Reland "Support large kernels on GPU in matrix convolution effect"

This reverts commit a117e7b75b.

Reason for revert: Fixed divide-by-0 in the unpremul logic. This was here before but never caused problems (or we ignored them.)

Original change's description:
> Revert "Reland "Support large kernels on GPU in matrix convolution effect""
>
> This reverts commit 76cb9c4d4c.
>
> Reason for revert: Tegra3 & Metal issues
>
> Original change's description:
> > Reland "Support large kernels on GPU in matrix convolution effect"
> >
> > This reverts commit 41e377d1ba.
> >
> > Reason for revert: fixed issues
> >
> > Bug: skia:8449
> > Change-Id: I0c4389f0efa92c6da69253b2304ad9a072750965
> > Reviewed-on: https://skia-review.googlesource.com/c/skia/+/287817
> > Commit-Queue: Adlai Holler <adlai@google.com>
> > Reviewed-by: Brian Salomon <bsalomon@google.com>
>
> TBR=bsalomon@google.com,robertphillips@google.com,michaelludwig@google.com,adlai@google.com
>
> Change-Id: I5c3f04d4d262550a3298b8fd677c8a1661be7ad9
> No-Presubmit: true
> No-Tree-Checks: true
> No-Try: true
> Bug: skia:8449
> Reviewed-on: https://skia-review.googlesource.com/c/skia/+/289076
> Reviewed-by: Adlai Holler <adlai@google.com>
> Commit-Queue: Adlai Holler <adlai@google.com>

TBR=bsalomon@google.com,robertphillips@google.com,michaelludwig@google.com,adlai@google.com


Bug: skia:8449
Change-Id: I90b8e9e0eb52bc08308fb472eb216ed0bd4785a1
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/289030
Reviewed-by: Brian Salomon <bsalomon@google.com>
Commit-Queue: Adlai Holler <adlai@google.com>
This commit is contained in:
Adlai Holler 2020-05-11 19:25:52 -04:00 committed by Skia Commit-Bot
parent 3d2c41b773
commit 00ddb0029d
6 changed files with 324 additions and 76 deletions

View File

@ -22,6 +22,7 @@
#include "include/core/SkTypeface.h"
#include "include/effects/SkGradientShader.h"
#include "include/effects/SkImageFilters.h"
#include "src/gpu/effects/GrMatrixConvolutionEffect.h"
#include "tools/ToolUtils.h"
#include <vector>
@ -79,7 +80,7 @@ protected:
return SkImageFilters::MatrixConvolution({3,3}, kernel.data(), /* gain */ 0.3f, /* bias */ SkIntToScalar(100), kernelOffset, tileMode, convolveAlpha, nullptr, cropRect);
}
case kLarge_KernelFixture: {
// Intentionally go over the MAX_KERNEL_SIZE limit and trigger CPU fallback.
static_assert(49 > GrMatrixConvolutionEffect::kMaxUniformSize);
// All 1s except center value, which is -47 (sum of 1).
std::vector<SkScalar> kernel(49, SkIntToScalar(1));
kernel[24] = SkIntToScalar(-47);

View File

@ -128,8 +128,9 @@ static std::unique_ptr<GrRenderTargetContext> convolve_gaussian_2d(GrRecordingCo
SkIPoint kernelOffset = SkIPoint::Make(radiusX, radiusY);
GrPaint paint;
auto wm = SkTileModeToWrapMode(mode);
auto conv = GrMatrixConvolutionEffect::MakeGaussian(std::move(srcView), srcBounds, size, 1.0,
0.0, kernelOffset, wm, true, sigmaX, sigmaY,
auto conv = GrMatrixConvolutionEffect::MakeGaussian(context, std::move(srcView), srcBounds,
size, 1.0, 0.0, kernelOffset, wm, true,
sigmaX, sigmaY,
*renderTargetContext->caps());
paint.addColorFragmentProcessor(std::move(conv));
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
@ -453,7 +454,8 @@ std::unique_ptr<GrRenderTargetContext> GaussianBlur(GrRecordingContext* context,
if (scaleFactorX == 1 && scaleFactorY == 1) {
// For really small blurs (certainly no wider than 5x5 on desktop GPUs) it is faster to just
// launch a single non separable kernel vs two launches.
if (sigmaX > 0 && sigmaY > 0 && (2 * radiusX + 1) * (2 * radiusY + 1) <= MAX_KERNEL_SIZE) {
const int kernelSize = (2 * radiusX + 1) * (2 * radiusY + 1);
if (sigmaX > 0 && sigmaY > 0 && kernelSize <= GrMatrixConvolutionEffect::kMaxUniformSize) {
// Apply the proxy offset to src bounds and offset directly
return convolve_gaussian_2d(context, std::move(srcView), srcColorType, srcBounds,
dstBounds, radiusX, radiusY, sigmaX, sigmaY, mode,

