Cleanup with SkAlphaMulQ_SSE2()
Related nanobench results: before: 10M 18 7.03µs 7.31µs 7.38µs 8.46µs 6% ▂▁▂▂▂▃▄▁█▁ 8888 bitmaprect_80_filter_identity 10M 43 6.96µs 6.97µs 6.99µs 7.19µs 1% ▁▂▁▁▁▁▁█▁▁ 8888 bitmaprect_80_nofilter_identity 10M 14 35.7µs 35.8µs 35.9µs 36.3µs 1% ▃▂▁▂▁█▂▁▁▁ 8888 bitmap_BGRA_8888_update_scale_bilerp 10M 16 35.5µs 35.6µs 35.7µs 36.3µs 1% █▅▂▁▁▁▃▂▁▁ 8888 bitmap_BGRA_8888_update_volatile_scale_bilerp 10M 16 35.4µs 35.4µs 35.5µs 36.8µs 1% ▂▁█▁▁▁▁▂▁▁ 8888 bitmap_BGRA_8888_scale_bilerp 10M 25 16.4µs 16.6µs 16.7µs 17.4µs 2% ▂▁▁▂▁▁▁▅▅█ 8888 bitmap_Index_8 10M 15 37.9µs 38µs 38µs 38.4µs 0% ▄▆▂▁▁▁█▂▁▁ 8888 bitmap_RGB_565 10M 33 11.1µs 11.1µs 11.1µs 11.2µs 0% ▆▂█▂▂▂▁▁▂▁ 8888 bitmap_BGRA_8888_scale after: 10M 9 7.04µs 7.06µs 7.1µs 7.32µs 1% █▅▂▁▁▂▁▁▁▁ 8888 bitmaprect_80_filter_identity 10M 18 7.01µs 7.02µs 7.05µs 7.25µs 1% █▂▁▁▁▁▁▁▁▁ 8888 bitmaprect_80_nofilter_identity 10M 5 33.9µs 34µs 34.1µs 34.5µs 1% █▃▂▂▁▁▁▅▃▂ 8888 bitmap_BGRA_8888_update_scale_bilerp 10M 7 35.5µs 35.5µs 35.6µs 36.3µs 1% ▃▂▂▁▂▁▂▁█▂ 8888 bitmap_BGRA_8888_update_volatile_scale_bilerp 10M 7 35.5µs 35.5µs 35.7µs 36.8µs 1% ▂▁▁▁▁▁▁▁▁█ 8888 bitmap_BGRA_8888_scale_bilerp 10M 11 16.4µs 16.4µs 16.4µs 16.6µs 0% █▂▁▁▂▁▁▁▂▁ 8888 bitmap_Index_8 10M 7 37.3µs 37.4µs 38.4µs 47.8µs 9% ▁▁▁▁▁▁▁▁▁█ 8888 bitmap_RGB_565 10M 33 11µs 11µs 11.1µs 11.2µs 1% ▄█▅▃▂▁▁▁▁▁ 8888 bitmap_BGRA_8888_scale BUG=skia: Review URL: https://codereview.chromium.org/755573002
This commit is contained in:
parent
10e23caea3
commit
533a32782f
@ -38,57 +38,14 @@ void S32_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
|
||||
|
||||
const __m128i *s = reinterpret_cast<const __m128i*>(src);
|
||||
__m128i *d = reinterpret_cast<__m128i*>(dst);
|
||||
__m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
|
||||
__m128i ag_mask = _mm_set1_epi32(0xFF00FF00);
|
||||
|
||||
// Move scale factors to upper byte of word
|
||||
__m128i src_scale_wide = _mm_set1_epi16(src_scale << 8);
|
||||
__m128i dst_scale_wide = _mm_set1_epi16(dst_scale << 8);
|
||||
while (count >= 4) {
|
||||
// Load 4 pixels each of src and dest.
