skia2/tools/PictureRenderer.cpp

974 lines
34 KiB
C++
Raw Normal View History

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PictureRenderer.h"
#include "picture_utils.h"
#include "SamplePipeControllers.h"
#include "SkBitmapHasher.h"
#include "SkCanvas.h"
#include "SkData.h"
#include "SkDevice.h"
#include "SkDiscardableMemoryPool.h"
#include "SkGPipe.h"
#if SK_SUPPORT_GPU
#include "gl/GrGLDefines.h"
#include "SkGpuDevice.h"
#endif
#include "SkGraphics.h"
#include "SkImageEncoder.h"
#include "SkMaskFilter.h"
#include "SkMatrix.h"
#include "SkOSFile.h"
#include "SkPicture.h"
#include "SkPictureRecorder.h"
#include "SkPictureUtils.h"
#include "SkPixelRef.h"
#include "SkScalar.h"
#include "SkStream.h"
#include "SkString.h"
#include "SkTemplates.h"
#include "SkTDArray.h"
#include "SkThreadUtils.h"
#include "SkTypes.h"
static inline SkScalar scalar_log2(SkScalar x) {
static const SkScalar log2_conversion_factor = SkScalarDiv(1, SkScalarLog(2));
return SkScalarLog(x) * log2_conversion_factor;
}
namespace sk_tools {
enum {
kDefaultTileWidth = 256,
kDefaultTileHeight = 256
};
void PictureRenderer::init(SkPicture* pict, const SkString* writePath, const SkString* mismatchPath,
const SkString* inputFilename, bool useChecksumBasedFilenames) {
this->CopyString(&fWritePath, writePath);
this->CopyString(&fMismatchPath, mismatchPath);
this->CopyString(&fInputFilename, inputFilename);
fUseChecksumBasedFilenames = useChecksumBasedFilenames;
SkASSERT(NULL == fPicture);
SkASSERT(NULL == fCanvas.get());
if (NULL != fPicture || NULL != fCanvas.get()) {
return;
}
SkASSERT(pict != NULL);
if (NULL == pict) {
return;
}
fPicture.reset(pict)->ref();
fCanvas.reset(this->setupCanvas());
}
void PictureRenderer::CopyString(SkString* dest, const SkString* src) {
if (NULL != src) {
dest->set(*src);
} else {
dest->reset();
}
}
class FlagsDrawFilter : public SkDrawFilter {
public:
FlagsDrawFilter(PictureRenderer::DrawFilterFlags* flags) :
fFlags(flags) {}
virtual bool filter(SkPaint* paint, Type t) {
paint->setFlags(paint->getFlags() & ~fFlags[t] & SkPaint::kAllFlags);
if (PictureRenderer::kMaskFilter_DrawFilterFlag & fFlags[t]) {
SkMaskFilter* maskFilter = paint->getMaskFilter();
if (NULL != maskFilter) {
paint->setMaskFilter(NULL);
}
}
if (PictureRenderer::kHinting_DrawFilterFlag & fFlags[t]) {
paint->setHinting(SkPaint::kNo_Hinting);
} else if (PictureRenderer::kSlightHinting_DrawFilterFlag & fFlags[t]) {
paint->setHinting(SkPaint::kSlight_Hinting);
}
return true;
}
private:
PictureRenderer::DrawFilterFlags* fFlags;
};
static void setUpFilter(SkCanvas* canvas, PictureRenderer::DrawFilterFlags* drawFilters) {
if (drawFilters && !canvas->getDrawFilter()) {
canvas->setDrawFilter(SkNEW_ARGS(FlagsDrawFilter, (drawFilters)))->unref();
if (drawFilters[0] & PictureRenderer::kAAClip_DrawFilterFlag) {
canvas->setAllowSoftClip(false);
}
}
}
SkCanvas* PictureRenderer::setupCanvas() {
const int width = this->getViewWidth();
const int height = this->getViewHeight();
return this->setupCanvas(width, height);
}
SkCanvas* PictureRenderer::setupCanvas(int width, int height) {
SkCanvas* canvas;
switch(fDeviceType) {
case kBitmap_DeviceType: {
SkBitmap bitmap;
sk_tools::setup_bitmap(&bitmap, width, height);
canvas = SkNEW_ARGS(SkCanvas, (bitmap));
}
break;
#if SK_SUPPORT_GPU
#if SK_ANGLE
case kAngle_DeviceType:
// fall through
#endif
#if SK_MESA
case kMesa_DeviceType:
// fall through
