skia2/docs/SkRect_Reference.bmh

2222 lines
64 KiB
Plaintext
Raw Normal View History

#Topic Rect
#Alias Rects ##
#Alias Rect_Reference ##
#Struct SkRect
#Code
#Populate
##
SkRect holds four SkScalar coordinates describing the upper and
lower bounds of a rectangle. SkRect may be created from outer bounds or
from position, width, and height. SkRect describes an area; if its right
is less than or equal to its left, or if its bottom is less than or equal to
its top, it is considered empty.
# move to topic about MakeIWH and friends
SkRect can be constructed from int values to avoid compiler warnings that
integer input cannot convert to SkScalar without loss of precision.
#Member SkScalar fLeft
#Line # smaller x-axis bounds ##
May contain any value, including infinities and NaN. The smaller of the
horizontal values when sorted. When equal to or greater than fRight, Rect is empty.
##
#Member SkScalar fTop
#Line # smaller y-axis bounds ##
May contain any value, including infinities and NaN. The smaller of the
vertical values when sorted. When equal to or greater than fBottom, Rect is empty.
##
#Member SkScalar fRight
#Line # larger x-axis bounds ##
May contain any value, including infinities and NaN. The larger of the
horizontal values when sorted. When equal to or less than fLeft, Rect is empty.
##
#Member SkScalar fBottom
#Line # larger y-axis bounds ##
May contain any value, including infinities and NaN. The larger of the
vertical values when sorted. When equal to or less than fTop, Rect is empty.
##
# ------------------------------------------------------------------------------
#Method static constexpr SkRect MakeEmpty()
#In Constructors
#Line # constructs from bounds of (0, 0, 0, 0) ##
Returns constructed Rect set to (0, 0, 0, 0).
Many other rectangles are empty; if left is equal to or greater than right,
or if top is equal to or greater than bottom. Setting all members to zero
is a convenience, but does not designate a special empty rectangle.
#Return bounds (0, 0, 0, 0) ##
#Example
SkRect rect = SkRect::MakeEmpty();
SkDebugf("MakeEmpty isEmpty: %s\n", rect.isEmpty() ? "true" : "false");
rect.offset(10, 10);
SkDebugf("offset rect isEmpty: %s\n", rect.isEmpty() ? "true" : "false");
rect.inset(10, 10);
SkDebugf("inset rect isEmpty: %s\n", rect.isEmpty() ? "true" : "false");
rect.outset(20, 20);
SkDebugf("outset rect isEmpty: %s\n", rect.isEmpty() ? "true" : "false");
#StdOut
MakeEmpty isEmpty: true
offset rect isEmpty: true
inset rect isEmpty: true
outset rect isEmpty: false
##
##
#SeeAlso isEmpty setEmpty SkIRect::MakeEmpty
##
# ------------------------------------------------------------------------------
#Method static constexpr SkRect MakeWH(SkScalar w, SkScalar h)
#In Constructors
#Line # constructs from SkScalar input returning (0, 0, width, height) ##
Returns constructed Rect set to SkScalar values (0, 0, w, h). Does not
validate input; w or h may be negative.
Passing integer values may generate a compiler warning since Rect cannot
represent 32-bit integers exactly. Use SkIRect for an exact integer rectangle.
#Param w SkScalar width of constructed Rect ##
#Param h SkScalar height of constructed Rect ##
#Return bounds (0, 0, w, h) ##
#Example
SkRect rect1 = SkRect::MakeWH(25, 35);
SkRect rect2 = SkRect::MakeIWH(25, 35);
SkRect rect3 = SkRect::MakeXYWH(0, 0, 25, 35);
SkRect rect4 = SkRect::MakeLTRB(0, 0, 25, 35);
SkDebugf("all %s" "equal\n", rect1 == rect2 && rect2 == rect3 && rect3 == rect4 ?
"" : "not ");
#StdOut
all equal
##
##
#SeeAlso MakeSize MakeXYWH MakeIWH setWH SkIRect::MakeWH
##
# ------------------------------------------------------------------------------
#Method static SkRect MakeIWH(int w, int h)
#In Constructors
#Line # constructs from int input returning (0, 0, width, height) ##
Returns constructed Rect set to integer values (0, 0, w, h). Does not validate
input; w or h may be negative.
Use to avoid a compiler warning that input may lose precision when stored.
Use SkIRect for an exact integer rectangle.
#Param w integer width of constructed Rect ##
#Param h integer height of constructed Rect ##
#Return bounds (0, 0, w, h) ##
#Example
SkIRect i_rect = SkIRect::MakeWH(25, 35);
SkRect f_rect = SkRect::MakeIWH(25, 35);
SkDebugf("i_rect width: %d f_rect width:%g\n", i_rect.width(), f_rect.width());
i_rect = SkIRect::MakeWH(125000111, 0);
f_rect = SkRect::MakeIWH(125000111, 0);
SkDebugf("i_rect width: %d f_rect width:%.0f\n", i_rect.width(), f_rect.width());
#StdOut
i_rect width: 25 f_rect width:25
i_rect width: 125000111 f_rect width:125000112
##
##
#SeeAlso MakeXYWH MakeWH isetWH SkIRect::MakeWH
##
# ------------------------------------------------------------------------------
#Method static constexpr SkRect MakeSize(const SkSize& size)
#In Constructors
#Line # constructs from Size returning (0, 0, width, height) ##
Returns constructed Rect set to (0, 0, size.width(), size.height()). Does not
validate input; size.width() or size.height() may be negative.
#Param size SkScalar values for Rect width and height ##
#Return bounds (0, 0, size.width(), size.height()) ##
#Example
SkSize size = {25.5f, 35.5f};
SkRect rect = SkRect::MakeSize(size);
SkDebugf("rect width: %g height: %g\n", rect.width(), rect.height());
SkISize floor = size.toFloor();
rect = SkRect::MakeSize(SkSize::Make(floor));
SkDebugf("floor width: %g height: %g\n", rect.width(), rect.height());
#StdOut
rect width: 25.5 height: 35.5
floor width: 25 height: 35
##
##
#SeeAlso MakeWH MakeXYWH MakeIWH setWH SkIRect::MakeWH
##
# ------------------------------------------------------------------------------
#Method static constexpr SkRect MakeLTRB(SkScalar l, SkScalar t, SkScalar r,
SkScalar b)
#In Constructors
#Line # constructs from SkScalar left, top, right, bottom ##
Returns constructed Rect set to (l, t, r, b). Does not sort input; Rect may
result in fLeft greater than fRight, or fTop greater than fBottom.
#Param l SkScalar stored in fLeft ##
#Param t SkScalar stored in fTop ##
#Param r SkScalar stored in fRight ##
#Param b SkScalar stored in fBottom ##
#Return bounds (l, t, r, b) ##
#Example
SkRect rect = SkRect::MakeLTRB(5, 35, 15, 25);
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
rect.sort();
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
#StdOut
rect: 5, 35, 15, 25 isEmpty: true
rect: 5, 25, 15, 35 isEmpty: false
##
##
#SeeAlso MakeXYWH SkIRect::MakeLTRB
##
# ------------------------------------------------------------------------------
#Method static constexpr SkRect MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h)
#In Constructors
#Line # constructs from SkScalar input returning (x, y, width, height) ##
Returns constructed Rect set to #Formula # (x, y, x + w, y + h) ##.
Does not validate input; w or h may be negative.
#Param x stored in fLeft ##
#Param y stored in fTop ##
#Param w added to x and stored in fRight ##
#Param h added to y and stored in fBottom ##
#Return bounds at (x, y) with width w and height h ##
#Example
SkRect rect = SkRect::MakeXYWH(5, 35, -15, 25);
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
rect.sort();
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
#StdOut
rect: 5, 35, -10, 60 isEmpty: true
rect: -10, 35, 5, 60 isEmpty: false
##
##
#SeeAlso MakeLTRB SkIRect::MakeXYWH
##
# ------------------------------------------------------------------------------
#Method static SkRect Make(const SkISize& size)
#In Constructors
#Line # constructs from ISize returning (0, 0, width, height) ##
Returns constructed IRect set to (0, 0, size.width(), size.height()).
Does not validate input; size.width() or size.height() may be negative.
