serious SkEdgeBuilder refactoring

This splits the three logical types of SkEdgeBuilders
into distinct C++ types, with some shared logic.

Looks like this cuts another 10K off Flutter,
including that 8K table.

Change-Id: I0c901de8b0bb70b9a9dce07683110177a287b0ee
Reviewed-on: https://skia-review.googlesource.com/c/164626
Commit-Queue: Mike Reed <reed@google.com>
Auto-Submit: Mike Klein <mtklein@google.com>
Reviewed-by: Mike Reed <reed@google.com>
This commit is contained in:
Mike Klein 2018-10-24 04:59:13 -04:00 committed by Skia Commit-Bot
parent db018dbcb9
commit 61c5108108
5 changed files with 262 additions and 263 deletions

View File

@ -5,10 +5,9 @@
* found in the LICENSE file.
*/
#include "SkEdgeBuilder.h"
#include "SkAnalyticEdge.h"
#include "SkEdge.h"
#include "SkEdgeBuilder.h"
#include "SkEdgeClipper.h"
#include "SkGeometry.h"
#include "SkLineClipper.h"
@ -17,15 +16,7 @@
#include "SkSafeMath.h"
#include "SkTo.h"
///////////////////////////////////////////////////////////////////////////////
SkEdgeBuilder::SkEdgeBuilder(EdgeType type, int shiftEdgesUp)
: fEdgeList(nullptr)
, fEdgeType(type)
, fShiftUp(shiftEdgesUp)
, fIsFinite(true) {}
SkEdgeBuilder::Combine SkEdgeBuilder::combineVertical(const SkEdge* edge, SkEdge* last) {
SkEdgeBuilder::Combine SkBasicEdgeBuilder::combineVertical(const SkEdge* edge, SkEdge* last) {
if (last->fCurveCount || last->fDX || edge->fX != last->fX) {
return kNo_Combine;
}
@ -66,13 +57,12 @@ SkEdgeBuilder::Combine SkEdgeBuilder::combineVertical(const SkEdge* edge, SkEdge
return kNo_Combine;
}
static inline bool approximately_equal(SkFixed a, SkFixed b) {
return SkAbs32(a - b) < 0x100;
}
SkEdgeBuilder::Combine SkAnalyticEdgeBuilder::combineVertical(const SkAnalyticEdge* edge,
SkAnalyticEdge* last) {
auto approximately_equal = [](SkFixed a, SkFixed b) {
return SkAbs32(a - b) < 0x100;
};
SkEdgeBuilder::Combine SkEdgeBuilder::combineVertical(
const SkAnalyticEdge* edge, SkAnalyticEdge* last) {
SkASSERT(fEdgeType == kAnalyticEdge);
if (last->fCurveCount || last->fDX || edge->fX != last->fX) {
return kNo_Combine;
}
@ -117,180 +107,152 @@ SkEdgeBuilder::Combine SkEdgeBuilder::combineVertical(
return kNo_Combine;
}
bool SkEdgeBuilder::verticalLine(const SkEdge* edge) {
return !edge->fDX && !edge->fCurveCount;
template <typename Edge>
static bool is_vertical(const Edge* edge) {
return edge->fDX == 0
&& edge->fCurveCount == 0;
}
bool SkEdgeBuilder::verticalLine(const SkAnalyticEdge* edge) {
SkASSERT(fEdgeType == kAnalyticEdge);
return !edge->fDX && !edge->fCurveCount;
}
// TODO: we can deallocate the edge if edge->setFoo() fails
// or when we don't use it (kPartial_Combine or kTotal_Combine).
void SkEdgeBuilder::addLine(const SkPoint pts[]) {
if (fEdgeType == kBezier) {
SkLine* line = fAlloc.make<SkLine>();
if (line->set(pts)) {
fList.push_back(line);
}
} else if (fEdgeType == kAnalyticEdge) {
SkAnalyticEdge* edge = fAlloc.make<SkAnalyticEdge>();
if (edge->setLine(pts[0], pts[1])) {
if (this->verticalLine(edge) && fList.count()) {
Combine combine = this->combineVertical(edge, (SkAnalyticEdge*)*(fList.end() - 1));
if (kNo_Combine != combine) {
if (kTotal_Combine == combine) {
fList.pop();
}
goto unallocate_analytic_edge;
}
}
fList.push_back(edge);
} else {
unallocate_analytic_edge:
;
// TODO: unallocate edge from storage...