#endif
case kGPU_DeviceType:
case kNVPR_DeviceType: {
SkAutoTUnref<GrSurface> target;
if (fGrContext) {
// create a render target to back the device
GrTextureDesc desc;
desc.fConfig = kSkia8888_GrPixelConfig;
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = width;
desc.fHeight = height;
desc.fSampleCnt = fSampleCount;
target.reset(fGrContext->createUncachedTexture(desc, NULL, 0));
}
if (NULL == target.get()) {
SkASSERT(0);
return NULL;
}
SkAutoTUnref<SkGpuDevice> device(SkGpuDevice::Create(target));
canvas = SkNEW_ARGS(SkCanvas, (device.get()));
break;
}
#endif
default:
SkASSERT(0);
return NULL;
}
setUpFilter(canvas, fDrawFilters);
this->scaleToScaleFactor(canvas);
// Pictures often lie about their extent (i.e., claim to be 100x100 but
// only ever draw to 90x100). Clear here so the undrawn portion will have
// a consistent color
canvas->clear(SK_ColorTRANSPARENT);
return canvas;
}
void PictureRenderer::scaleToScaleFactor(SkCanvas* canvas) {
SkASSERT(canvas != NULL);
if (fScaleFactor != SK_Scalar1) {
canvas->scale(fScaleFactor, fScaleFactor);
}
}
void PictureRenderer::end() {
this->resetState(true);
fPicture.reset(NULL);
fCanvas.reset(NULL);
}
int PictureRenderer::getViewWidth() {
SkASSERT(fPicture != NULL);
int width = SkScalarCeilToInt(fPicture->width() * fScaleFactor);
if (fViewport.width() > 0) {
width = SkMin32(width, fViewport.width());
}
return width;
}
int PictureRenderer::getViewHeight() {
SkASSERT(fPicture != NULL);
int height = SkScalarCeilToInt(fPicture->height() * fScaleFactor);
if (fViewport.height() > 0) {
height = SkMin32(height, fViewport.height());
}
return height;
}
/** Converts fPicture to a picture that uses a BBoxHierarchy.
* PictureRenderer subclasses that are used to test picture playback
* should call this method during init.
*/
void PictureRenderer::buildBBoxHierarchy() {
SkASSERT(NULL != fPicture);
if (kNone_BBoxHierarchyType != fBBoxHierarchyType && NULL != fPicture) {
SkAutoTDelete<SkBBHFactory> factory(this->getFactory());
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(fPicture->width(), fPicture->height(),
factory.get(),
this->recordFlags());
fPicture->draw(canvas);
fPicture.reset(recorder.endRecording());
}
}
void PictureRenderer::resetState(bool callFinish) {
#if SK_SUPPORT_GPU
SkGLContextHelper* glContext = this->getGLContext();
if (NULL == glContext) {
SkASSERT(kBitmap_DeviceType == fDeviceType);
return;
}
fGrContext->flush();
glContext->swapBuffers();
if (callFinish) {
SK_GL(*glContext, Finish());
}
#endif
}
void PictureRenderer::purgeTextures() {
SkDiscardableMemoryPool* pool = SkGetGlobalDiscardableMemoryPool();
pool->dumpPool();
#if SK_SUPPORT_GPU
SkGLContextHelper* glContext = this->getGLContext();
if (NULL == glContext) {
SkASSERT(kBitmap_DeviceType == fDeviceType);
return;
}
// resetState should've already done this
fGrContext->flush();
fGrContext->purgeAllUnlockedResources();
#endif
}
uint32_t PictureRenderer::recordFlags() {
return (kNone_BBoxHierarchyType == fBBoxHierarchyType)
? 0
: SkPicture::kUsePathBoundsForClip_RecordingFlag;
}
/**
* Write the canvas to an image file and/or JSON summary.
*
* @param canvas Must be non-null. Canvas to be written to a file.
* @param writePath If nonempty, write the binary image to a file within this directory.
* @param mismatchPath If nonempty, write the binary image to a file within this directory,
* but only if the image does not match expectations.