#Param size integer values for Rect width and height ##
#Return bounds (0, 0, size.width(), size.height()) ##
#Example
SkRect rect1 = SkRect::MakeSize({2, 35});
SkRect rect2 = SkRect::MakeIWH(2, 35);
SkDebugf("rect1 %c= rect2\n", rect1 == rect2 ? '=' : '!');
#StdOut
rect1 == rect2
##
##
#SeeAlso MakeWH MakeXYWH SkRect::MakeIWH SkIRect::MakeSize
##
# ------------------------------------------------------------------------------
#Method static SkRect Make(const SkIRect& irect)
#In Constructors
Returns constructed IRect set to irect, promoting integers to Scalar.
Does not validate input; fLeft may be greater than fRight, fTop may be greater
than fBottom.
#Param irect integer unsorted bounds ##
#Return irect members converted to SkScalar ##
#Example
SkIRect i_rect1 = {2, 35, 22, 53};
SkRect f_rect = SkRect::Make(i_rect1);
f_rect.offset(0.49f, 0.49f);
SkIRect i_rect2;
f_rect.round(&i_rect2);
SkDebugf("i_rect1 %c= i_rect2\n", i_rect1 == i_rect2? '=' : '!');
##
#SeeAlso MakeLTRB
##
#Subtopic Property
#Line # member values, center, validity ##
# ------------------------------------------------------------------------------
#Method bool isEmpty() const
#In Property
#Line # returns true if width or height are zero or negative ##
Returns true if fLeft is equal to or greater than fRight, or if fTop is equal
to or greater than fBottom. Call sort() to reverse rectangles with negative
width() or height().
#Return true if width() or height() are not positive and valid ##
#Example
SkRect tests[] = {{20, 40, 10, 50}, {20, 40, 20, 50}};
for (auto rect : tests) {
SkDebugf("rect: {%g, %g, %g, %g} is" "%s empty\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "" : " not");
rect.sort();
SkDebugf("sorted: {%g, %g, %g, %g} is" "%s empty\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "" : " not");
}
#StdOut
rect: {20, 40, 10, 50} is empty
sorted: {10, 40, 20, 50} is not empty
rect: {20, 40, 20, 50} is empty
sorted: {20, 40, 20, 50} is empty
##
##
#SeeAlso MakeEmpty sort SkIRect::isEmpty
##
# ------------------------------------------------------------------------------
#Method bool isSorted() const
#In Property
#Line # returns true if width or height are zero or positive ##
Returns true if fLeft is equal to or less than fRight, or if fTop is equal
to or less than fBottom. Call sort() to reverse rectangles with negative
width() or height().
#Return true if width() or height() are zero or positive ##
#Example
SkRect tests[] = {{20, 40, 10, 50}, {20, 40, 20, 50}};
for (auto rect : tests) {
SkDebugf("rect: {%g, %g, %g, %g} is" "%s sorted\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isSorted() ? "" : " not");
rect.sort();
SkDebugf("sorted: {%g, %g, %g, %g} is" "%s sorted\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isSorted() ? "" : " not");
}
#StdOut
rect: {20, 40, 10, 50} is not sorted
sorted: {10, 40, 20, 50} is sorted
rect: {20, 40, 20, 50} is sorted
sorted: {20, 40, 20, 50} is sorted
##
##
#SeeAlso sort makeSorted isEmpty
##
# ------------------------------------------------------------------------------
#Method bool isFinite() const
#In Property
#Line # returns true if no member is infinite or NaN ##
Returns true if all values in the rectangle are finite: SK_ScalarMin or larger,
and SK_ScalarMax or smaller.
#Return true if no member is infinite or NaN ##
#Example
SkRect largest = { SK_ScalarMin, SK_ScalarMin, SK_ScalarMax, SK_ScalarMax };
SkDebugf("largest is finite: %s\n", largest.isFinite() ? "true" : "false");
SkDebugf("large width %g\n", largest.width());
SkRect widest = SkRect::MakeWH(largest.width(), largest.height());
SkDebugf("widest is finite: %s\n", widest.isFinite() ? "true" : "false");
#StdOut
largest is finite: true
large width inf
widest is finite: false
##
##
#SeeAlso SkScalarIsFinite SkScalarIsNaN
##
# ------------------------------------------------------------------------------
#Method SkScalar x() const
#In Property
#Line # returns bounds left ##
Returns left edge of Rect, if sorted. Call isSorted to see if Rect is valid.
Call sort() to reverse fLeft and fRight if needed.
#Return fLeft ##
#Example
SkRect unsorted = { 15, 5, 10, 25 };
SkDebugf("unsorted.fLeft: %g unsorted.x(): %g\n", unsorted.fLeft, unsorted.x());
SkRect sorted = unsorted.makeSorted();
SkDebugf("sorted.fLeft: %g sorted.x(): %g\n", sorted.fLeft, sorted.x());
#StdOut
unsorted.fLeft: 15 unsorted.x(): 15
sorted.fLeft: 10 sorted.x(): 10
##
##
#SeeAlso fLeft left() y() SkIRect::x()
##
# ------------------------------------------------------------------------------
#Method SkScalar y() const
#In Property
#Line # returns bounds top ##
Returns top edge of Rect, if sorted. Call isEmpty to see if Rect may be invalid,
and sort() to reverse fTop and fBottom if needed.
#Return fTop ##
#Example
SkRect unsorted = { 15, 25, 10, 5 };
SkDebugf("unsorted.fTop: %g unsorted.y(): %g\n", unsorted.fTop, unsorted.y());
SkRect sorted = unsorted.makeSorted();
SkDebugf("sorted.fTop: %g sorted.y(): %g\n", sorted.fTop, sorted.y());
#StdOut
unsorted.fTop: 25 unsorted.y(): 25
sorted.fTop: 5 sorted.y(): 5
##
##
#SeeAlso fTop top() x() SkIRect::y()
##
# ------------------------------------------------------------------------------
#Method SkScalar left() const
#In Property
#Line # returns smaller bounds in x, if sorted ##
Returns left edge of Rect, if sorted. Call isSorted to see if Rect is valid.
Call sort() to reverse fLeft and fRight if needed.
#Return fLeft ##
#Example
SkRect unsorted = { 15, 5, 10, 25 };
SkDebugf("unsorted.fLeft: %g unsorted.left(): %g\n", unsorted.fLeft, unsorted.left());
SkRect sorted = unsorted.makeSorted();
SkDebugf("sorted.fLeft: %g sorted.left(): %g\n", sorted.fLeft, sorted.left());
#StdOut
unsorted.fLeft: 15 unsorted.left(): 15
sorted.fLeft: 10 sorted.left(): 10
##
##
#SeeAlso fLeft x() SkIRect::left()
##
# ------------------------------------------------------------------------------
#Method SkScalar top() const
#In Property
#Line # returns smaller bounds in y, if sorted ##
Returns top edge of Rect, if sorted. Call isEmpty to see if Rect may be invalid,
and sort() to reverse fTop and fBottom if needed.
#Return fTop ##
#Example
SkRect unsorted = { 15, 25, 10, 5 };
SkDebugf("unsorted.fTop: %g unsorted.top(): %g\n", unsorted.fTop, unsorted.top());
SkRect sorted = unsorted.makeSorted();
SkDebugf("sorted.fTop: %g sorted.top(): %g\n", sorted.fTop, sorted.top());
#StdOut
unsorted.fTop: 25 unsorted.top(): 25
sorted.fTop: 5 sorted.top(): 5
##
##
#SeeAlso fTop y() SkIRect::top()
##
# ------------------------------------------------------------------------------
#Method SkScalar right() const
#In Property
#Line # returns larger bounds in x, if sorted ##
Returns right edge of Rect, if sorted. Call isSorted to see if Rect is valid.
Call sort() to reverse fLeft and fRight if needed.
#Return fRight ##
#Example
SkRect unsorted = { 15, 25, 10, 5 };
SkDebugf("unsorted.fRight: %g unsorted.right(): %g\n", unsorted.fRight, unsorted.right());
SkRect sorted = unsorted.makeSorted();
SkDebugf("sorted.fRight: %g sorted.right(): %g\n", sorted.fRight, sorted.right());
#StdOut
unsorted.fRight: 10 unsorted.right(): 10
sorted.fRight: 15 sorted.right(): 15
##
##
#SeeAlso fRight SkIRect::right()
##
# ------------------------------------------------------------------------------
#Method SkScalar bottom() const
#In Property
#Line # returns larger bounds in y, if sorted ##
Returns bottom edge of Rect, if sorted. Call isEmpty to see if Rect may be invalid,
and sort() to reverse fTop and fBottom if needed.