}
} else {
SkEdge* edge = fAlloc.make<SkEdge>();
if (edge->setLine(pts[0], pts[1], fShiftUp)) {
if (this->verticalLine(edge) && fList.count()) {
Combine combine = this->combineVertical(edge, (SkEdge*)*(fList.end() - 1));
if (kNo_Combine != combine) {
if (kTotal_Combine == combine) {
fList.pop();
}
goto unallocate_edge;
}
}
fList.push_back(edge);
} else {
unallocate_edge:
;
// TODO: unallocate edge from storage...
void SkBasicEdgeBuilder::addLine(const SkPoint pts[]) {
SkEdge* edge = fAlloc.make<SkEdge>();
if (edge->setLine(pts[0], pts[1], fClipShift)) {
Combine combine = is_vertical(edge) && !fList.empty()
? this->combineVertical(edge, (SkEdge*)fList.top())
: kNo_Combine;
switch (combine) {
case kTotal_Combine: fList.pop(); break;
case kPartial_Combine: break;
case kNo_Combine: fList.push_back(edge); break;
}
}
}
void SkEdgeBuilder::addPolyLine(SkPoint pts[],
char* &edge,
size_t edgeSize,
char** &edgePtr) {
if (fEdgeType == kBezier) {
if (((SkLine*)edge)->set(pts)) {
*edgePtr++ = edge;
edge += edgeSize;
}
return;
}
bool analyticAA = fEdgeType == kAnalyticEdge;
bool setLineResult = analyticAA ?
((SkAnalyticEdge*)edge)->setLine(pts[0], pts[1]) :
((SkEdge*)edge)->setLine(pts[0], pts[1], fShiftUp);
if (setLineResult) {
Combine combine = analyticAA ?
checkVertical((SkAnalyticEdge*)edge, (SkAnalyticEdge**)edgePtr) :
checkVertical((SkEdge*)edge, (SkEdge**)edgePtr);
if (kNo_Combine == combine) {
*edgePtr++ = edge;
edge += edgeSize;
} else if (kTotal_Combine == combine) {
--edgePtr;
void SkAnalyticEdgeBuilder::addLine(const SkPoint pts[]) {
SkAnalyticEdge* edge = fAlloc.make<SkAnalyticEdge>();
if (edge->setLine(pts[0], pts[1])) {
Combine combine = is_vertical(edge) && !fList.empty()
? this->combineVertical(edge, (SkAnalyticEdge*)fList.top())
: kNo_Combine;
switch (combine) {
case kTotal_Combine: fList.pop(); break;
case kPartial_Combine: break;
case kNo_Combine: fList.push_back(edge); break;
}
}
}
void SkEdgeBuilder::addQuad(const SkPoint pts[]) {
if (fEdgeType == kBezier) {
SkQuad* quad = fAlloc.make<SkQuad>();
if (quad->set(pts)) {
fList.push_back(quad);
}
} else if (fEdgeType == kAnalyticEdge) {
SkAnalyticQuadraticEdge* edge = fAlloc.make<SkAnalyticQuadraticEdge>();
if (edge->setQuadratic(pts)) {
fList.push_back(edge);
} else {
// TODO: unallocate edge from storage...
}
} else {
SkQuadraticEdge* edge = fAlloc.make<SkQuadraticEdge>();
if (edge->setQuadratic(pts, fShiftUp)) {
fList.push_back(edge);
} else {
// TODO: unallocate edge from storage...
}
void SkBezierEdgeBuilder::addLine(const SkPoint pts[]) {
SkLine* line = fAlloc.make<SkLine>();
if (line->set(pts)) {
fList.push_back(line);
}
}
void SkEdgeBuilder::addCubic(const SkPoint pts[]) {
if (fEdgeType == kBezier) {
SkCubic* cubic = fAlloc.make<SkCubic>();
if (cubic->set(pts)) {
fList.push_back(cubic);
}
} else if (fEdgeType == kAnalyticEdge) {
SkAnalyticCubicEdge* edge = fAlloc.make<SkAnalyticCubicEdge>();
if (edge->setCubic(pts)) {
fList.push_back(edge);
} else {
// TODO: unallocate edge from storage...
}
} else {
SkCubicEdge* edge = fAlloc.make<SkCubicEdge>();
if (edge->setCubic(pts, fShiftUp)) {
fList.push_back(edge);
} else {
// TODO: unallocate edge from storage...