View File

@ -391,9 +391,7 @@ sk_sp<SkSpecialImage> SkMatrixConvolutionImageFilterImpl::onFilterImage(const Co
}
#if SK_SUPPORT_GPU
// Note: if the kernel is too big, the GPU path falls back to SW
if (ctx.gpuBacked() &&
fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE) {
if (ctx.gpuBacked()) {
auto context = ctx.getContext();
// Ensure the input is in the destination color space. Typically applyCropRect will have
@ -414,7 +412,8 @@ sk_sp<SkSpecialImage> SkMatrixConvolutionImageFilterImpl::onFilterImage(const Co
// Map srcBounds from input's logical image domain to that of the proxy
srcBounds.offset(input->subset().x(), input->subset().y());
auto fp = GrMatrixConvolutionEffect::Make(std::move(inputView),
auto fp = GrMatrixConvolutionEffect::Make(context,
std::move(inputView),
srcBounds,
fKernelSize,
fKernel,

View File

@ -490,6 +490,8 @@ public:
TextureSampler(GrSurfaceProxyView, GrSamplerState = {});
TextureSampler(TextureSampler&&) = default;
TextureSampler& operator=(TextureSampler&&) = default;
TextureSampler& operator=(const TextureSampler&) = delete;
bool operator==(const TextureSampler& that) const {