|
||||
__m128i src_pixel = _mm_loadu_si128(s);
|
||||
__m128i dst_pixel = _mm_load_si128(d);
|
||||
|
||||
// Interleave Atom port 0/1 operations based on the execution port
|
||||
// constraints that multiply can only be executed on port 0 (while
|
||||
// boolean operations can be executed on either port 0 or port 1)
|
||||
// because GCC currently doesn't do a good job scheduling
|
||||
// instructions based on these constraints.
|
||||
|
||||
// Get red and blue pixels into lower byte of each word.
|
||||
// (0, r, 0, b, 0, r, 0, b, 0, r, 0, b, 0, r, 0, b)
|
||||
__m128i src_rb = _mm_and_si128(rb_mask, src_pixel);
|
||||
|
||||
// Multiply by scale.
|
||||
// (4 x (0, rs.h, 0, bs.h))
|
||||
// where rs.h stands for the higher byte of r * scale, and
|
||||
// bs.h the higher byte of b * scale.
|
||||
src_rb = _mm_mulhi_epu16(src_rb, src_scale_wide);
|
||||
|
||||
// Get alpha and green pixels into higher byte of each word.
|
||||
// (a, 0, g, 0, a, 0, g, 0, a, 0, g, 0, a, 0, g, 0)
|
||||
__m128i src_ag = _mm_and_si128(ag_mask, src_pixel);
|
||||
|
||||
// Multiply by scale.
|
||||
// (4 x (as.h, as.l, gs.h, gs.l))
|
||||
src_ag = _mm_mulhi_epu16(src_ag, src_scale_wide);
|
||||
|
||||
// Clear the lower byte of the a*scale and g*scale results
|
||||
// (4 x (as.h, 0, gs.h, 0))
|
||||
src_ag = _mm_and_si128(src_ag, ag_mask);
|
||||
|
||||
// Operations the destination pixels are the same as on the
|
||||
// source pixels. See the comments above.
|
||||
__m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
|
||||
dst_rb = _mm_mulhi_epu16(dst_rb, dst_scale_wide);
|
||||
__m128i dst_ag = _mm_and_si128(ag_mask, dst_pixel);
|
||||
dst_ag = _mm_mulhi_epu16(dst_ag, dst_scale_wide);
|
||||
dst_ag = _mm_and_si128(dst_ag, ag_mask);
|
||||
|
||||
// Combine back into RGBA.
|
||||
// (4 x (as.h, rs.h, gs.h, bs.h))
|
||||
src_pixel = _mm_or_si128(src_rb, src_ag);
|
||||
dst_pixel = _mm_or_si128(dst_rb, dst_ag);
|
||||
src_pixel = SkAlphaMulQ_SSE2(src_pixel, src_scale);
|
||||
dst_pixel = SkAlphaMulQ_SSE2(dst_pixel, dst_scale);
|
||||
|
||||
// Add result
|
||||
__m128i result = _mm_add_epi8(src_pixel, dst_pixel);
|
||||
@ -368,34 +325,12 @@ void Color32_SSE2(SkPMColor dst[], const SkPMColor src[], int count,
|
||||
|
||||
const __m128i *s = reinterpret_cast<const __m128i*>(src);
|
||||
__m128i *d = reinterpret_cast<__m128i*>(dst);
|
||||
__m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
|
||||
__m128i src_scale_wide = _mm_set1_epi16(scale);
|
||||
__m128i color_wide = _mm_set1_epi32(color);
|
||||
while (count >= 4) {
|
||||
// Load 4 pixels each of src and dest.
|
||||
__m128i src_pixel = _mm_loadu_si128(s);
|
||||
src_pixel = SkAlphaMulQ_SSE2(src_pixel, scale);
|
||||
|
||||
// Get red and blue pixels into lower byte of each word.
|
||||
__m128i src_rb = _mm_and_si128(rb_mask, src_pixel);
|
||||
|
||||
// Get alpha and green into lower byte of each word.
|
||||
__m128i src_ag = _mm_srli_epi16(src_pixel, 8);
|
||||
|
||||
// Multiply by scale.