#Return fBottom ##
#Example
SkRect unsorted = { 15, 25, 10, 5 };
SkDebugf("unsorted.fBottom: %g unsorted.bottom(): %g\n", unsorted.fBottom, unsorted.bottom());
SkRect sorted = unsorted.makeSorted();
SkDebugf("sorted.fBottom: %g sorted.bottom(): %g\n", sorted.fBottom, sorted.bottom());
#StdOut
unsorted.fBottom: 5 unsorted.bottom(): 5
sorted.fBottom: 25 sorted.bottom(): 25
##
##
#SeeAlso fBottom SkIRect::bottom()
##
# ------------------------------------------------------------------------------
#Method SkScalar width() const
#In Property
#Line # returns span in x ##
Returns span on the x-axis. This does not check if Rect is sorted, or if
result fits in 32-bit float; result may be negative or infinity.
#Return fRight minus fLeft ##
#Example
#Description
Compare with SkIRect::width() example.
##
SkRect unsorted = { 15, 25, 10, 5 };
SkDebugf("unsorted width: %g\n", unsorted.width());
SkRect large = { -2147483647.f, 1, 2147483644.f, 2 };
SkDebugf("large width: %.0f\n", large.width());
#StdOut
unsorted width: -5
large width: 4294967296
##
##
#SeeAlso height() SkIRect::width()
##
# ------------------------------------------------------------------------------
#Method SkScalar height() const
#In Property
#Line # returns span in y ##
Returns span on the y-axis. This does not check if Rect is sorted, or if
result fits in 32-bit float; result may be negative or infinity.
#Return fBottom minus fTop ##
#Example
#Description
Compare with SkIRect::height() example.
##
SkRect unsorted = { 15, 25, 10, 20 };
SkDebugf("unsorted height: %g\n", unsorted.height());
SkRect large = { 1, -2147483647.f, 2, 2147483644.f };
SkDebugf("large height: %.0f\n", large.height());
#StdOut
unsorted height: -5
large height: 4294967296
##
##
#SeeAlso width() SkIRect::height()
##
# ------------------------------------------------------------------------------
#Method SkScalar centerX() const
#In Property
#Line # returns midpoint in x ##
Returns average of left edge and right edge. Result does not change if Rect
is sorted. Result may overflow to infinity if Rect is far from the origin.
#Return midpoint in x ##
#Example
SkRect tests[] = {{20, 30, 41, 51}, {-20, -30, -41, -51}};
for (auto rect : tests) {
SkDebugf("left: %3g right: %3g centerX: %3g\n", rect.left(), rect.right(), rect.centerX());
rect.sort();
SkDebugf("left: %3g right: %3g centerX: %3g\n", rect.left(), rect.right(), rect.centerX());
}
#StdOut
left: 20 right: 41 centerX: 30.5
left: 20 right: 41 centerX: 30.5
left: -20 right: -41 centerX: -30.5
left: -41 right: -20 centerX: -30.5
##
##
#SeeAlso centerY
##
# ------------------------------------------------------------------------------
#Method SkScalar centerY() const
#In Property
#Line # returns midpoint in y ##
Returns average of top edge and bottom edge. Result does not change if Rect
is sorted.
#Return midpoint in y ##
#Example
SkRect rect = { 2e+38, 2e+38, 3e+38, 3e+38 };
SkDebugf("left: %g right: %g centerX: %g ", rect.left(), rect.right(), rect.centerX());
SkDebugf("safe mid x: %g\n", rect.left() / 2 + rect.right() / 2);
#StdOut
left: 2e+38 right: 3e+38 centerX: 2.5e+38 safe mid x: 2.5e+38
##
##
#SeeAlso centerX
##
#Subtopic Property ##
#Subtopic Operators
# ------------------------------------------------------------------------------
#Method bool operator==(const SkRect& a, const SkRect& b)
#In Operators
#Line # returns true if members are equal ##
Returns true if all members in a: fLeft, fTop, fRight, and fBottom; are
equal to the corresponding members in b.
a and b are not equal if either contain NaN. a and b are equal if members
contain zeroes width different signs.
#Param a Rect to compare ##
#Param b Rect to compare ##
#Return true if members are equal ##
#Example
auto debugster = [](const SkRect& test) -> void {
SkRect negZero = {-0.0f, -0.0f, 2, 2};
SkDebugf("{%g, %g, %g, %g} %c= {%g, %g, %g, %g} %s numerically equal\n",
test.fLeft, test.fTop, test.fRight, test.fBottom,
negZero.fLeft, negZero.fTop, negZero.fRight, negZero.fBottom,
test == negZero ? '=' : '!',
test.fLeft == negZero.fLeft && test.fTop == negZero.fTop &&
test.fRight == negZero.fRight && test.fBottom == negZero.fBottom ?
"and are" : "yet are not");
};
SkRect tests[] = {{0, 0, 2, 2}, {-0, -0, 2, 2}, {0.0f, 0.0f, 2, 2}};
SkDebugf("tests are %s" "equal\n", tests[0] == tests[1] && tests[1] == tests[2] ? "" : "not ");
for (auto rect : tests) {
debugster(rect);
}
#StdOut
tests are equal
{0, 0, 2, 2} == {-0, -0, 2, 2} and are numerically equal
{0, 0, 2, 2} == {-0, -0, 2, 2} and are numerically equal
{0, 0, 2, 2} == {-0, -0, 2, 2} and are numerically equal
##
##
#SeeAlso operator!=(const SkRect& a, const SkRect& b)
##
# ------------------------------------------------------------------------------
#Method bool operator!=(const SkRect& a, const SkRect& b)
#In Operators
#Line # returns true if members are unequal ##
Returns true if any in a: fLeft, fTop, fRight, and fBottom; does not
equal the corresponding members in b.
a and b are not equal if either contain NaN. a and b are equal if members
contain zeroes width different signs.
#Param a Rect to compare ##
#Param b Rect to compare ##
#Return true if members are not equal ##
#Example
SkRect test = {0, 0, 2, SK_ScalarNaN};
SkDebugf("test with NaN is %s" "equal to itself\n", test == test ? "" : "not ");
#StdOut
test with NaN is not equal to itself
##
##
#SeeAlso operator==(const SkRect& a, const SkRect& b)
##
#Subtopic Operators ##
#Subtopic As_Points
#Line # conversion to and from Points ##
# ------------------------------------------------------------------------------
#Method void toQuad(SkPoint quad[4]) const
#In As_Points
#Line # returns four corners as Point ##
Returns four points in quad that enclose Rect ordered as: top-left, top-right,
bottom-right, bottom-left.
#Private
Consider adding param to control whether quad is clockwise or counterclockwise.
##
#Param quad storage for corners of Rect ##
#Example
SkRect rect = {1, 2, 3, 4};
SkPoint corners[4];
rect.toQuad(corners);
SkDebugf("rect: {%g, %g, %g, %g}\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
SkDebugf("corners:");
for (auto corner : corners) {
SkDebugf(" {%g, %g}", corner.fX, corner.fY);
}
SkDebugf("\n");
#StdOut
rect: {1, 2, 3, 4}
corners: {1, 2} {3, 2} {3, 4} {1, 4}
##
##
#SeeAlso SkPath::addRect
##
# ------------------------------------------------------------------------------
#Method void setBounds(const SkPoint pts[], int count)
#In As_Points
#Line # sets to upper and lower limits of Point array ##
Sets to bounds of Point array with count entries. If count is zero or smaller,
or if Point array contains an infinity or NaN, sets to (0, 0, 0, 0).
Result is either empty or sorted: fLeft is less than or equal to fRight, and
fTop is less than or equal to fBottom.