}
void SkBasicEdgeBuilder::addQuad(const SkPoint pts[]) {
SkQuadraticEdge* edge = fAlloc.make<SkQuadraticEdge>();
if (edge->setQuadratic(pts, fClipShift)) {
fList.push_back(edge);
}
}
void SkAnalyticEdgeBuilder::addQuad(const SkPoint pts[]) {
SkAnalyticQuadraticEdge* edge = fAlloc.make<SkAnalyticQuadraticEdge>();
if (edge->setQuadratic(pts)) {
fList.push_back(edge);
}
}
void SkBezierEdgeBuilder::addQuad(const SkPoint pts[]) {
SkQuad* quad = fAlloc.make<SkQuad>();
if (quad->set(pts)) {
fList.push_back(quad);
}
}
void SkEdgeBuilder::addClipper(SkEdgeClipper* clipper) {
SkPoint pts[4];
SkPath::Verb verb;
while ((verb = clipper->next(pts)) != SkPath::kDone_Verb) {
const int count = SkPathPriv::PtsInIter(verb);
if (!SkScalarsAreFinite(&pts[0].fX, count*2)) {
fIsFinite = false;
return;
}
switch (verb) {
case SkPath::kLine_Verb:
this->addLine(pts);
break;
case SkPath::kQuad_Verb:
this->addQuad(pts);
break;
case SkPath::kCubic_Verb:
this->addCubic(pts);
break;
default:
break;
}
void SkBasicEdgeBuilder::addCubic(const SkPoint pts[]) {
SkCubicEdge* edge = fAlloc.make<SkCubicEdge>();
if (edge->setCubic(pts, fClipShift)) {
fList.push_back(edge);
}
}
void SkAnalyticEdgeBuilder::addCubic(const SkPoint pts[]) {
SkAnalyticCubicEdge* edge = fAlloc.make<SkAnalyticCubicEdge>();
if (edge->setCubic(pts)) {
fList.push_back(edge);
}
}
void SkBezierEdgeBuilder::addCubic(const SkPoint pts[]) {
SkCubic* cubic = fAlloc.make<SkCubic>();
if (cubic->set(pts)) {
fList.push_back(cubic);
}
}
///////////////////////////////////////////////////////////////////////////////
// TODO: merge addLine() and addPolyLine()?
static void set_shifted_clip(SkRect* dst, const SkIRect& src, int shift) {
dst->set(SkIntToScalar(src.fLeft >> shift),
SkIntToScalar(src.fTop >> shift),
SkIntToScalar(src.fRight >> shift),
SkIntToScalar(src.fBottom >> shift));
SkEdgeBuilder::Combine SkBasicEdgeBuilder::addPolyLine(SkPoint pts[],
char* arg_edge, char** arg_edgePtr) {
auto edge = (SkEdge*) arg_edge;
auto edgePtr = (SkEdge**)arg_edgePtr;
if (edge->setLine(pts[0], pts[1], fClipShift)) {
return is_vertical(edge) && edgePtr > (SkEdge**)fEdgeList
? this->combineVertical(edge, edgePtr[-1])
: kNo_Combine;
}
return SkEdgeBuilder::kPartial_Combine; // A convenient lie. Same do-nothing behavior.
}
SkEdgeBuilder::Combine SkAnalyticEdgeBuilder::addPolyLine(SkPoint pts[],
char* arg_edge, char** arg_edgePtr) {
auto edge = (SkAnalyticEdge*) arg_edge;
auto edgePtr = (SkAnalyticEdge**)arg_edgePtr;
if (edge->setLine(pts[0], pts[1])) {
return is_vertical(edge) && edgePtr > (SkAnalyticEdge**)fEdgeList
? this->combineVertical(edge, edgePtr[-1])
: kNo_Combine;
}
return SkEdgeBuilder::kPartial_Combine; // As above.
}
SkEdgeBuilder::Combine SkBezierEdgeBuilder::addPolyLine(SkPoint pts[],
char* arg_edge, char** arg_edgePtr) {
auto edge = (SkLine*)arg_edge;
if (edge->set(pts)) {
return kNo_Combine;
}
return SkEdgeBuilder::kPartial_Combine; // As above.