View File

@ -6,6 +6,11 @@
*/
#include "src/gpu/effects/GrMatrixConvolutionEffect.h"
#include "include/private/SkHalf.h"
#include "src/gpu/GrBitmapTextureMaker.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/effects/GrTextureEffect.h"
@ -26,34 +31,195 @@ protected:
private:
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
void emitKernelBlock(EmitArgs&, SkIPoint);
UniformHandle fKernelUni;
UniformHandle fKernelOffsetUni;
UniformHandle fGainUni;
UniformHandle fBiasUni;
UniformHandle fKernelBiasUni;
typedef GrGLSLFragmentProcessor INHERITED;
};
GrMatrixConvolutionEffect::KernelWrapper GrMatrixConvolutionEffect::KernelWrapper::Make(
GrRecordingContext* context, SkISize size, const GrCaps& caps, const SkScalar* values) {
if (nullptr == context || nullptr == values || size.isEmpty()) {
return {};
}
const int length = size.area();
// Small kernel -> just fill the array.
KernelWrapper result(size);
if (length <= kMaxUniformSize) {
for (int i = 0; i < length; i++) {
result.fArray[i] = SkScalarToFloat(values[i]);
}
return result;
}
ScalableSampler& scalableSampler = result.fScalableSampler;
bool useA16 =
context->defaultBackendFormat(kA16_float_SkColorType, GrRenderable::kNo).isValid();
SkScalar min = values[0];
if (!useA16) {
// Determine min and max values to figure out inner gain & bias.
SkScalar max = values[0];
for (int i = 1; i < length; i++) {
if (values[i] < min) {
min = values[i];
}
if (values[i] > max) {
max = values[i];
}
}
// Treat near-0 gain (i.e. box blur) as 1, and let the kernelBias
// move everything up to the final value.
const SkScalar computedGain = max - min;
scalableSampler.fGain =
SkScalarNearlyZero(computedGain) ? 1.0f : SkScalarToFloat(computedGain);
// Inner bias is pre-inner-gain so we divide that out.
scalableSampler.fBias = SkScalarToFloat(min) / scalableSampler.fGain;
}
// TODO: Enable kernel caching and check perf.
static constexpr bool kCacheKernelTexture = false;
GrUniqueKey key;
if (kCacheKernelTexture) {
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(&key, kDomain, length, "Matrix Convolution Kernel");
// Texture cache key is the exact content of the kernel.
static_assert(sizeof(float) == 4);
for (int i = 0; i < length; i++) {
builder[i] = *(const uint32_t*)&values[i];
}
builder.finish();
}
// Find or create a texture.
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
GrSurfaceProxyView view;
SkColorType colorType = useA16 ? kA16_float_SkColorType : kAlpha_8_SkColorType;
sk_sp<GrTextureProxy> cachedKernel;
if (kCacheKernelTexture && (cachedKernel = proxyProvider->findOrCreateProxyByUniqueKey(key))) {
GrSwizzle swizzle =
context->priv().caps()->getReadSwizzle(cachedKernel->backendFormat(),
SkColorTypeToGrColorType(colorType));
view = {std::move(cachedKernel), kTopLeft_GrSurfaceOrigin, swizzle};
} else {
SkBitmap bm;
auto info = SkImageInfo::Make({(int)GrNextPow2(length), 1}, colorType,
kPremul_SkAlphaType, nullptr);
if (!bm.tryAllocPixels(info)) {
return {};
}
for (int i = 0; i < length; i++) {
if (useA16) {
*bm.getAddr16(i, 0) = SkFloatToHalf(values[i]);
} else {
*bm.getAddr8(i, 0) =
SkScalarRoundToInt((values[i] - min) / scalableSampler.fGain * 255);
}
}
bm.setImmutable();
GrBitmapTextureMaker maker(context, bm, GrImageTexGenPolicy::kNew_Uncached_Budgeted);
view = maker.view(GrMipMapped::kNo);
if (!view) {
return {};
}
if (kCacheKernelTexture) {
proxyProvider->assignUniqueKeyToProxy(key, view.asTextureProxy());
}
}
scalableSampler.fSampler = { std::move(view) };
return result;
}
bool GrMatrixConvolutionEffect::KernelWrapper::operator==(const KernelWrapper& k) const {
if (fSize != k.fSize) {
return false;
} else if (this->isSampled()) {
return fScalableSampler == k.fScalableSampler;
} else {
return std::equal(fArray.begin(), fArray.begin() + fSize.area(), k.fArray.begin());
}
}
bool GrMatrixConvolutionEffect::KernelWrapper::ScalableSampler::operator==(
const ScalableSampler& k) const {
return fSampler == k.fSampler && fGain == k.fGain && fBias == k.fBias;
}
// For sampled kernels, emit a for loop that does all the kernel accumulation.
// For uniform kernels, emit a single iteration. Function is called repeatedly in a for loop.