* @param inputFilename If we are writing out a binary image, use this to build its filename.
* @param jsonSummaryPtr If not null, add image results (checksum) to this summary.
* @param useChecksumBasedFilenames If true, use checksum-based filenames when writing to disk.
* @param tileNumberPtr If not null, which tile number this image contains.
*
* @return bool True if the operation completed successfully.
*/
static bool write(SkCanvas* canvas, const SkString& writePath, const SkString& mismatchPath,
const SkString& inputFilename, ImageResultsAndExpectations *jsonSummaryPtr,
bool useChecksumBasedFilenames, const int* tileNumberPtr=NULL) {
SkASSERT(canvas != NULL);
if (NULL == canvas) {
return false;
}
SkBitmap bitmap;
SkISize size = canvas->getDeviceSize();
setup_bitmap(&bitmap, size.width(), size.height());
canvas->readPixels(&bitmap, 0, 0);
force_all_opaque(bitmap);
BitmapAndDigest bitmapAndDigest(bitmap);
SkString escapedInputFilename(inputFilename);
replace_char(&escapedInputFilename, '.', '_');
// TODO(epoger): what about including the config type within outputFilename? That way,
// we could combine results of different config types without conflicting filenames.
SkString outputFilename;
const char *outputSubdirPtr = NULL;
if (useChecksumBasedFilenames) {
const ImageDigest *imageDigestPtr = bitmapAndDigest.getImageDigestPtr();
outputSubdirPtr = escapedInputFilename.c_str();
outputFilename.set(imageDigestPtr->getHashType());
outputFilename.append("_");
outputFilename.appendU64(imageDigestPtr->getHashValue());
} else {
outputFilename.set(escapedInputFilename);
if (NULL != tileNumberPtr) {
outputFilename.append("-tile");
outputFilename.appendS32(*tileNumberPtr);
}
}
outputFilename.append(".png");
if (NULL != jsonSummaryPtr) {
const ImageDigest *imageDigestPtr = bitmapAndDigest.getImageDigestPtr();
SkString outputRelativePath;
if (outputSubdirPtr) {
outputRelativePath.set(outputSubdirPtr);
outputRelativePath.append("/"); // always use "/", even on Windows
outputRelativePath.append(outputFilename);
} else {
outputRelativePath.set(outputFilename);
}
jsonSummaryPtr->add(inputFilename.c_str(), outputRelativePath.c_str(),
*imageDigestPtr, tileNumberPtr);
if (!mismatchPath.isEmpty() &&
!jsonSummaryPtr->matchesExpectation(inputFilename.c_str(), *imageDigestPtr,
tileNumberPtr)) {
if (!write_bitmap_to_disk(bitmap, mismatchPath, outputSubdirPtr, outputFilename)) {
return false;
}
}
}
if (writePath.isEmpty()) {
return true;
} else {
return write_bitmap_to_disk(bitmap, writePath, outputSubdirPtr, outputFilename);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////
SkCanvas* RecordPictureRenderer::setupCanvas(int width, int height) {
// defer the canvas setup until the render step
return NULL;
}
// the size_t* parameter is deprecated, so we ignore it
static SkData* encode_bitmap_to_data(size_t*, const SkBitmap& bm) {
return SkImageEncoder::EncodeData(bm, SkImageEncoder::kPNG_Type, 100);
}
bool RecordPictureRenderer::render(SkBitmap** out) {
SkAutoTDelete<SkBBHFactory> factory(this->getFactory());
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(this->getViewWidth(), this->getViewHeight(),
factory.get(),
this->recordFlags());
this->scaleToScaleFactor(canvas);
fPicture->draw(canvas);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
if (!fWritePath.isEmpty()) {
// Record the new picture as a new SKP with PNG encoded bitmaps.