}
SkEdgeBuilder::Combine SkEdgeBuilder::checkVertical(const SkEdge* edge, SkEdge** edgePtr) {
return !this->verticalLine(edge) || edgePtr <= (SkEdge**)fEdgeList ? kNo_Combine :
this->combineVertical(edge, edgePtr[-1]);
SkRect SkBasicEdgeBuilder::recoverClip(const SkIRect& src) const {
return { SkIntToScalar(src.fLeft >> fClipShift),
SkIntToScalar(src.fTop >> fClipShift),
SkIntToScalar(src.fRight >> fClipShift),
SkIntToScalar(src.fBottom >> fClipShift), };
}
SkRect SkAnalyticEdgeBuilder::recoverClip(const SkIRect& src) const {
return SkRect::Make(src);
}
SkRect SkBezierEdgeBuilder::recoverClip(const SkIRect& src) const {
return SkRect::Make(src);
}
SkEdgeBuilder::Combine SkEdgeBuilder::checkVertical(const SkAnalyticEdge* edge,
SkAnalyticEdge** edgePtr) {
SkASSERT(fEdgeType == kAnalyticEdge);
return !this->verticalLine(edge) || edgePtr <= (SkAnalyticEdge**)fEdgeList ? kNo_Combine :
this->combineVertical(edge, edgePtr[-1]);
char* SkBasicEdgeBuilder::allocEdges(size_t n, size_t* size) {
*size = sizeof(SkEdge);
return (char*)fAlloc.makeArrayDefault<SkEdge>(n);
}
char* SkAnalyticEdgeBuilder::allocEdges(size_t n, size_t* size) {
*size = sizeof(SkAnalyticEdge);
return (char*)fAlloc.makeArrayDefault<SkAnalyticEdge>(n);
}
char* SkBezierEdgeBuilder::allocEdges(size_t n, size_t* size) {
*size = sizeof(SkLine);
return (char*)fAlloc.makeArrayDefault<SkLine>(n);
}
// TODO: maybe get rid of buildPoly() entirely?
int SkEdgeBuilder::buildPoly(const SkPath& path, const SkIRect* iclip, bool canCullToTheRight) {
SkPath::Iter iter(path, true);
SkPoint pts[4];
@ -309,29 +271,14 @@ int SkEdgeBuilder::buildPoly(const SkPath& path, const SkIRect* iclip, bool canC
}
size_t edgeSize;
char* edge;
switch (fEdgeType) {
case kEdge:
edgeSize = sizeof(SkEdge);
edge = (char*)fAlloc.makeArrayDefault<SkEdge>(maxEdgeCount);
break;
case kAnalyticEdge:
edgeSize = sizeof(SkAnalyticEdge);
edge = (char*)fAlloc.makeArrayDefault<SkAnalyticEdge>(maxEdgeCount);
break;
case kBezier:
edgeSize = sizeof(SkLine);
edge = (char*)fAlloc.makeArrayDefault<SkLine>(maxEdgeCount);
break;
}
char* edge = this->allocEdges(maxEdgeCount, &edgeSize);
SkDEBUGCODE(char* edgeStart = edge);
char** edgePtr = fAlloc.makeArrayDefault<char*>(maxEdgeCount);
fEdgeList = (void**)edgePtr;
if (iclip) {
SkRect clip;
set_shifted_clip(&clip, *iclip, fShiftUp);
SkRect clip = this->recoverClip(*iclip);
while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
switch (verb) {
@ -345,7 +292,12 @@ int SkEdgeBuilder::buildPoly(const SkPath& path, const SkIRect* iclip, bool canC
int lineCount = SkLineClipper::ClipLine(pts, clip, lines, canCullToTheRight);
SkASSERT(lineCount <= SkLineClipper::kMaxClippedLineSegments);
for (int i = 0; i < lineCount; i++) {
this->addPolyLine(lines + i, edge, edgeSize, edgePtr);
switch( this->addPolyLine(lines + i, edge, edgePtr) ) {
case kTotal_Combine: edgePtr--; break;
case kPartial_Combine: break;
case kNo_Combine: *edgePtr++ = edge;
edge += edgeSize;
}
}
break;
}
@ -363,7 +315,12 @@ int SkEdgeBuilder::buildPoly(const SkPath& path, const SkIRect* iclip, bool canC
// the corresponding line/quad/cubic verbs
break;
case SkPath::kLine_Verb: {
this->addPolyLine(pts, edge, edgeSize, edgePtr);
switch( this->addPolyLine(pts, edge, edgePtr) ) {
case kTotal_Combine: edgePtr--; break;
case kPartial_Combine: break;
case kNo_Combine: *edgePtr++ = edge;
edge += edgeSize;
}
break;
}
default:
@ -374,17 +331,10 @@ int SkEdgeBuilder::buildPoly(const SkPath& path, const SkIRect* iclip, bool canC
}