// loc is ignored for sampled kernels.
void GrGLMatrixConvolutionEffect::emitKernelBlock(EmitArgs& args, SkIPoint loc) {
const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>();
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
int kernelWidth = mce.kernelSize().width();
int kernelHeight = mce.kernelSize().height();
int kernelArea = kernelWidth * kernelHeight;
if (mce.kernelIsSampled()) {
fragBuilder->codeAppendf("half2 kernelCoord = half2(0, 0);");
fragBuilder->codeAppendf("for (int i = 0; i < %d; ++i)", (int)kernelArea);
}
GrGLSLShaderBuilder::ShaderBlock block(fragBuilder);
fragBuilder->codeAppend("half k;");
fragBuilder->codeAppend("half2 sourceOffset;");
if (mce.kernelIsSampled()) {
const char* kernelBias = uniformHandler->getUniformCStr(fKernelBiasUni);
fragBuilder->codeAppend("k = ");
fragBuilder->appendTextureLookup(args.fTexSamplers[0], "kernelCoord");
fragBuilder->codeAppendf(".w + %s;", kernelBias);
fragBuilder->codeAppendf("sourceOffset.y = floor(i / %d);", kernelWidth);
fragBuilder->codeAppendf("sourceOffset.x = i - sourceOffset.y * %d;", kernelWidth);
float kernelStride = 1.0f / (float)GrNextPow2(kernelArea);
fragBuilder->codeAppendf("kernelCoord.x += %f;", kernelStride);
} else {
fragBuilder->codeAppendf("sourceOffset = half2(%d, %d);", loc.x(), loc.y());
int offset = loc.y() * kernelWidth + loc.x();
static constexpr const char kVecSuffix[][4] = { ".x", ".y", ".z", ".w" };
const char* kernel = uniformHandler->getUniformCStr(fKernelUni);
fragBuilder->codeAppendf("k = %s[%d]%s;", kernel, offset / 4,
kVecSuffix[offset & 0x3]);
}
auto sample = this->invokeChild(0, args, "coord + sourceOffset");
fragBuilder->codeAppendf("half4 c = %s;", sample.c_str());
if (!mce.convolveAlpha()) {
fragBuilder->codeAppend("c.rgb /= max(c.a, 0.0001);");
fragBuilder->codeAppend("c.rgb = saturate(c.rgb);");
}
fragBuilder->codeAppend("sum += c * k;");
}
void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) {
const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>();
int kWidth = mce.kernelSize().width();
int kHeight = mce.kernelSize().height();
int kernelWidth = mce.kernelSize().width();
int kernelHeight = mce.kernelSize().height();
int arrayCount = (kWidth * kHeight + 3) / 4;
SkASSERT(4 * arrayCount >= kWidth * kHeight);
int arrayCount = (kernelWidth * kernelHeight + 3) / 4;
SkASSERT(4 * arrayCount >= kernelWidth * kernelHeight);
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fKernelUni = uniformHandler->addUniformArray(&mce, kFragment_GrShaderFlag, kHalf4_GrSLType,
"Kernel",
arrayCount);
if (mce.kernelIsSampled()) {
fKernelBiasUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag,
kHalf_GrSLType, "KernelBias");
} else {
fKernelUni = uniformHandler->addUniformArray(&mce, kFragment_GrShaderFlag,
kHalf4_GrSLType, "Kernel", arrayCount);
}
fKernelOffsetUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag, kHalf2_GrSLType,
"KernelOffset");
fGainUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag, kHalf_GrSLType, "Gain");
fBiasUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag, kHalf_GrSLType, "Bias");
const char* kernelOffset = uniformHandler->getUniformCStr(fKernelOffsetUni);
const char* kernel = uniformHandler->getUniformCStr(fKernelUni);
const char* gain = uniformHandler->getUniformCStr(fGainUni);
const char* bias = uniformHandler->getUniformCStr(fBiasUni);
@ -62,27 +228,17 @@ void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) {
mce.sampleMatrix());
fragBuilder->codeAppend("half4 sum = half4(0, 0, 0, 0);");
fragBuilder->codeAppendf("float2 coord = %s - %s;", coords2D.c_str(), kernelOffset);
fragBuilder->codeAppend("half4 c;");
const char* kVecSuffix[4] = { ".x", ".y", ".z", ".w" };
for (int y = 0; y < kHeight; y++) {
for (int x = 0; x < kWidth; x++) {
GrGLSLShaderBuilder::ShaderBlock block(fragBuilder);
int offset = y*kWidth + x;
fragBuilder->codeAppendf("half k = %s[%d]%s;", kernel, offset / 4,
kVecSuffix[offset & 0x3]);
SkSL::String coord;
coord.appendf("coord + half2(%d, %d)", x, y);
auto sample = this->invokeChild(0, args, coord);
fragBuilder->codeAppendf("half4 c = %s;", sample.c_str());
if (!mce.convolveAlpha()) {