SkString skpPath = SkOSPath::SkPathJoin(fWritePath.c_str(), fInputFilename.c_str());
SkFILEWStream stream(skpPath.c_str());
picture->serialize(&stream, &encode_bitmap_to_data);
return true;
}
return false;
}
SkString RecordPictureRenderer::getConfigNameInternal() {
return SkString("record");
}
///////////////////////////////////////////////////////////////////////////////////////////////
bool PipePictureRenderer::render(SkBitmap** out) {
SkASSERT(fCanvas.get() != NULL);
SkASSERT(fPicture != NULL);
if (NULL == fCanvas.get() || NULL == fPicture) {
return false;
}
PipeController pipeController(fCanvas.get());
SkGPipeWriter writer;
SkCanvas* pipeCanvas = writer.startRecording(&pipeController);
pipeCanvas->drawPicture(*fPicture);
writer.endRecording();
fCanvas->flush();
if (NULL != out) {
*out = SkNEW(SkBitmap);
setup_bitmap(*out, fPicture->width(), fPicture->height());
fCanvas->readPixels(*out, 0, 0);
}
if (fEnableWrites) {
return write(fCanvas, fWritePath, fMismatchPath, fInputFilename, fJsonSummaryPtr,
fUseChecksumBasedFilenames);
} else {
return true;
}
}
SkString PipePictureRenderer::getConfigNameInternal() {
return SkString("pipe");
}
///////////////////////////////////////////////////////////////////////////////////////////////
void SimplePictureRenderer::init(SkPicture* picture, const SkString* writePath,
const SkString* mismatchPath, const SkString* inputFilename,
bool useChecksumBasedFilenames) {
INHERITED::init(picture, writePath, mismatchPath, inputFilename, useChecksumBasedFilenames);
this->buildBBoxHierarchy();
}
bool SimplePictureRenderer::render(SkBitmap** out) {
SkASSERT(fCanvas.get() != NULL);
SkASSERT(NULL != fPicture);
if (NULL == fCanvas.get() || NULL == fPicture) {
return false;
}
fCanvas->drawPicture(*fPicture);
fCanvas->flush();
if (NULL != out) {
*out = SkNEW(SkBitmap);
setup_bitmap(*out, fPicture->width(), fPicture->height());
fCanvas->readPixels(*out, 0, 0);
}
if (fEnableWrites) {
return write(fCanvas, fWritePath, fMismatchPath, fInputFilename, fJsonSummaryPtr,
fUseChecksumBasedFilenames);
} else {
return true;
}
}
SkString SimplePictureRenderer::getConfigNameInternal() {
return SkString("simple");
}
///////////////////////////////////////////////////////////////////////////////////////////////
TiledPictureRenderer::TiledPictureRenderer()
: fTileWidth(kDefaultTileWidth)
, fTileHeight(kDefaultTileHeight)
, fTileWidthPercentage(0.0)
, fTileHeightPercentage(0.0)
, fTileMinPowerOf2Width(0)
, fCurrentTileOffset(-1)
, fTilesX(0)
, fTilesY(0) { }
void TiledPictureRenderer::init(SkPicture* pict, const SkString* writePath,
const SkString* mismatchPath, const SkString* inputFilename,
bool useChecksumBasedFilenames) {
SkASSERT(NULL != pict);
SkASSERT(0 == fTileRects.count());
if (NULL == pict || fTileRects.count() != 0) {
return;
}
// Do not call INHERITED::init(), which would create a (potentially large) canvas which is not
// used by bench_pictures.
fPicture.reset(pict)->ref();
this->CopyString(&fWritePath, writePath);
this->CopyString(&fMismatchPath, mismatchPath);
this->CopyString(&fInputFilename, inputFilename);
fUseChecksumBasedFilenames = useChecksumBasedFilenames;
this->buildBBoxHierarchy();
if (fTileWidthPercentage > 0) {
fTileWidth = sk_float_ceil2int(float(fTileWidthPercentage * fPicture->width() / 100));
}
if (fTileHeightPercentage > 0) {
fTileHeight = sk_float_ceil2int(float(fTileHeightPercentage * fPicture->height() / 100));
}
if (fTileMinPowerOf2Width > 0) {
this->setupPowerOf2Tiles();
} else {
this->setupTiles();
}
fCanvas.reset(this->setupCanvas(fTileWidth, fTileHeight));
// Initialize to -1 so that the first call to nextTile will set this up to draw tile 0 on the
// first call to drawCurrentTile.