#Param pts Point array ##
#Param count entries in array ##
#Example
SkPoint points[] = {{3, 4}, {1, 2}, {5, 6}, {SK_ScalarNaN, 8}};
for (int count = 0; count <= (int) SK_ARRAY_COUNT(points); ++count) {
SkRect rect;
rect.setBounds(points, count);
if (count > 0) {
SkDebugf("added: %3g, %g ", points[count - 1].fX, points[count - 1].fY);
} else {
SkDebugf("%14s", " ");
}
SkDebugf("count: %d rect: %g, %g, %g, %g\n", count,
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
}
#StdOut
count: 0 rect: 0, 0, 0, 0
added: 3, 4 count: 1 rect: 3, 4, 3, 4
added: 1, 2 count: 2 rect: 1, 2, 3, 4
added: 5, 6 count: 3 rect: 1, 2, 5, 6
added: nan, 8 count: 4 rect: 0, 0, 0, 0
##
##
#SeeAlso set setBoundsCheck SkPath::addPoly
##
# ------------------------------------------------------------------------------
#Method bool setBoundsCheck(const SkPoint pts[], int count)
#In As_Points
#Line # sets to upper and lower limits of Point array ##
Sets to bounds of Point array with count entries. Returns false if count is
zero or smaller, or if Point array contains an infinity or NaN; in these cases
sets Rect to (0, 0, 0, 0).
Result is either empty or sorted: fLeft is less than or equal to fRight, and
fTop is less than or equal to fBottom.
#Param pts Point array ##
#Param count entries in array ##
#Return true if all Point values are finite ##
#Example
SkPoint points[] = {{3, 4}, {1, 2}, {5, 6}, {SK_ScalarNaN, 8}};
for (int count = 0; count <= (int) SK_ARRAY_COUNT(points); ++count) {
SkRect rect;
bool success = rect.setBoundsCheck(points, count);
if (count > 0) {
SkDebugf("added: %3g, %g ", points[count - 1].fX, points[count - 1].fY);
} else {
SkDebugf("%14s", " ");
}
SkDebugf("count: %d rect: %g, %g, %g, %g success: %s\n", count,
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, success ? "true" : "false");
}
#StdOut
count: 0 rect: 0, 0, 0, 0 success: true
added: 3, 4 count: 1 rect: 3, 4, 3, 4 success: true
added: 1, 2 count: 2 rect: 1, 2, 3, 4 success: true
added: 5, 6 count: 3 rect: 1, 2, 5, 6 success: true
added: nan, 8 count: 4 rect: 0, 0, 0, 0 success: false
##
##
#SeeAlso set setBounds SkPath::addPoly
##
#Subtopic As_Points ##
#Subtopic Set
#Line # replaces all values ##
# ------------------------------------------------------------------------------
#Method void setBoundsNoCheck(const SkPoint pts[], int count)
#In Set
#Line # sets to upper and lower limits of Point array ##
Sets to bounds of Point pts array with count entries. If any Point in pts
contains infinity or NaN, all Rect dimensions are set to NaN.
#Param pts Point array ##
#Param count entries in array ##
#Example
SkPoint points[] = {{3, 4}, {1, 2}, {SK_ScalarInfinity, 6}, {SK_ScalarNaN, 8}};
for (int count = 0; count <= (int) SK_ARRAY_COUNT(points); ++count) {
SkRect rect;
rect.setBoundsNoCheck(points, count);
if (count > 0) {
SkDebugf("added: %3g, %g ", points[count - 1].fX, points[count - 1].fY);
} else {
SkDebugf("%14s", " ");
}
SkDebugf("count: %d rect: %g, %g, %g, %g\n", count,
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
}
##
#SeeAlso setBoundsCheck
#Method ##
# ------------------------------------------------------------------------------
#Method void setEmpty()
#In Set
#Line # sets to (0, 0, 0, 0) ##
Sets Rect to (0, 0, 0, 0).
Many other rectangles are empty; if left is equal to or greater than right,
or if top is equal to or greater than bottom. Setting all members to zero
is a convenience, but does not designate a special empty rectangle.
#Example
SkRect rect = {3, 4, 1, 2};
for (int i = 0; i < 2; ++i) {
SkDebugf("rect: {%g, %g, %g, %g} is %s" "empty\n", rect.fLeft, rect.fTop,
rect.fRight, rect.fBottom, rect.isEmpty() ? "" : "not ");
rect.setEmpty();
}
#StdOut
rect: {3, 4, 1, 2} is empty
rect: {0, 0, 0, 0} is empty
##
##
#SeeAlso MakeEmpty SkIRect::setEmpty
##
# ------------------------------------------------------------------------------
#Method void set(const SkIRect& src)
#In Set
#Line # sets to SkScalar input (left, top, right, bottom) and others ##
Sets Rect to src, promoting src members from integer to Scalar.
Very large values in src may lose precision.
#Param src integer Rect ##
#Example
SkIRect i_rect = {3, 4, 1, 2};
SkDebugf("i_rect: {%d, %d, %d, %d}\n", i_rect.fLeft, i_rect.fTop, i_rect.fRight, i_rect.fBottom);
SkRect f_rect;
f_rect.set(i_rect);
SkDebugf("f_rect: {%g, %g, %g, %g}\n", f_rect.fLeft, f_rect.fTop, f_rect.fRight, f_rect.fBottom);
#StdOut
i_rect: {3, 4, 1, 2}
f_rect: {3, 4, 1, 2}
##
##
#SeeAlso setLTRB SkIntToScalar
##
# ------------------------------------------------------------------------------
#Method void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom)
#In Set
Sets Rect to (left, top, right, bottom).
left and right are not sorted; left is not necessarily less than right.
top and bottom are not sorted; top is not necessarily less than bottom.
#Param left stored in fLeft ##
#Param top stored in fTop ##
#Param right stored in fRight ##
#Param bottom stored in fBottom ##
#Example
SkRect rect1 = {3, 4, 1, 2};
SkDebugf("rect1: {%g, %g, %g, %g}\n", rect1.fLeft, rect1.fTop, rect1.fRight, rect1.fBottom);
SkRect rect2;
rect2.set(3, 4, 1, 2);
SkDebugf("rect2: {%g, %g, %g, %g}\n", rect2.fLeft, rect2.fTop, rect2.fRight, rect2.fBottom);
#StdOut
rect1: {3, 4, 1, 2}
rect2: {3, 4, 1, 2}
##
##
#SeeAlso setLTRB setXYWH SkIRect::set
##
# ------------------------------------------------------------------------------
#Method void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom)
#In Set
#Line # sets to SkScalar input (left, top, right, bottom) ##
Sets Rect to (left, top, right, bottom).
left and right are not sorted; left is not necessarily less than right.
top and bottom are not sorted; top is not necessarily less than bottom.
#Param left stored in fLeft ##
#Param top stored in fTop ##
#Param right stored in fRight ##
#Param bottom stored in fBottom ##
#Example
SkRect rect1 = {3, 4, 1, 2};
SkDebugf("rect1: {%g, %g, %g, %g}\n", rect1.fLeft, rect1.fTop, rect1.fRight, rect1.fBottom);
SkRect rect2;
rect2.setLTRB(3, 4, 1, 2);
SkDebugf("rect2: {%g, %g, %g, %g}\n", rect2.fLeft, rect2.fTop, rect2.fRight, rect2.fBottom);
#StdOut
rect1: {3, 4, 1, 2}
rect2: {3, 4, 1, 2}
##
##
#SeeAlso set setXYWH SkIRect::set
##
# ------------------------------------------------------------------------------
#Method void set(const SkPoint pts[], int count)
#In Set
Sets to bounds of Point array with count entries. If count is zero or smaller,
or if Point array contains an infinity or NaN, sets Rect to (0, 0, 0, 0).
Result is either empty or sorted: fLeft is less than or equal to fRight, and
fTop is less than or equal to fBottom.
#Param pts Point array ##
#Param count entries in array ##
#Example
SkPoint points[] = {{3, 4}, {1, 2}, {5, 6}, {SK_ScalarNaN, 8}};
for (int count = 0; count <= (int) SK_ARRAY_COUNT(points); ++count) {
SkRect rect;
rect.set(points, count);
if (count > 0) {
SkDebugf("added: %3g, %g ", points[count - 1].fX, points[count - 1].fY);
} else {
SkDebugf("%14s", " ");
}
SkDebugf("count: %d rect: %g, %g, %g, %g\n", count,
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
}
#StdOut
count: 0 rect: 0, 0, 0, 0
added: 3, 4 count: 1 rect: 3, 4, 3, 4
added: 1, 2 count: 2 rect: 1, 2, 3, 4
added: 5, 6 count: 3 rect: 1, 2, 5, 6
added: nan, 8 count: 4 rect: 0, 0, 0, 0
##
##
#SeeAlso setBounds setBoundsCheck SkPath::addPoly
##
# ------------------------------------------------------------------------------
#Method void set(const SkPoint& p0, const SkPoint& p1)
#In Set
Sets bounds to the smallest Rect enclosing Points p0 and p1. The result is
sorted and may be empty. Does not check to see if values are finite.