SkASSERT((size_t)(edge - edgeStart) <= maxEdgeCount * edgeSize);
SkASSERT((size_t)(edgePtr - (char**)fEdgeList) <= maxEdgeCount);
return fIsFinite ? SkToInt(edgePtr - (char**)fEdgeList) : 0;
return SkToInt(edgePtr - (char**)fEdgeList);
}
int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip, bool canCullToTheRight) {
fAlloc.reset();
fList.reset();
if (SkPath::kLine_SegmentMask == path.getSegmentMasks()) {
return this->buildPoly(path, iclip, canCullToTheRight);
}
SkAutoConicToQuads quadder;
const SkScalar conicTol = SK_Scalar1 / 4;
@ -392,11 +342,31 @@ int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip, bool canCullT
SkPoint pts[4];
SkPath::Verb verb;
bool is_finite = true;
if (iclip) {
SkRect clip;
set_shifted_clip(&clip, *iclip, fShiftUp);
SkRect clip = this->recoverClip(*iclip);
SkEdgeClipper clipper(canCullToTheRight);
auto apply_clipper = [this, &clipper, &is_finite] {
SkPoint pts[4];
SkPath::Verb verb;
while ((verb = clipper.next(pts)) != SkPath::kDone_Verb) {
const int count = SkPathPriv::PtsInIter(verb);
if (!SkScalarsAreFinite(&pts[0].fX, count*2)) {
is_finite = false;
return;
}
switch (verb) {
case SkPath::kLine_Verb: this->addLine (pts); break;
case SkPath::kQuad_Verb: this->addQuad (pts); break;
case SkPath::kCubic_Verb: this->addCubic(pts); break;
default: break;
}
}
};
while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
@ -406,12 +376,12 @@ int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip, bool canCullT
break;
case SkPath::kLine_Verb:
if (clipper.clipLine(pts[0], pts[1], clip)) {
this->addClipper(&clipper);
apply_clipper();
}
break;
case SkPath::kQuad_Verb:
if (clipper.clipQuad(pts, clip)) {
this->addClipper(&clipper);
apply_clipper();
}
break;
case SkPath::kConic_Verb: {
@ -419,14 +389,14 @@ int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip, bool canCullT
pts, iter.conicWeight(), conicTol);
for (int i = 0; i < quadder.countQuads(); ++i) {
if (clipper.clipQuad(quadPts, clip)) {
this->addClipper(&clipper);
apply_clipper();
}
quadPts += 2;
}
} break;
case SkPath::kCubic_Verb:
if (clipper.clipCubic(pts, clip)) {
this->addClipper(&clipper);
apply_clipper();
}
break;
default:
@ -466,7 +436,7 @@ int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip, bool canCullT
}
} break;
case SkPath::kCubic_Verb: {
if (fEdgeType == kBezier) {
if (!this->chopCubics()) {
this->addCubic(pts);
break;
}
@ -484,23 +454,28 @@ int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip, bool canCullT
}
}
fEdgeList = fList.begin();
return fIsFinite ? fList.count() : 0;
return is_finite ? fList.count() : 0;
}
int SkEdgeBuilder::buildEdges(const SkPath& path,
const SkIRect* shiftedClip,
bool pathContainedInClip) {
// If we're convex, then we need both edges, even the right edge is past the clip
const SkIRect* shiftedClip) {
// If we're convex, then we need both edges, even if the right edge is past the clip.
const bool canCullToTheRight = !path.isConvex();
const SkIRect* builderClip = pathContainedInClip ? nullptr : shiftedClip;
int count = this->build(path, builderClip, canCullToTheRight);
// We can use our buildPoly() optimization if all the segments are lines.
// (Edges are homogenous and stored contiguously in memory, no need for indirection.)
const int count = SkPath::kLine_SegmentMask == path.getSegmentMasks()
? this->buildPoly(path, shiftedClip, canCullToTheRight)
: this->build (path, shiftedClip, canCullToTheRight);
SkASSERT(count >= 0);
// canCullToRight == false should imply count != 1 if fEdgeType != kBezier.
