skia2/experimental/Intersection/LineUtilities.cpp

134 lines
4.4 KiB
C++
Raw Normal View History

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "CurveIntersection.h"
#include "LineUtilities.h"
bool implicitLine(const _Line& line, double& slope, double& axisIntercept) {
_Point delta;
tangent(line, delta);
bool moreHorizontal = fabs(delta.x) > fabs(delta.y);
if (moreHorizontal) {
slope = delta.y / delta.x;
axisIntercept = line[0].y - slope * line[0].x;
} else {
slope = delta.x / delta.y;
axisIntercept = line[0].x - slope * line[0].y;
}
return moreHorizontal;
}
int reduceOrder(const _Line& line, _Line& reduced) {
reduced[0] = line[0];
int different = line[0] != line[1];
reduced[1] = line[different];
return 1 + different;
}
void sub_divide(const _Line& line, double t1, double t2, _Line& dst) {
_Point delta;
tangent(line, delta);
dst[0].x = line[0].x - t1 * delta.x;
dst[0].y = line[0].y - t1 * delta.y;
dst[1].x = line[0].x - t2 * delta.x;
dst[1].y = line[0].y - t2 * delta.y;
}
// may have this below somewhere else already:
// copying here because I thought it was clever
// Copyright 2001, softSurfer (www.softsurfer.com)
// This code may be freely used and modified for any purpose
// providing that this copyright notice is included with it.
// SoftSurfer makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application.
// Assume that a class is already given for the object:
// Point with coordinates {float x, y;}
//===================================================================
// isLeft(): tests if a point is Left|On|Right of an infinite line.
// Input: three points P0, P1, and P2
// Return: >0 for P2 left of the line through P0 and P1
// =0 for P2 on the line
// <0 for P2 right of the line
// See: the January 2001 Algorithm on Area of Triangles
// return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y));
double is_left(const _Line& line, const _Point& pt) {
_Vector P0 = line[1] - line[0];
_Vector P2 = pt - line[0];
return P0.cross(P2);
}
double t_at(const _Line& line, const _Point& pt) {
double dx = line[1].x - line[0].x;
double dy = line[1].y - line[0].y;
if (fabs(dx) > fabs(dy)) {
if (approximately_zero(dx)) {
return 0;
}
return (pt.x - line[0].x) / dx;
}
if (approximately_zero(dy)) {
return 0;
}
return (pt.y - line[0].y) / dy;
}
static void setMinMax(double x, int flags, double& minX, double& maxX) {
if (minX > x && (flags & (kFindTopMin | kFindBottomMin))) {
minX = x;
}
if (maxX < x && (flags & (kFindTopMax | kFindBottomMax))) {
maxX = x;
}
}
void x_at(const _Point& p1, const _Point& p2, double top, double bottom,
int flags, double& minX, double& maxX) {
if (AlmostEqualUlps(p1.y, p2.y)) {
// It should be OK to bail early in this case. There's another edge
// which shares this end point which can intersect without failing to
// have a slope ... maybe
return;
}
// p2.x is always greater than p1.x -- the part of points (p1, p2) are
// moving from the start of the cubic towards its end.
// if p1.y < p2.y, minX can be affected
// if p1.y > p2.y, maxX can be affected
double slope = (p2.x - p1.x) / (p2.y - p1.y);
int topFlags = flags & (kFindTopMin | kFindTopMax);
if (topFlags && ((top <= p1.y && top >= p2.y)
|| (top >= p1.y && top <= p2.y))) {
double x = p1.x + (top - p1.y) * slope;
setMinMax(x, topFlags, minX, maxX);
}
int bottomFlags = flags & (kFindBottomMin | kFindBottomMax);
if (bottomFlags && ((bottom <= p1.y && bottom >= p2.y)
|| (bottom >= p1.y && bottom <= p2.y))) {
double x = p1.x + (bottom - p1.y) * slope;
setMinMax(x, bottomFlags, minX, maxX);
}
}
void xy_at_t(const _Line& line, double t, double& x, double& y) {
double one_t = 1 - t;
if (&x) {
x = one_t * line[0].x + t * line[1].x;
}
if (&y) {
y = one_t * line[0].y + t * line[1].y;
}
}
_Point xy_at_t(const _Line& line, double t) {
double one_t = 1 - t;
_Point result = { one_t * line[0].x + t * line[1].x, one_t * line[0].y + t * line[1].y };
return result;
}