#Param p0 corner to include ##
#Param p1 corner to include ##
#Example
#Description
p0 and p1 may be swapped and have the same effect unless one contains NaN.
##
SkPoint point1 = {SK_ScalarNaN, 8};
SkPoint point2 = {3, 4};
SkRect rect;
rect.set(point1, point2);
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
rect.set(point2, point1);
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
##
#SeeAlso setBounds setBoundsCheck
##
# ------------------------------------------------------------------------------
#Method void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height)
#In Set
#Line # sets to SkScalar input (x, y, width, height) ##
Sets Rect to #Formula # (x, y, x + width, y + height) ##.
Does not validate input; width or height may be negative.
#Param x stored in fLeft ##
#Param y stored in fTop ##
#Param width added to x and stored in fRight ##
#Param height added to y and stored in fBottom ##
#Example
SkRect rect;
rect.setXYWH(5, 35, -15, 25);
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
rect.sort();
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
#StdOut
rect: 5, 35, -10, 60 isEmpty: true
rect: -10, 35, 5, 60 isEmpty: false
##
##
#SeeAlso MakeXYWH setLTRB set SkIRect::setXYWH
##
# ------------------------------------------------------------------------------
#Method void setWH(SkScalar width, SkScalar height)
#In Set
#Line # sets to SkScalar input (0, 0, width, height) ##
Sets Rect to (0, 0, width, height). Does not validate input;
width or height may be negative.
#Param width stored in fRight ##
#Param height stored in fBottom ##
#Example
SkRect rect;
rect.setWH(-15, 25);
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
rect.sort();
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
#StdOut
rect: 0, 0, -15, 25 isEmpty: true
rect: -15, 0, 0, 25 isEmpty: false
##
##
#SeeAlso MakeWH setXYWH isetWH
##
#Subtopic Set ##
#Subtopic From_Integers
#Line # sets Scalar values from integer input ##
# ------------------------------------------------------------------------------
#Method void iset(int left, int top, int right, int bottom)
#In From_Integers
#Line # sets to int input (left, top, right, bottom) ##
Sets Rect to (left, top, right, bottom).
All parameters are promoted from integer to Scalar.
left and right are not sorted; left is not necessarily less than right.
top and bottom are not sorted; top is not necessarily less than bottom.
#Param left promoted to SkScalar and stored in fLeft ##
#Param top promoted to SkScalar and stored in fTop ##
#Param right promoted to SkScalar and stored in fRight ##
#Param bottom promoted to SkScalar and stored in fBottom ##
#Example
SkRect rect1 = {3, 4, 1, 2};
SkDebugf("rect1: {%g, %g, %g, %g}\n", rect1.fLeft, rect1.fTop, rect1.fRight, rect1.fBottom);
SkRect rect2;
rect2.iset(3, 4, 1, 2);
SkDebugf("rect2: {%g, %g, %g, %g}\n", rect2.fLeft, rect2.fTop, rect2.fRight, rect2.fBottom);
#StdOut
rect1: {3, 4, 1, 2}
rect2: {3, 4, 1, 2}
##
##
#SeeAlso set setLTRB SkIRect::set SkIntToScalar
##
# ------------------------------------------------------------------------------
#Method void isetWH(int width, int height)
#In From_Integers
#Line # sets to int input (0, 0, width, height) ##
Sets Rect to (0, 0, width, height).
width and height may be zero or negative. width and height are promoted from
integer to SkScalar, large values may lose precision.
#Param width promoted to SkScalar and stored in fRight ##
#Param height promoted to SkScalar and stored in fBottom ##
#Example
SkRect rect1 = {0, 0, 1, 2};
SkDebugf("rect1: {%g, %g, %g, %g}\n", rect1.fLeft, rect1.fTop, rect1.fRight, rect1.fBottom);
SkRect rect2;
rect2.isetWH(1, 2);
SkDebugf("rect2: {%g, %g, %g, %g}\n", rect2.fLeft, rect2.fTop, rect2.fRight, rect2.fBottom);
#StdOut
rect1: {0, 0, 1, 2}
rect2: {0, 0, 1, 2}
##
##
#SeeAlso MakeWH MakeXYWH iset() SkIRect:MakeWH
##
#Subtopic From_Integers ##
#Subtopic Inset_Outset_Offset
#Line # moves sides ##
# ------------------------------------------------------------------------------
#Method SkRect makeOffset(SkScalar dx, SkScalar dy) const
#In Inset_Outset_Offset
#Line # constructs from translated sides ##
Returns Rect offset by (dx, dy).
If dx is negative, Rect returned is moved to the left.
If dx is positive, Rect returned is moved to the right.
If dy is negative, Rect returned is moved upward.
If dy is positive, Rect returned is moved downward.
#Param dx added to fLeft and fRight ##
#Param dy added to fTop and fBottom ##
#Return Rect offset on axes, with original width and height ##
#Example
SkRect rect = { 10, 50, 20, 60 };
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
rect = rect.makeOffset(15, 32);
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
#StdOut
rect: 10, 50, 20, 60 isEmpty: false
rect: 25, 82, 35, 92 isEmpty: false
##
##
#SeeAlso offset() makeInset makeOutset SkIRect::makeOffset
##
# ------------------------------------------------------------------------------
#Method SkRect makeInset(SkScalar dx, SkScalar dy) const
#In Inset_Outset_Offset
#Line # constructs from sides moved symmetrically about the center ##
Returns Rect, inset by (dx, dy).
If dx is negative, Rect returned is wider.
If dx is positive, Rect returned is narrower.
If dy is negative, Rect returned is taller.
If dy is positive, Rect returned is shorter.
#Param dx added to fLeft and subtracted from fRight ##
#Param dy added to fTop and subtracted from fBottom ##
#Return Rect inset symmetrically left and right, top and bottom ##
#Example
SkRect rect = { 10, 50, 20, 60 };
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
rect = rect.makeInset(15, 32);
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
#StdOut
rect: 10, 50, 20, 60 isEmpty: false
rect: 25, 82, 5, 28 isEmpty: true
##
##
#SeeAlso inset() makeOffset makeOutset SkIRect::makeInset
##
# ------------------------------------------------------------------------------
#Method SkRect makeOutset(SkScalar dx, SkScalar dy) const
#In Inset_Outset_Offset
#Line # constructs from sides moved symmetrically about the center ##
Returns Rect, outset by (dx, dy).
If dx is negative, Rect returned is narrower.
If dx is positive, Rect returned is wider.
If dy is negative, Rect returned is shorter.
If dy is positive, Rect returned is taller.
#Param dx subtracted to fLeft and added from fRight ##
#Param dy subtracted to fTop and added from fBottom ##
#Return Rect outset symmetrically left and right, top and bottom ##
#Example
SkRect rect = { 10, 50, 20, 60 };
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
rect = rect.makeOutset(15, 32);
SkDebugf("rect: %g, %g, %g, %g isEmpty: %s\n", rect.left(), rect.top(), rect.right(),
rect.bottom(), rect.isEmpty() ? "true" : "false");
#StdOut
rect: 10, 50, 20, 60 isEmpty: false
rect: -5, 18, 35, 92 isEmpty: false
##
##
#SeeAlso outset() makeOffset makeInset SkIRect::makeOutset
##
# ------------------------------------------------------------------------------
#Method void offset(SkScalar dx, SkScalar dy)
#In Inset_Outset_Offset
#Line # translates sides without changing width and height ##
Offsets Rect by adding dx to fLeft, fRight; and by adding dy to fTop, fBottom.
If dx is negative, moves Rect to the left.
If dx is positive, moves Rect to the right.
If dy is negative, moves Rect upward.
If dy is positive, moves Rect downward.
#Param dx offset added to fLeft and fRight ##
#Param dy offset added to fTop and fBottom ##
#Example
SkRect rect = { 10, 14, 50, 73 };
rect.offset(5, 13);
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
#StdOut
rect: 15, 27, 55, 86
##
##
#SeeAlso offsetTo makeOffset SkIRect::offset
##
# ------------------------------------------------------------------------------
#Method void offset(const SkPoint& delta)
#In Inset_Outset_Offset
Offsets Rect by adding delta.fX to fLeft, fRight; and by adding delta.fY to
fTop, fBottom.