fCurrentTileOffset = -1;
}
void TiledPictureRenderer::end() {
fTileRects.reset();
this->INHERITED::end();
}
void TiledPictureRenderer::setupTiles() {
// Only use enough tiles to cover the viewport
const int width = this->getViewWidth();
const int height = this->getViewHeight();
fTilesX = fTilesY = 0;
for (int tile_y_start = 0; tile_y_start < height; tile_y_start += fTileHeight) {
fTilesY++;
for (int tile_x_start = 0; tile_x_start < width; tile_x_start += fTileWidth) {
if (0 == tile_y_start) {
// Only count tiles in the X direction on the first pass.
fTilesX++;
}
*fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start),
SkIntToScalar(tile_y_start),
SkIntToScalar(fTileWidth),
SkIntToScalar(fTileHeight));
}
}
}
bool TiledPictureRenderer::tileDimensions(int &x, int &y) {
if (fTileRects.count() == 0 || NULL == fPicture) {
return false;
}
x = fTilesX;
y = fTilesY;
return true;
}
// The goal of the powers of two tiles is to minimize the amount of wasted tile
// space in the width-wise direction and then minimize the number of tiles. The
// constraints are that every tile must have a pixel width that is a power of
// two and also be of some minimal width (that is also a power of two).
//
// This is solved by first taking our picture size and rounding it up to the
// multiple of the minimal width. The binary representation of this rounded
// value gives us the tiles we need: a bit of value one means we need a tile of
// that size.
void TiledPictureRenderer::setupPowerOf2Tiles() {
// Only use enough tiles to cover the viewport
const int width = this->getViewWidth();
const int height = this->getViewHeight();
int rounded_value = width;
if (width % fTileMinPowerOf2Width != 0) {
rounded_value = width - (width % fTileMinPowerOf2Width) + fTileMinPowerOf2Width;
}
int num_bits = SkScalarCeilToInt(scalar_log2(SkIntToScalar(width)));
int largest_possible_tile_size = 1 << num_bits;
fTilesX = fTilesY = 0;
// The tile height is constant for a particular picture.
for (int tile_y_start = 0; tile_y_start < height; tile_y_start += fTileHeight) {
fTilesY++;
int tile_x_start = 0;
int current_width = largest_possible_tile_size;
// Set fTileWidth to be the width of the widest tile, so that each canvas is large enough
// to draw each tile.
fTileWidth = current_width;
while (current_width >= fTileMinPowerOf2Width) {
// It is very important this is a bitwise AND.
if (current_width & rounded_value) {
if (0 == tile_y_start) {
// Only count tiles in the X direction on the first pass.
fTilesX++;
}
*fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start),
SkIntToScalar(tile_y_start),
SkIntToScalar(current_width),
SkIntToScalar(fTileHeight));
tile_x_start += current_width;
}
current_width >>= 1;
}
}
}
/**
* Draw the specified picture to the canvas translated to rectangle provided, so that this mini
* canvas represents the rectangle's portion of the overall picture.
* Saves and restores so that the initial clip and matrix return to their state before this function
* is called.
*/
static void draw_tile_to_canvas(SkCanvas* canvas, const SkRect& tileRect, SkPicture* picture) {
int saveCount = canvas->save();
// Translate so that we draw the correct portion of the picture.
// Perform a postTranslate so that the scaleFactor does not interfere with the positioning.
SkMatrix mat(canvas->getTotalMatrix());
mat.postTranslate(-tileRect.fLeft, -tileRect.fTop);
canvas->setMatrix(mat);
canvas->drawPicture(*picture);
canvas->restoreToCount(saveCount);
canvas->flush();
}
///////////////////////////////////////////////////////////////////////////////////////////////
/**
* Copies the entirety of the src bitmap (typically a tile) into a portion of the dst bitmap.
* If the src bitmap is too large to fit within the dst bitmap after the x and y
* offsets have been applied, any excess will be ignored (so only the top-left portion of the
* src bitmap will be copied).
