sizeof(SkRect));
}
}
void SkValidatingReadBuffer::readRegion(SkRegion* region) {
size_t size = 0;
if (!fError) {
size = region->readFromMemory(fReader.peek(), fReader.available());
this->validate((SkAlign4(size) != size) || (0 == size));
}
if (!fError) {
(void)this->skip(size);
}
}
void SkValidatingReadBuffer::readPath(SkPath* path) {
size_t size = 0;
if (!fError) {
size = path->readFromMemory(fReader.peek(), fReader.available());
this->validate((SkAlign4(size) != size) || (0 == size));
}
if (!fError) {
(void)this->skip(size);
}
}
bool SkValidatingReadBuffer::readArray(void* value, size_t size, size_t elementSize) {
const uint32_t count = this->getArrayCount();
this->validate(size == count);
(void)this->skip(sizeof(uint32_t)); // Skip array count
const size_t byteLength = count * elementSize;
const void* ptr = this->skip(SkAlign4(byteLength));
if (!fError) {
memcpy(value, ptr, byteLength);
return true;
}
return false;
}
bool SkValidatingReadBuffer::readByteArray(void* value, size_t size) {
return readArray(static_cast<unsigned char*>(value), size, sizeof(unsigned char));
}
bool SkValidatingReadBuffer::readColorArray(SkColor* colors, size_t size) {
return readArray(colors, size, sizeof(SkColor));
}
bool SkValidatingReadBuffer::readIntArray(int32_t* values, size_t size) {
return readArray(values, size, sizeof(int32_t));
}
bool SkValidatingReadBuffer::readPointArray(SkPoint* points, size_t size) {
return readArray(points, size, sizeof(SkPoint));
}
bool SkValidatingReadBuffer::readScalarArray(SkScalar* values, size_t size) {
return readArray(values, size, sizeof(SkScalar));
}
uint32_t SkValidatingReadBuffer::getArrayCount() {
const size_t inc = sizeof(uint32_t);
fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc);
return *(uint32_t*)fReader.peek();
}
void SkValidatingReadBuffer::readBitmap(SkBitmap* bitmap) {
const int width = this->readInt();
const int height = this->readInt();
const size_t length = this->readUInt();
// A size of zero means the SkBitmap was simply flattened.
this->validate(length == 0);
if (fError) {
return;
}
bitmap->unflatten(*this);
this->validate((bitmap->width() == width) && (bitmap->height() == height));
}
SkTypeface* SkValidatingReadBuffer::readTypeface() {
// TODO: Implement this (securely) when needed
return NULL;
}
SkFlattenable* SkValidatingReadBuffer::readFlattenable(SkFlattenable::Type type) {
SkString name;
this->readString(&name);
if (fError) {
return NULL;
}
// Is this the type we wanted ?
const char* cname = name.c_str();
SkFlattenable::Type baseType;
if (!SkFlattenable::NameToType(cname, &baseType) || (baseType != type)) {
return NULL;
}
SkFlattenable::Factory factory = SkFlattenable::NameToFactory(cname);
if (NULL == factory) {
return NULL; // writer failed to give us the flattenable
}
// if we get here, factory may still be null, but if that is the case, the
// failure was ours, not the writer.
SkFlattenable* obj = NULL;
uint32_t sizeRecorded = this->readUInt();
if (factory) {
uint32_t offset = fReader.offset();
obj = (*factory)(*this);
// check that we read the amount we expected
uint32_t sizeRead = fReader.offset() - offset;
this->validate(sizeRecorded == sizeRead);
if (fError) {
// we could try to fix up the offset...
delete obj;
obj = NULL;
}
} else {
// we must skip the remaining data
this->skip(sizeRecorded);
SkASSERT(false);
}
return obj;
}