fragBuilder->codeAppend("c.rgb /= c.a;");
fragBuilder->codeAppend("c.rgb = saturate(c.rgb);");
if (mce.kernelIsSampled()) {
this->emitKernelBlock(args, {});
} else {
for (int x = 0; x < kernelWidth; ++x) {
for (int y = 0; y < kernelHeight; ++y) {
this->emitKernelBlock(args, SkIPoint::Make(x, y));
}
fragBuilder->codeAppend("sum += c * k;");
}
}
if (mce.convolveAlpha()) {
fragBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias);
fragBuilder->codeAppendf("%s.a = saturate(%s.a);", args.fOutputColor, args.fOutputColor);
@ -90,7 +246,7 @@ void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) {
args.fOutputColor, args.fOutputColor, args.fOutputColor);
} else {
auto sample = this->invokeChild(0, args, coords2D.c_str());
fragBuilder->codeAppendf("c = %s;", sample.c_str());
fragBuilder->codeAppendf("half4 c = %s;", sample.c_str());
fragBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor);
fragBuilder->codeAppendf("%s.rgb = saturate(sum.rgb * %s + %s);", args.fOutputColor, gain, bias);
fragBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor);
@ -111,17 +267,22 @@ void GrGLMatrixConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdma
const GrFragmentProcessor& processor) {
const GrMatrixConvolutionEffect& conv = processor.cast<GrMatrixConvolutionEffect>();
pdman.set2fv(fKernelOffsetUni, 1, conv.kernelOffset().ptr());
int kernelCount = conv.kernelSize().width() * conv.kernelSize().height();
int arrayCount = (kernelCount + 3) / 4;
SkASSERT(4 * arrayCount >= kernelCount);
pdman.set4fv(fKernelUni, arrayCount, conv.kernel());
pdman.set1f(fGainUni, conv.gain());
float totalGain = conv.gain();
if (conv.kernelIsSampled()) {
totalGain *= conv.kernelSampleGain();
pdman.set1f(fKernelBiasUni, conv.kernelSampleBias());
} else {
int kernelCount = conv.kernelSize().area();
int arrayCount = (kernelCount + 3) / 4;
SkASSERT(4 * arrayCount >= kernelCount);
pdman.set4fv(fKernelUni, arrayCount, conv.kernel());
}
pdman.set1f(fBiasUni, conv.bias());
pdman.set1f(fGainUni, totalGain);
}
GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(std::unique_ptr<GrFragmentProcessor> child,
const SkISize& kernelSize,
const SkScalar* kernel,
KernelWrapper kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
@ -129,14 +290,14 @@ GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(std::unique_ptr<GrFragmentP
// To advertise either the modulation or opaqueness optimizations we'd have to examine the
// parameters.
: INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags)
, fKernelSize(kernelSize)
, fKernel(std::move(kernel))
, fGain(SkScalarToFloat(gain))
, fBias(SkScalarToFloat(bias) / 255.0f)
, fConvolveAlpha(convolveAlpha) {
child->setSampledWithExplicitCoords();
this->registerChildProcessor(std::move(child));
for (int i = 0; i < kernelSize.width() * kernelSize.height(); i++) {
fKernel[i] = SkScalarToFloat(kernel[i]);
if (fKernel.isSampled()) {
this->setTextureSamplerCnt(1);
}
fKernelOffset = {static_cast<float>(kernelOffset.x()),
static_cast<float>(kernelOffset.y())};
@ -145,7 +306,7 @@ GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(std::unique_ptr<GrFragmentP
GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(const GrMatrixConvolutionEffect& that)
: INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags)
, fKernelSize(that.fKernelSize)
, fKernel(that.fKernel)
, fGain(that.fGain)
, fBias(that.fBias)
, fKernelOffset(that.fKernelOffset)
@ -153,7 +314,9 @@ GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(const GrMatrixConvolutionEf
auto child = that.childProcessor(0).clone();
child->setSampledWithExplicitCoords();
this->registerChildProcessor(std::move(child));
std::copy_n(that.fKernel, fKernelSize.width() * fKernelSize.height(), fKernel);
if (fKernel.isSampled()) {
this->setTextureSamplerCnt(1);
}
this->addCoordTransform(&fCoordTransform);
}
@ -172,14 +335,18 @@ GrGLSLFragmentProcessor* GrMatrixConvolutionEffect::onCreateGLSLInstance() const
bool GrMatrixConvolutionEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
const GrMatrixConvolutionEffect& s = sBase.cast<GrMatrixConvolutionEffect>();
return fKernelSize == s.kernelSize() &&
std::equal(fKernel, fKernel + fKernelSize.area(), s.fKernel) &&