|
||||
src_rb = _mm_mullo_epi16(src_rb, src_scale_wide);
|
||||
src_ag = _mm_mullo_epi16(src_ag, src_scale_wide);
|
||||
|
||||
// Divide by 256.
|
||||
src_rb = _mm_srli_epi16(src_rb, 8);
|
||||
src_ag = _mm_andnot_si128(rb_mask, src_ag);
|
||||
|
||||
// Combine back into RGBA.
|
||||
src_pixel = _mm_or_si128(src_rb, src_ag);
|
||||
|
||||
// Add color to result.
|
||||
__m128i result = _mm_add_epi8(color_wide, src_pixel);
|
||||
|
||||
// Store result.
|
||||
_mm_store_si128(d, result);
|
||||
s++;
|
||||
d++;
|
||||
|
@ -42,24 +42,42 @@ static inline __m128i SkAlphaMulAlpha_SSE2(const __m128i& a,
|
||||
return prod;
|
||||
}
|
||||
|
||||
static const __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
|
||||
static const __m128i ag_mask = _mm_set1_epi32(0xFF00FF00);
|
||||
|
||||
// Portable version SkAlphaMulQ is in SkColorPriv.h.
|
||||
static inline __m128i SkAlphaMulQ_SSE2(const __m128i& c, const __m128i& scale) {
|
||||
__m128i mask = _mm_set1_epi32(0xFF00FF);
|
||||
__m128i s = _mm_or_si128(_mm_slli_epi32(scale, 16), scale);
|
||||
|
||||
// uint32_t rb = ((c & mask) * scale) >> 8
|
||||
__m128i rb = _mm_and_si128(mask, c);
|
||||
__m128i rb = _mm_and_si128(rb_mask, c);
|
||||
rb = _mm_mullo_epi16(rb, s);
|
||||
rb = _mm_srli_epi16(rb, 8);
|
||||
|
||||
// uint32_t ag = ((c >> 8) & mask) * scale
|
||||
__m128i ag = _mm_srli_epi16(c, 8);
|
||||
ASSERT_EQ(ag, _mm_and_si128(mask, ag)); // ag = _mm_srli_epi16(c, 8) did this for us.
|
||||
ASSERT_EQ(ag, _mm_and_si128(rb_mask, ag)); // ag = _mm_srli_epi16(c, 8) did this for us.
|
||||
ag = _mm_mullo_epi16(ag, s);
|
||||
|
||||
// (rb & mask) | (ag & ~mask)
|
||||
ASSERT_EQ(rb, _mm_and_si128(mask, rb)); // rb = _mm_srli_epi16(rb, 8) did this for us.
|
||||
ag = _mm_andnot_si128(mask, ag);
|
||||
ASSERT_EQ(rb, _mm_and_si128(rb_mask, rb)); // rb = _mm_srli_epi16(rb, 8) did this for us.
|
||||
ag = _mm_and_si128(ag_mask, ag);
|
||||
return _mm_or_si128(rb, ag);
|
||||
}
|
||||
|
||||
// Fast path for SkAlphaMulQ_SSE2 with a constant scale factor.
|
||||
static inline __m128i SkAlphaMulQ_SSE2(const __m128i& c, const unsigned scale) {
|
||||
__m128i s = _mm_set1_epi16(scale << 8); // Move scale factor to upper byte of word.
|
||||
|
||||
// With mulhi, red and blue values are already in the right place and
|
||||
// don't need to be divided by 256.
|
||||
__m128i rb = _mm_and_si128(rb_mask, c);
|
||||
rb = _mm_mulhi_epu16(rb, s);
|
||||
|
||||
__m128i ag = _mm_and_si128(ag_mask, c);
|
||||
ag = _mm_mulhi_epu16(ag, s); // Alpha and green values are in the higher byte of each word.
|
||||
ag = _mm_and_si128(ag_mask, ag);
|
||||
|
||||
return _mm_or_si128(rb, ag);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user