If delta.fX is negative, moves Rect to the left.
If delta.fX is positive, moves Rect to the right.
If delta.fY is negative, moves Rect upward.
If delta.fY is positive, moves Rect downward.
#Param delta added to Rect ##
#Example
SkRect rect = { 10, 14, 50, 73 };
rect.offset({5, 13});
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
#StdOut
rect: 15, 27, 55, 86
##
##
#SeeAlso offsetTo makeOffset SkIRect::offset
##
# ------------------------------------------------------------------------------
#Method void offsetTo(SkScalar newX, SkScalar newY)
#In Inset_Outset_Offset
#Line # translates to (x, y) without changing width and height ##
Offsets Rect so that fLeft equals newX, and fTop equals newY. width and height
are unchanged.
#Param newX stored in fLeft, preserving width() ##
#Param newY stored in fTop, preserving height() ##
#Example
SkRect rect = { 10, 14, 50, 73 };
rect.offsetTo(15, 27);
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
#StdOut
rect: 15, 27, 55, 86
##
##
#SeeAlso offset makeOffset setXYWH SkIRect::offsetTo
##
# ------------------------------------------------------------------------------
#Method void inset(SkScalar dx, SkScalar dy)
#In Inset_Outset_Offset
#Line # moves the sides symmetrically about the center ##
Insets Rect by (dx, dy).
If dx is positive, makes Rect narrower.
If dx is negative, makes Rect wider.
If dy is positive, makes Rect shorter.
If dy is negative, makes Rect taller.
#Param dx added to fLeft and subtracted from fRight ##
#Param dy added to fTop and subtracted from fBottom ##
#Example
SkRect rect = { 10, 14, 50, 73 };
rect.inset(5, 13);
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
#StdOut
rect: 15, 27, 45, 60
##
##
#SeeAlso outset makeInset SkIRect::inset
##
# ------------------------------------------------------------------------------
#Method void outset(SkScalar dx, SkScalar dy)
#In Inset_Outset_Offset
#Line # moves the sides symmetrically about the center ##
Outsets Rect by (dx, dy).
If dx is positive, makes Rect wider.
If dx is negative, makes Rect narrower.
If dy is positive, makes Rect taller.
If dy is negative, makes Rect shorter.
#Param dx subtracted to fLeft and added from fRight ##
#Param dy subtracted to fTop and added from fBottom ##
#Example
SkRect rect = { 10, 14, 50, 73 };
rect.outset(5, 13);
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
#StdOut
rect: 5, 1, 55, 86
##
##
#SeeAlso inset makeOutset SkIRect::outset
##
#Subtopic Inset_Outset_Offset ##
#Subtopic Intersection
#Line # sets to shared bounds ##
Rects intersect when they enclose a common area. To intersect, each of the pair
must describe area; fLeft is less than fRight, and fTop is less than fBottom;
empty() returns false. The intersection of Rect pair can be described by:
#Formula # (max(a.fLeft, b.fLeft), max(a.fTop, b.fTop),
min(a.fRight, b.fRight), min(a.fBottom, b.fBottom)) ##.
The intersection is only meaningful if the resulting Rect is not empty and
describes an area: fLeft is less than fRight, and fTop is less than fBottom.
# ------------------------------------------------------------------------------
#Method bool contains(SkScalar x, SkScalar y) const
#In Intersection
#Line # returns true if points are equal or inside ##
Returns true if: fLeft <= x < fRight && fTop <= y < fBottom.
Returns false if SkRect is empty.
#Param x test Point x-coordinate ##
#Param y test Point y-coordinate ##
#Return true if (x, y) is inside Rect ##
#Example
SkRect rect = { 30, 50, 40, 60 };
SkPoint tests[] = { { 30, 50 }, { 39, 49 }, { 29, 59 } };
for (auto contained : tests) {
SkDebugf("rect: (%g, %g, %g, %g) %s (%g, %g)\n",
rect.left(), rect.top(), rect.right(), rect.bottom(),
rect.contains(contained.x(), contained.y()) ? "contains" : "does not contain",
contained.x(), contained.y());
}
#StdOut
rect: (30, 50, 40, 60) contains (30, 50)
rect: (30, 50, 40, 60) does not contain (39, 49)
rect: (30, 50, 40, 60) does not contain (29, 59)
##
##
#SeeAlso SkIRect::contains SkRRect::contains
##
# ------------------------------------------------------------------------------
#Method bool contains(const SkRect& r) const
#In Intersection
Returns true if Rect contains r.
Returns false if Rect is empty or r is empty.
Rect contains r when Rect area completely includes r area.
#Param r Rect contained ##
#Return true if all sides of Rect are outside r ##
#Example
SkRect rect = { 30, 50, 40, 60 };
SkRect tests[] = { { 30, 50, 31, 51}, { 39, 49, 40, 50}, { 29, 59, 30, 60} };
for (auto contained : tests) {
SkDebugf("rect: (%g, %g, %g, %g) %s (%g, %g, %g, %g)\n",
rect.left(), rect.top(), rect.right(), rect.bottom(),
rect.contains(contained) ? "contains" : "does not contain",
contained.left(), contained.top(), contained.right(), contained.bottom());
}
#StdOut
rect: (30, 50, 40, 60) contains (30, 50, 31, 51)
rect: (30, 50, 40, 60) does not contain (39, 49, 40, 50)
rect: (30, 50, 40, 60) does not contain (29, 59, 30, 60)
##
##
#SeeAlso SkIRect::contains
##
# ------------------------------------------------------------------------------
#Method bool contains(const SkIRect& r) const
#In Intersection
Returns true if Rect contains r.
Returns false if Rect is empty or r is empty.
Rect contains r when Rect area completely includes r area.
#Param r IRect contained ##
#Return true if all sides of Rect are outside r ##
#Example
SkRect rect = { 30, 50, 40, 60 };
SkIRect tests[] = { { 30, 50, 31, 51}, { 39, 49, 40, 50}, { 29, 59, 30, 60} };
for (auto contained : tests) {
SkDebugf("rect: (%g, %g, %g, %g) %s (%d, %d, %d, %d)\n",
rect.left(), rect.top(), rect.right(), rect.bottom(),
rect.contains(contained) ? "contains" : "does not contain",
contained.left(), contained.top(), contained.right(), contained.bottom());
}
#StdOut
rect: (30, 50, 40, 60) contains (30, 50, 31, 51)
rect: (30, 50, 40, 60) does not contain (39, 49, 40, 50)
rect: (30, 50, 40, 60) does not contain (29, 59, 30, 60)
##
##
#SeeAlso SkIRect::contains
##
# ------------------------------------------------------------------------------
#Method bool intersect(const SkRect& r)
#In Intersection
#Line # sets to shared area; returns true if not empty ##
Returns true if Rect intersects r, and sets Rect to intersection.
Returns false if Rect does not intersect r, and leaves Rect unchanged.
Returns false if either r or Rect is empty, leaving Rect unchanged.
#Param r limit of result ##
#Return true if r and Rect have area in common ##
#Example
#Description
Two SkDebugf calls are required. If the calls are combined, their arguments
may not be evaluated in left to right order: the printed intersection may
be before or after the call to intersect.
##
SkRect leftRect = { 10, 40, 50, 80 };
SkRect rightRect = { 30, 60, 70, 90 };
SkDebugf("%s intersection: ", leftRect.intersect(rightRect) ? "" : "no ");
SkDebugf("%g, %g, %g, %g\n", leftRect.left(), leftRect.top(),
leftRect.right(), leftRect.bottom());
#StdOut
intersection: 30, 60, 50, 80
##
##
#SeeAlso intersects Intersects join SkIRect::intersect
##
# ------------------------------------------------------------------------------
#Method bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom)
#In Intersection
Constructs Rect to intersect from (left, top, right, bottom). Does not sort
construction.
Returns true if Rect intersects construction, and sets Rect to intersection.
Returns false if Rect does not intersect construction, and leaves Rect unchanged.
Returns false if either construction or Rect is empty, leaving Rect unchanged.