*
* @param src source bitmap
* @param dst destination bitmap
* @param xOffset x-offset within destination bitmap
* @param yOffset y-offset within destination bitmap
*/
static void bitmapCopyAtOffset(const SkBitmap& src, SkBitmap* dst,
int xOffset, int yOffset) {
for (int y = 0; y <src.height() && y + yOffset < dst->height() ; y++) {
for (int x = 0; x < src.width() && x + xOffset < dst->width() ; x++) {
*dst->getAddr32(xOffset + x, yOffset + y) = *src.getAddr32(x, y);
}
}
}
bool TiledPictureRenderer::nextTile(int &i, int &j) {
if (++fCurrentTileOffset < fTileRects.count()) {
i = fCurrentTileOffset % fTilesX;
j = fCurrentTileOffset / fTilesX;
return true;
}
return false;
}
void TiledPictureRenderer::drawCurrentTile() {
SkASSERT(fCurrentTileOffset >= 0 && fCurrentTileOffset < fTileRects.count());
draw_tile_to_canvas(fCanvas, fTileRects[fCurrentTileOffset], fPicture);
}
bool TiledPictureRenderer::render(SkBitmap** out) {
SkASSERT(fPicture != NULL);
if (NULL == fPicture) {
return false;
}
SkBitmap bitmap;
if (out){
*out = SkNEW(SkBitmap);
setup_bitmap(*out, fPicture->width(), fPicture->height());
setup_bitmap(&bitmap, fTileWidth, fTileHeight);
}
bool success = true;
for (int i = 0; i < fTileRects.count(); ++i) {
draw_tile_to_canvas(fCanvas, fTileRects[i], fPicture);
if (fEnableWrites) {
success &= write(fCanvas, fWritePath, fMismatchPath, fInputFilename, fJsonSummaryPtr,
fUseChecksumBasedFilenames, &i);
}
if (NULL != out) {
if (fCanvas->readPixels(&bitmap, 0, 0)) {
// Add this tile to the entire bitmap.
bitmapCopyAtOffset(bitmap, *out, SkScalarFloorToInt(fTileRects[i].left()),
SkScalarFloorToInt(fTileRects[i].top()));
} else {
success = false;
}
}
}
return success;
}
SkCanvas* TiledPictureRenderer::setupCanvas(int width, int height) {
SkCanvas* canvas = this->INHERITED::setupCanvas(width, height);
SkASSERT(NULL != fPicture);
// Clip the tile to an area that is completely inside both the SkPicture and the viewport. This
// is mostly important for tiles on the right and bottom edges as they may go over this area and
// the picture may have some commands that draw outside of this area and so should not actually
// be written.
// Uses a clipRegion so that it will be unaffected by the scale factor, which may have been set
// by INHERITED::setupCanvas.
SkRegion clipRegion;
clipRegion.setRect(0, 0, this->getViewWidth(), this->getViewHeight());
canvas->clipRegion(clipRegion);
return canvas;
}
SkString TiledPictureRenderer::getConfigNameInternal() {
SkString name;
if (fTileMinPowerOf2Width > 0) {
name.append("pow2tile_");
name.appendf("%i", fTileMinPowerOf2Width);
} else {
name.append("tile_");
if (fTileWidthPercentage > 0) {
name.appendf("%.f%%", fTileWidthPercentage);
} else {
name.appendf("%i", fTileWidth);
}
}
name.append("x");
if (fTileHeightPercentage > 0) {
name.appendf("%.f%%", fTileHeightPercentage);
} else {
name.appendf("%i", fTileHeight);
}
return name;
}
///////////////////////////////////////////////////////////////////////////////////////////////
// Holds all of the information needed to draw a set of tiles.
class CloneData : public SkRunnable {
public:
CloneData(SkPicture* clone, SkCanvas* canvas, SkTDArray<SkRect>& rects, int start, int end,
SkRunnable* done, ImageResultsAndExpectations* jsonSummaryPtr,
bool useChecksumBasedFilenames, bool enableWrites)
: fClone(clone)
, fCanvas(canvas)
, fEnableWrites(enableWrites)
, fRects(rects)
, fStart(start)
, fEnd(end)
, fSuccess(NULL)
, fDone(done)
, fJsonSummaryPtr(jsonSummaryPtr)
, fUseChecksumBasedFilenames(useChecksumBasedFilenames) {
SkASSERT(fDone != NULL);
}
virtual void run() SK_OVERRIDE {
SkGraphics::SetTLSFontCacheLimit(1024 * 1024);
SkBitmap bitmap;
if (fBitmap != NULL) {
// All tiles are the same size.