return fKernel == s.fKernel &&
fGain == s.gain() &&
fBias == s.bias() &&
fKernelOffset == s.kernelOffset() &&
fConvolveAlpha == s.convolveAlpha();
}
const GrFragmentProcessor::TextureSampler& GrMatrixConvolutionEffect::onTextureSampler(
int index) const {
return IthTextureSampler(index, fKernel.scalableSampler().fSampler);
}
static void fill_in_1D_gaussian_kernel_with_stride(float* kernel, int size, int stride,
float twoSigmaSqrd) {
SkASSERT(!SkScalarNearlyZero(twoSigmaSqrd, SK_ScalarNearlyZero));
@ -204,7 +371,6 @@ static void fill_in_1D_gaussian_kernel_with_stride(float* kernel, int size, int
static void fill_in_2D_gaussian_kernel(float* kernel, int width, int height,
SkScalar sigmaX, SkScalar sigmaY) {
SkASSERT(width * height <= MAX_KERNEL_SIZE);
const float twoSigmaSqrdX = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaX));
const float twoSigmaSqrdY = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaY));
@ -260,7 +426,8 @@ static void fill_in_2D_gaussian_kernel(float* kernel, int width, int height,
}
}
std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::Make(GrSurfaceProxyView srcView,
std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::Make(GrRecordingContext* context,
GrSurfaceProxyView srcView,
const SkIRect& srcBounds,
const SkISize& kernelSize,
const SkScalar* kernel,
@ -270,14 +437,19 @@ std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::Make(GrSurfacePr
GrSamplerState::WrapMode wm,
bool convolveAlpha,
const GrCaps& caps) {
auto kw = KernelWrapper::Make(context, kernelSize, caps, kernel);
if (!kw.isValid()) {
return nullptr;
}
GrSamplerState sampler(wm, GrSamplerState::Filter::kNearest);
auto child = GrTextureEffect::MakeSubset(std::move(srcView), kPremul_SkAlphaType, SkMatrix::I(),
sampler, SkRect::Make(srcBounds), caps);
return std::unique_ptr<GrFragmentProcessor>(new GrMatrixConvolutionEffect(
std::move(child), kernelSize, kernel, gain, bias, kernelOffset, convolveAlpha));
std::move(child), std::move(kw), gain, bias, kernelOffset, convolveAlpha));
}
std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::MakeGaussian(
GrRecordingContext* context,
GrSurfaceProxyView srcView,
const SkIRect& srcBounds,
const SkISize& kernelSize,
@ -289,11 +461,11 @@ std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::MakeGaussian(
SkScalar sigmaX,
SkScalar sigmaY,
const GrCaps& caps) {
float kernel[MAX_KERNEL_SIZE];
fill_in_2D_gaussian_kernel(kernel, kernelSize.width(), kernelSize.height(), sigmaX, sigmaY);
return Make(std::move(srcView), srcBounds, kernelSize, kernel, gain, bias, kernelOffset, wm,
convolveAlpha, caps);
SkAutoSTMalloc<32, float> kernel(kernelSize.area());
fill_in_2D_gaussian_kernel(kernel.get(), kernelSize.width(), kernelSize.height(),
sigmaX, sigmaY);
return Make(context, std::move(srcView), srcBounds, kernelSize, kernel.get(),
gain, bias, kernelOffset, wm, convolveAlpha, caps);
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMatrixConvolutionEffect);
@ -302,8 +474,9 @@ GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMatrixConvolutionEffect);
std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::TestCreate(GrProcessorTestData* d) {
auto [view, ct, at] = d->randomView();
int width = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE);
int height = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE / width);
static constexpr size_t kMaxTestKernelSize = 2 * kMaxUniformSize;
int width = d->fRandom->nextRangeU(1, kMaxTestKernelSize);
int height = d->fRandom->nextRangeU(1, kMaxTestKernelSize / width);
SkISize kernelSize = SkISize::Make(width, height);
std::unique_ptr<SkScalar[]> kernel(new SkScalar[width * height]);
for (int i = 0; i < width * height; i++) {
@ -325,8 +498,8 @@ std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::TestCreate(GrPro
auto wm = static_cast<GrSamplerState::WrapMode>(
d->fRandom->nextULessThan(GrSamplerState::kWrapModeCount));
bool convolveAlpha = d->fRandom->nextBool();
return GrMatrixConvolutionEffect::Make(std::move(view),
return GrMatrixConvolutionEffect::Make(d->context()->priv().asRecordingContext(),
std::move(view),
bounds,
kernelSize,
kernel.get(),