#Param left x-axis minimum of constructed Rect ##
#Param top y-axis minimum of constructed Rect ##
#Param right x-axis maximum of constructed Rect ##
#Param bottom y-axis maximum of constructed Rect ##
#Return true if construction and Rect have area in common ##
#Example
#Description
Two SkDebugf calls are required. If the calls are combined, their arguments
may not be evaluated in left to right order: the printed intersection may
be before or after the call to intersect.
##
SkRect leftRect = { 10, 40, 50, 80 };
SkDebugf("%s intersection: ", leftRect.intersect(30, 60, 70, 90) ? "" : "no ");
SkDebugf("%g, %g, %g, %g\n", leftRect.left(), leftRect.top(),
leftRect.right(), leftRect.bottom());
#StdOut
intersection: 30, 60, 50, 80
##
##
#SeeAlso intersects Intersects join SkIRect::intersect
##
# ------------------------------------------------------------------------------
#Method bool intersect(const SkRect& a, const SkRect& b)
#In Intersection
Returns true if a intersects b, and sets Rect to intersection.
Returns false if a does not intersect b, and leaves Rect unchanged.
Returns false if either a or b is empty, leaving Rect unchanged.
#Param a Rect to intersect ##
#Param b Rect to intersect ##
#Return true if a and b have area in common ##
#Example
SkRect result;
bool intersected = result.intersect({ 10, 40, 50, 80 }, { 30, 60, 70, 90 });
SkDebugf("%s intersection: %g, %g, %g, %g\n", intersected ? "" : "no ",
result.left(), result.top(), result.right(), result.bottom());
#StdOut
intersection: 30, 60, 50, 80
##
##
#SeeAlso intersects Intersects join SkIRect::intersect
##
# ------------------------------------------------------------------------------
#Method bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const
#In Intersection
#Line # returns true if areas overlap ##
Constructs Rect to intersect from (left, top, right, bottom). Does not sort
construction.
Returns true if Rect intersects construction.
Returns false if either construction or Rect is empty, or do not intersect.
#Param left x-axis minimum of constructed Rect ##
#Param top y-axis minimum of constructed Rect ##
#Param right x-axis maximum of constructed Rect ##
#Param bottom y-axis maximum of constructed Rect ##
#Return true if construction and Rect have area in common ##
#Example
SkRect rect = { 10, 40, 50, 80 };
SkDebugf("%s intersection", rect.intersects(30, 60, 70, 90) ? "" : "no ");
#StdOut
intersection
##
##
#SeeAlso intersect Intersects SkIRect::Intersects
##
# ------------------------------------------------------------------------------
#Method bool intersects(const SkRect& r) const
#In Intersection
Returns true if Rect intersects r.
Returns false if either r or Rect is empty, or do not intersect.
#Param r Rect to intersect ##
#Return true if r and Rect have area in common ##
#Example
SkRect rect = { 10, 40, 50, 80 };
SkDebugf("%s intersection", rect.intersects({30, 60, 70, 90}) ? "" : "no ");
#StdOut
intersection
##
##
#SeeAlso intersect Intersects SkIRect::Intersects
##
# ------------------------------------------------------------------------------
#Method static bool Intersects(const SkRect& a, const SkRect& b)
#In Intersection
#Line # returns true if areas overlap ##
Returns true if a intersects b.
Returns false if either a or b is empty, or do not intersect.
#Param a Rect to intersect ##
#Param b Rect to intersect ##
#Return true if a and b have area in common ##
#Example
SkDebugf("%s intersection", SkRect::Intersects({10, 40, 50, 80}, {30, 60, 70, 90}) ? "" : "no ");
#StdOut
intersection
##
##
#SeeAlso intersect intersects SkIRect::Intersects
##
#Subtopic Intersection ##
#Subtopic Join
#Line # sets to union of bounds ##
# ------------------------------------------------------------------------------
#Method void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom)
#In Join
#Line # sets to union of bounds ##
Constructs Rect to intersect from (left, top, right, bottom). Does not sort
construction.
Sets Rect to the union of itself and the construction.
Has no effect if construction is empty. Otherwise, if Rect is empty, sets
Rect to construction.
#Param left x-axis minimum of constructed Rect ##
#Param top y-axis minimum of constructed Rect ##
#Param right x-axis maximum of constructed Rect ##
#Param bottom y-axis maximum of constructed Rect ##
#Example
SkRect rect = { 10, 20, 15, 25};
rect.join(50, 60, 55, 65);
SkDebugf("join: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
#StdOut
join: 10, 20, 55, 65
##
##
#SeeAlso joinNonEmptyArg joinPossiblyEmptyRect SkIRect::join
##
# ------------------------------------------------------------------------------
#Method void join(const SkRect& r)
#In Join
Sets Rect to the union of itself and r.
Has no effect if r is empty. Otherwise, if Rect is empty, sets
Rect to r.
#Param r expansion Rect ##
#Example
SkRect rect = { 10, 20, 15, 25};
rect.join({50, 60, 55, 65});
SkDebugf("join: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
#StdOut
join: 10, 20, 55, 65
##
##
#SeeAlso joinNonEmptyArg joinPossiblyEmptyRect SkIRect::join
##
# ------------------------------------------------------------------------------
#Method void joinNonEmptyArg(const SkRect& r)
#In Join
#Line # sets to union of bounds, asserting that argument is not empty ##
Sets Rect to the union of itself and r.
Asserts if r is empty and SK_DEBUG is defined.
If Rect is empty, sets Rect to r.
May produce incorrect results if r is empty.
#Param r expansion Rect ##
#Example
#Description
Since Rect is not sorted, first result is copy of toJoin.
##
SkRect rect = { 10, 100, 15, 0};
SkRect sorted = rect.makeSorted();
SkRect toJoin = { 50, 60, 55, 65 };
rect.joinNonEmptyArg(toJoin);
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
sorted.joinNonEmptyArg(toJoin);
SkDebugf("sorted: %g, %g, %g, %g\n", sorted.fLeft, sorted.fTop, sorted.fRight, sorted.fBottom);
#StdOut
rect: 50, 60, 55, 65
sorted: 10, 0, 55, 100
##
##
#SeeAlso join joinPossiblyEmptyRect SkIRect::join
##
# ------------------------------------------------------------------------------
#Method void joinPossiblyEmptyRect(const SkRect& r)
#In Join
#Line # sets to union of bounds; skips empty check for both ##
Sets Rect to the union of itself and the construction.
May produce incorrect results if Rect or r is empty.
#Param r expansion Rect ##
#Example
#Description
Since Rect is not sorted, first result is not useful.
##
SkRect rect = { 10, 100, 15, 0};
SkRect sorted = rect.makeSorted();
SkRect toJoin = { 50, 60, 55, 65 };
rect.joinPossiblyEmptyRect(toJoin);
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
sorted.joinPossiblyEmptyRect(toJoin);
SkDebugf("sorted: %g, %g, %g, %g\n", sorted.fLeft, sorted.fTop, sorted.fRight, sorted.fBottom);
#StdOut
rect: 10, 60, 55, 65
sorted: 10, 0, 55, 100
##
##
#SeeAlso joinNonEmptyArg join SkIRect::join
##
#Subtopic Join ##
#Subtopic Rounding
#Line # adjust to integer bounds ##
#Method void round(SkIRect* dst) const
#In Rounding
#Line # sets members to nearest integer value ##
Sets IRect by adding 0.5 and discarding the fractional portion of Rect
members, using #Formula # (SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop),
SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom)) ##.
#Param dst storage for IRect ##
#Example
SkRect rect = { 30.5f, 50.5f, 40.5f, 60.5f };
SkIRect round;
rect.round(&round);
SkDebugf("round: %d, %d, %d, %d\n", round.fLeft, round.fTop, round.fRight, round.fBottom);
#StdOut
round: 31, 51, 41, 61
##
##
#SeeAlso roundIn roundOut SkScalarRoundToInt
##
# ------------------------------------------------------------------------------
#Method void roundOut(SkIRect* dst) const
#In Rounding
#Line # sets members to nearest integer value away from opposite ##
Sets IRect by discarding the fractional portion of fLeft and fTop; and rounding
up fRight and fBottom, using
#Formula # (SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop),
SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom)) ##.