setup_bitmap(&bitmap, SkScalarFloorToInt(fRects[0].width()), SkScalarFloorToInt(fRects[0].height()));
}
for (int i = fStart; i < fEnd; i++) {
draw_tile_to_canvas(fCanvas, fRects[i], fClone);
if (fEnableWrites) {
if (!write(fCanvas, fWritePath, fMismatchPath, fInputFilename, fJsonSummaryPtr,
fUseChecksumBasedFilenames, &i)
&& fSuccess != NULL) {
*fSuccess = false;
// If one tile fails to write to a file, do not continue drawing the rest.
break;
}
if (fBitmap != NULL) {
if (fCanvas->readPixels(&bitmap, 0, 0)) {
SkAutoLockPixels alp(*fBitmap);
bitmapCopyAtOffset(bitmap, fBitmap, SkScalarFloorToInt(fRects[i].left()),
SkScalarFloorToInt(fRects[i].top()));
} else {
*fSuccess = false;
// If one tile fails to read pixels, do not continue drawing the rest.
break;
}
}
}
}
fDone->run();
}
void setPathsAndSuccess(const SkString& writePath, const SkString& mismatchPath,
const SkString& inputFilename, bool* success) {
fWritePath.set(writePath);
fMismatchPath.set(mismatchPath);
fInputFilename.set(inputFilename);
fSuccess = success;
}
void setBitmap(SkBitmap* bitmap) {
fBitmap = bitmap;
}
private:
// All pointers unowned.
SkPicture* fClone; // Picture to draw from. Each CloneData has a unique one which
// is threadsafe.
SkCanvas* fCanvas; // Canvas to draw to. Reused for each tile.
bool fEnableWrites; // TODO(epoger): Temporary hack; see declaration of
// fEnableWrites in PictureRenderer.h.
SkString fWritePath; // If not empty, write all results into this directory.
SkString fMismatchPath; // If not empty, write all unexpected results into this dir.
SkString fInputFilename; // Filename of input SkPicture file.
SkTDArray<SkRect>& fRects; // All tiles of the picture.
const int fStart; // Range of tiles drawn by this thread.
const int fEnd;
bool* fSuccess; // Only meaningful if path is non-null. Shared by all threads,
// and only set to false upon failure to write to a PNG.
SkRunnable* fDone;
SkBitmap* fBitmap;
ImageResultsAndExpectations* fJsonSummaryPtr;
bool fUseChecksumBasedFilenames;
};
MultiCorePictureRenderer::MultiCorePictureRenderer(int threadCount)
: fNumThreads(threadCount)
, fThreadPool(threadCount)
, fCountdown(threadCount) {
// Only need to create fNumThreads - 1 clones, since one thread will use the base
// picture.
fPictureClones = SkNEW_ARRAY(SkPicture, fNumThreads - 1);
fCloneData = SkNEW_ARRAY(CloneData*, fNumThreads);
}
void MultiCorePictureRenderer::init(SkPicture *pict, const SkString* writePath,
const SkString* mismatchPath, const SkString* inputFilename,
bool useChecksumBasedFilenames) {
// Set fPicture and the tiles.
this->INHERITED::init(pict, writePath, mismatchPath, inputFilename, useChecksumBasedFilenames);
for (int i = 0; i < fNumThreads; ++i) {
*fCanvasPool.append() = this->setupCanvas(this->getTileWidth(), this->getTileHeight());
}
// Only need to create fNumThreads - 1 clones, since one thread will use the base picture.
fPicture->clone(fPictureClones, fNumThreads - 1);
// Populate each thread with the appropriate data.
// Group the tiles into nearly equal size chunks, rounding up so we're sure to cover them all.
const int chunkSize = (fTileRects.count() + fNumThreads - 1) / fNumThreads;
for (int i = 0; i < fNumThreads; i++) {
SkPicture* pic;
if (i == fNumThreads-1) {
// The last set will use the original SkPicture.