View File

@ -9,15 +9,18 @@
#define GrMatrixConvolutionEffect_DEFINED
#include "src/gpu/GrFragmentProcessor.h"
// A little bit less than the minimum # uniforms required by DX9SM2 (32).
// Allows for a 5x5 kernel (or 28x1, for that matter).
// Must be a multiple of 4, since we upload these in vec4s.
#define MAX_KERNEL_SIZE 28
#include <array>
#include <new>
class GrMatrixConvolutionEffect : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(GrSurfaceProxyView srcView,
// A little bit less than the minimum # uniforms required by DX9SM2 (32).
// Allows for a 5x5 kernel (or 28x1, for that matter).
// Must be a multiple of 4, since we upload these in vec4s.
static constexpr int kMaxUniformSize = 28;
static std::unique_ptr<GrFragmentProcessor> Make(GrRecordingContext*,
GrSurfaceProxyView srcView,
const SkIRect& srcBounds,
const SkISize& kernelSize,
const SkScalar* kernel,
@ -28,7 +31,8 @@ public:
bool convolveAlpha,
const GrCaps&);
static std::unique_ptr<GrFragmentProcessor> MakeGaussian(GrSurfaceProxyView srcView,
static std::unique_ptr<GrFragmentProcessor> MakeGaussian(GrRecordingContext*,
GrSurfaceProxyView srcView,
const SkIRect& srcBounds,
const SkISize& kernelSize,
SkScalar gain,
@ -41,9 +45,12 @@ public:
const GrCaps&);
const SkIRect& bounds() const { return fBounds; }
const SkISize& kernelSize() const { return fKernelSize; }
SkISize kernelSize() const { return fKernel.size(); }
const SkV2 kernelOffset() const { return fKernelOffset; }
const float* kernel() const { return fKernel; }
bool kernelIsSampled() const { return fKernel.isSampled(); }
const float *kernel() const { return fKernel.array().data(); }
float kernelSampleGain() const { return fKernel.scalableSampler().fGain; }
float kernelSampleBias() const { return fKernel.scalableSampler().fBias; }
float gain() const { return fGain; }
float bias() const { return fBias; }
bool convolveAlpha() const { return fConvolveAlpha; }
@ -53,11 +60,74 @@ public:
std::unique_ptr<GrFragmentProcessor> clone() const override;
private:
// srcProxy is the texture that is going to be convolved
// srcBounds is the subset of 'srcProxy' that will be used (e.g., for clamp mode)
GrMatrixConvolutionEffect(std::unique_ptr<GrFragmentProcessor>,
const SkISize& kernelSize,
const SkScalar* kernel,
/**
* Small kernels are represented as float-arrays and uploaded as uniforms.
* Large kernels go over the uniform limit and are uploaded as textures and sampled.
* If Float16 textures are supported, we use those. Otherwise we use A8.
*/
class KernelWrapper {
public:
struct ScalableSampler {
TextureSampler fSampler;
// Only used in A8 mode. Applied before any other math.
float fBias = 0.0f;
// Only used in A8 mode. Premultiplied in with user gain to save time.
float fGain = 1.0f;
bool operator==(const ScalableSampler&) const;
};
static KernelWrapper Make(GrRecordingContext*, SkISize,
const GrCaps&, const float* values);
KernelWrapper(KernelWrapper&& that) : fSize(that.fSize) {
if (that.isSampled()) {
new (&fScalableSampler) ScalableSampler(std::move(that.fScalableSampler));
} else {
new (&fArray) std::array<float, kMaxUniformSize>(std::move(that.fArray));
}
}
KernelWrapper(const KernelWrapper& that) : fSize(that.fSize) {
if (that.isSampled()) {
new (&fScalableSampler) ScalableSampler(that.fScalableSampler);
} else {
new (&fArray) std::array<float, kMaxUniformSize>(that.fArray);
}
}
~KernelWrapper() {
if (this->isSampled()) {
fScalableSampler.~ScalableSampler();
}
}
bool isValid() const { return !fSize.isEmpty(); }
SkISize size() const { return fSize; }
bool isSampled() const { return fSize.area() > kMaxUniformSize; }
const std::array<float, kMaxUniformSize>& array() const {
SkASSERT(!this->isSampled());
return fArray;
}
const ScalableSampler& scalableSampler() const {
SkASSERT(this->isSampled());
return fScalableSampler;
}
bool operator==(const KernelWrapper&) const;
private:
KernelWrapper() : fSize({}) {}
KernelWrapper(SkISize size) : fSize(size) {
if (this->isSampled()) {
new (&fScalableSampler) ScalableSampler;
}
}
SkISize fSize;
union {
std::array<float, kMaxUniformSize> fArray;
ScalableSampler fScalableSampler;
};
};
GrMatrixConvolutionEffect(std::unique_ptr<GrFragmentProcessor> child,
KernelWrapper kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
@ -71,12 +141,13 @@ private:
bool onIsEqual(const GrFragmentProcessor&) const override;
const GrFragmentProcessor::TextureSampler& onTextureSampler(int index) const override;
// We really just want the unaltered local coords, but the only way to get that right now is
// an identity coord transform.
GrCoordTransform fCoordTransform = {};
SkIRect fBounds;
SkISize fKernelSize;
float fKernel[MAX_KERNEL_SIZE];
KernelWrapper fKernel;
float fGain;
float fBias;
SkV2 fKernelOffset;