#Param dst storage for IRect ##
#Example
SkRect rect = { 30.5f, 50.5f, 40.5f, 60.5f };
SkIRect round;
rect.roundOut(&round);
SkDebugf("round: %d, %d, %d, %d\n", round.fLeft, round.fTop, round.fRight, round.fBottom);
#StdOut
round: 30, 50, 41, 61
##
##
#SeeAlso roundIn round SkScalarRoundToInt
##
# ------------------------------------------------------------------------------
#Method void roundOut(SkRect* dst) const
#In Rounding
Sets Rect by discarding the fractional portion of fLeft and fTop; and rounding
up fRight and fBottom, using
#Formula # (SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop),
SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom)) ##.
#Param dst storage for Rect ##
#Example
SkRect rect = { 30.5f, 50.5f, 40.5f, 60.5f };
SkRect round;
rect.roundOut(&round);
SkDebugf("round: %g, %g, %g, %g\n", round.fLeft, round.fTop, round.fRight, round.fBottom);
#StdOut
round: 30, 50, 41, 61
##
##
#SeeAlso roundIn round SkScalarRoundToInt
##
# ------------------------------------------------------------------------------
#Method void roundIn(SkIRect* dst) const
#In Rounding
#Line # sets members to nearest integer value towards opposite ##
Sets Rect by rounding up fLeft and fTop; and discarding the fractional portion
of fRight and fBottom, using
#Formula # (SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop),
SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom)) ##.
#Param dst storage for IRect ##
#Example
SkRect rect = { 30.5f, 50.5f, 40.5f, 60.5f };
SkIRect round;
rect.roundIn(&round);
SkDebugf("round: %d, %d, %d, %d\n", round.fLeft, round.fTop, round.fRight, round.fBottom);
#StdOut
round: 31, 51, 40, 60
##
##
#SeeAlso roundOut round SkScalarRoundToInt
##
# ------------------------------------------------------------------------------
#Method SkIRect round() const
#In Rounding
Returns IRect by adding 0.5 and discarding the fractional portion of Rect
members, using #Formula # (SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop),
SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom)) ##.
#Return rounded IRect ##
#Example
SkRect rect = { 30.5f, 50.5f, 40.5f, 60.5f };
SkIRect round = rect.round();
SkDebugf("round: %d, %d, %d, %d\n", round.fLeft, round.fTop, round.fRight, round.fBottom);
#StdOut
round: 31, 51, 41, 61
##
##
#SeeAlso roundOut roundIn SkScalarRoundToInt
##
# ------------------------------------------------------------------------------
#Method SkIRect roundOut() const
#In Rounding
Sets IRect by discarding the fractional portion of fLeft and fTop; and rounding
up fRight and fBottom, using
#Formula # (SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop),
SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom)) ##.
#Return rounded IRect ##
#Example
SkRect rect = { 30.5f, 50.5f, 40.5f, 60.5f };
SkIRect round = rect.roundOut();
SkDebugf("round: %d, %d, %d, %d\n", round.fLeft, round.fTop, round.fRight, round.fBottom);
#StdOut
round: 30, 50, 41, 61
##
##
#SeeAlso round roundIn SkScalarRoundToInt
##
#Subtopic Rounding ##
#Subtopic Sorting
#Line # orders sides ##
# ------------------------------------------------------------------------------
#Method void sort()
#In Sorting
#Line # orders sides from smaller to larger ##
Swaps fLeft and fRight if fLeft is greater than fRight; and swaps
fTop and fBottom if fTop is greater than fBottom. Result may be empty;
and width() and height() will be zero or positive.
#Example
SkRect rect = { 30.5f, 50.5f, 20.5f, 10.5f };
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
rect.sort();
SkDebugf("sorted: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
#StdOut
rect: 30.5, 50.5, 20.5, 10.5
sorted: 20.5, 10.5, 30.5, 50.5
##
##
#SeeAlso makeSorted SkIRect::sort isSorted
##
# ------------------------------------------------------------------------------
#Method SkRect makeSorted() const
#In Sorting
#In Constructors
#Line # constructs Rect, ordering sides from smaller to larger ##
Returns Rect with fLeft and fRight swapped if fLeft is greater than fRight; and
with fTop and fBottom swapped if fTop is greater than fBottom. Result may be empty;
and width() and height() will be zero or positive.
#Return sorted Rect ##
#Example
SkRect rect = { 30.5f, 50.5f, 20.5f, 10.5f };
SkDebugf("rect: %g, %g, %g, %g\n", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
SkRect sort = rect.makeSorted();
SkDebugf("sorted: %g, %g, %g, %g\n", sort.fLeft, sort.fTop, sort.fRight, sort.fBottom);
#StdOut
rect: 30.5, 50.5, 20.5, 10.5
sorted: 20.5, 10.5, 30.5, 50.5
##
##
#SeeAlso sort SkIRect::makeSorted isSorted
##
#Subtopic Sorting ##
# ------------------------------------------------------------------------------
#Method const SkScalar* asScalars() const
#In Property
#Line # returns pointer to members as array ##
Returns pointer to first Scalar in Rect, to treat it as an array with four
entries.
#Return pointer to fLeft ##
#Example
SkRect rect = {7, 11, 13, 17};
SkDebugf("rect.asScalars() %c= &rect.fLeft\n", rect.asScalars() == &rect.fLeft? '=' : '!');
#StdOut
rect.asScalars() == &rect.fLeft
##
##
#SeeAlso toQuad
##
# ------------------------------------------------------------------------------
#Method void dump(bool asHex) const
#In Property
#Line # sends text representation to standard output using floats ##
Writes text representation of Rect to standard output. Set asHex to true to
generate exact binary representations of floating point numbers.
#Param asHex true if SkScalar values are written as hexadecimal ##
#Example
SkRect rect = {20, 30, 40, 50};
for (bool dumpAsHex : { false, true } ) {
rect.dump(dumpAsHex);
SkDebugf("\n");
}
#StdOut
SkRect::MakeLTRB(20, 30, 40, 50);
SkRect::MakeLTRB(SkBits2Float(0x41a00000), /* 20.000000 */
SkBits2Float(0x41f00000), /* 30.000000 */
SkBits2Float(0x42200000), /* 40.000000 */
SkBits2Float(0x42480000) /* 50.000000 */);
##
##
#SeeAlso dumpHex
##
# ------------------------------------------------------------------------------
#Method void dump() const
Writes text representation of Rect to standard output. The representation may be
directly compiled as C++ code. Floating point values are written
with limited precision; it may not be possible to reconstruct original Rect
from output.
#Example
SkRect rect = {6.f / 7, 2.f / 3, 26.f / 10, 42.f / 6};
rect.dump();
SkRect copy = SkRect::MakeLTRB(0.857143f, 0.666667f, 2.6f, 7);
SkDebugf("rect is " "%s" "equal to copy\n", rect == copy ? "" : "not ");
#StdOut
SkRect::MakeLTRB(0.857143f, 0.666667f, 2.6f, 7);
rect is not equal to copy
##
##
#SeeAlso dumpHex
##
# ------------------------------------------------------------------------------
#Method void dumpHex() const
#In Property
#Line # sends text representation to standard output using hexadecimal ##
Writes text representation of Rect to standard output. The representation may be
directly compiled as C++ code. Floating point values are written
in hexadecimal to preserve their exact bit pattern. The output reconstructs the
original Rect.
Use instead of dump() when submitting
#A bug reports against Skia # https://bug.skia.org ##
.
#Example
SkRect rect = {6.f / 7, 2.f / 3, 26.f / 10, 42.f / 6};
rect.dumpHex();
SkRect copy = SkRect::MakeLTRB(SkBits2Float(0x3f5b6db7), /* 0.857143 */
SkBits2Float(0x3f2aaaab), /* 0.666667 */
SkBits2Float(0x40266666), /* 2.600000 */
SkBits2Float(0x40e00000) /* 7.000000 */);
SkDebugf("rect is " "%s" "equal to copy\n", rect == copy ? "" : "not ");
#StdOut
SkRect::MakeLTRB(SkBits2Float(0x3f5b6db7), /* 0.857143 */
SkBits2Float(0x3f2aaaab), /* 0.666667 */
SkBits2Float(0x40266666), /* 2.600000 */
SkBits2Float(0x40e00000) /* 7.000000 */);
rect is equal to copy
##
##
#SeeAlso dump
##
#Struct SkRect ##
#Topic Rect ##