pic = fPicture;
} else {
pic = &fPictureClones[i];
}
const int start = i * chunkSize;
const int end = SkMin32(start + chunkSize, fTileRects.count());
fCloneData[i] = SkNEW_ARGS(CloneData,
(pic, fCanvasPool[i], fTileRects, start, end, &fCountdown,
fJsonSummaryPtr, useChecksumBasedFilenames, fEnableWrites));
}
}
bool MultiCorePictureRenderer::render(SkBitmap** out) {
bool success = true;
if (!fWritePath.isEmpty() || !fMismatchPath.isEmpty()) {
for (int i = 0; i < fNumThreads-1; i++) {
fCloneData[i]->setPathsAndSuccess(fWritePath, fMismatchPath, fInputFilename, &success);
}
}
if (NULL != out) {
*out = SkNEW(SkBitmap);
setup_bitmap(*out, fPicture->width(), fPicture->height());
for (int i = 0; i < fNumThreads; i++) {
fCloneData[i]->setBitmap(*out);
}
} else {
for (int i = 0; i < fNumThreads; i++) {
fCloneData[i]->setBitmap(NULL);
}
}
fCountdown.reset(fNumThreads);
for (int i = 0; i < fNumThreads; i++) {
fThreadPool.add(fCloneData[i]);
}
fCountdown.wait();
return success;
}
void MultiCorePictureRenderer::end() {
for (int i = 0; i < fNumThreads - 1; i++) {
SkDELETE(fCloneData[i]);
fCloneData[i] = NULL;
}
fCanvasPool.unrefAll();
this->INHERITED::end();
}
MultiCorePictureRenderer::~MultiCorePictureRenderer() {
// Each individual CloneData was deleted in end.
SkDELETE_ARRAY(fCloneData);
SkDELETE_ARRAY(fPictureClones);
}
SkString MultiCorePictureRenderer::getConfigNameInternal() {
SkString name = this->INHERITED::getConfigNameInternal();
name.appendf("_multi_%i_threads", fNumThreads);
return name;
}
///////////////////////////////////////////////////////////////////////////////////////////////
void PlaybackCreationRenderer::setup() {
SkAutoTDelete<SkBBHFactory> factory(this->getFactory());
fRecorder.reset(SkNEW(SkPictureRecorder));
SkCanvas* canvas = fRecorder->beginRecording(this->getViewWidth(), this->getViewHeight(),
factory.get(),
this->recordFlags());
this->scaleToScaleFactor(canvas);
canvas->drawPicture(*fPicture);
}
bool PlaybackCreationRenderer::render(SkBitmap** out) {
fPicture.reset(fRecorder->endRecording());
// Since this class does not actually render, return false.
return false;
}
SkString PlaybackCreationRenderer::getConfigNameInternal() {
return SkString("playback_creation");
}
///////////////////////////////////////////////////////////////////////////////////////////////
// SkPicture variants for each BBoxHierarchy type
SkBBHFactory* PictureRenderer::getFactory() {
switch (fBBoxHierarchyType) {
case kNone_BBoxHierarchyType:
return NULL;
case kQuadTree_BBoxHierarchyType:
return SkNEW(SkQuadTreeFactory);
case kRTree_BBoxHierarchyType:
return SkNEW(SkRTreeFactory);
case kTileGrid_BBoxHierarchyType:
return SkNEW_ARGS(SkTileGridFactory, (fGridInfo));
}
SkASSERT(0); // invalid bbhType
return NULL;
}
///////////////////////////////////////////////////////////////////////////////
class GatherRenderer : public PictureRenderer {
public:
virtual bool render(SkBitmap** out = NULL) SK_OVERRIDE {
SkRect bounds = SkRect::MakeWH(SkIntToScalar(fPicture->width()),
SkIntToScalar(fPicture->height()));
SkData* data = SkPictureUtils::GatherPixelRefs(fPicture, bounds);
SkSafeUnref(data);
return (fWritePath.isEmpty()); // we don't have anything to write
}
private:
virtual SkString getConfigNameInternal() SK_OVERRIDE {
return SkString("gather_pixelrefs");
}
};
PictureRenderer* CreateGatherPixelRefsRenderer() {
return SkNEW(GatherRenderer);
}
///////////////////////////////////////////////////////////////////////////////
class PictureCloneRenderer : public PictureRenderer {
public:
virtual bool render(SkBitmap** out = NULL) SK_OVERRIDE {
for (int i = 0; i < 100; ++i) {
SkPicture* clone = fPicture->clone();
SkSafeUnref(clone);
}
return (fWritePath.isEmpty()); // we don't have anything to write
}
private:
virtual SkString getConfigNameInternal() SK_OVERRIDE {
return SkString("picture_clone");
}
};
PictureRenderer* CreatePictureCloneRenderer() {
return SkNEW(PictureCloneRenderer);
}
} // namespace sk_tools