// If fEdgeType == kBezier (DAA), we don't chop edges at y extrema so count == 1 is valid.
// If we can't cull to the right, we should have count > 1 (or 0),
// unless we're in DAA which doesn't need to chop edges at y extrema.
// For example, a single cubic edge with a valley shape \_/ is fine for DAA.
SkASSERT(fEdgeType == kBezier || canCullToTheRight || count != 1);
if (!canCullToTheRight && count == 1) {
SkASSERT(!this->chopCubics());
}
return fIsFinite ? count : 0;
return count;
}

View File

@ -7,80 +7,104 @@
#ifndef SkEdgeBuilder_DEFINED
#define SkEdgeBuilder_DEFINED
#include "SkAnalyticEdge.h"
#include "SkArenaAlloc.h"
#include "SkEdge.h"
#include "SkRect.h"
#include "SkTDArray.h"
#include "SkEdge.h"
#include "SkAnalyticEdge.h"
struct SkEdge;
struct SkAnalyticEdge;
class SkEdgeClipper;
class SkPath;
class SkEdgeBuilder {
public:
enum EdgeType {
// Used in supersampling or non-AA scan coverter; it stores only integral y coordinates.
kEdge,
// Used in Analytic AA scan converter; it uses SkFixed to store fractional y.
kAnalyticEdge,
// Used in Delta AA scan converter; it's a super-light wrapper of SkPoint, which can then be
// used to construct SkAnalyticEdge (kAnalyticEdge) later. We use kBezier to save the memory
// allocation time (a SkBezier is much lighter than SkAnalyticEdge or SkEdge). Note that
// Delta AA only has to deal with one SkAnalyticEdge at a time (whereas Analytic AA has to
// deal with all SkAnalyticEdges at the same time). Thus for Delta AA, we only need to
// allocate memory for n SkBeziers and 1 SkAnalyticEdge. (Analytic AA need to allocate
// memory for n SkAnalyticEdges.)
kBezier
};
SkEdgeBuilder(EdgeType, int shiftEdgesUp);
int buildEdges(const SkPath& path,
const SkIRect* shiftedClip,
bool pathContainedInClip);
const SkIRect* shiftedClip);
SkEdge** edgeList() { return (SkEdge**)fEdgeList; }
SkAnalyticEdge** analyticEdgeList() { return (SkAnalyticEdge**)fEdgeList; }
SkBezier** bezierList() { return (SkBezier**)fEdgeList; }
protected:
SkEdgeBuilder() = default;
virtual ~SkEdgeBuilder() = default;
// In general mode we allocate pointers in fList and fEdgeList points to its head.
// In polygon mode we preallocated edges contiguously in fAlloc and fEdgeList points there.
void** fEdgeList = nullptr;
SkTDArray<void*> fList;
SkSTArenaAlloc<512> fAlloc;
private:
enum Combine {
kNo_Combine,
kPartial_Combine,
kTotal_Combine
};
private:
int build (const SkPath& path, const SkIRect* clip, bool clipToTheRight);
int buildPoly(const SkPath& path, const SkIRect* clip, bool clipToTheRight);
virtual char* allocEdges(size_t n, size_t* sizeof_edge) = 0;
virtual SkRect recoverClip(const SkIRect&) const = 0;
virtual bool chopCubics() const = 0;
virtual void addLine (const SkPoint pts[]) = 0;
virtual void addQuad (const SkPoint pts[]) = 0;
virtual void addCubic(const SkPoint pts[]) = 0;
virtual Combine addPolyLine(SkPoint pts[], char* edge, char** edgePtr) = 0;
};
class SkBasicEdgeBuilder final : public SkEdgeBuilder {
public:
explicit SkBasicEdgeBuilder(int clipShift) : fClipShift(clipShift) {}
SkEdge** edgeList() { return (SkEdge**)fEdgeList; }
private:
Combine combineVertical(const SkEdge* edge, SkEdge* last);
Combine checkVertical(const SkEdge* edge, SkEdge** edgePtr);
bool verticalLine(const SkEdge* edge);
char* allocEdges(size_t, size_t*) override;
SkRect recoverClip(const SkIRect&) const override;
bool chopCubics() const override { return true; }
void addLine (const SkPoint pts[]) override;
void addQuad (const SkPoint pts[]) override;
void addCubic(const SkPoint pts[]) override;
Combine addPolyLine(SkPoint pts[], char* edge, char** edgePtr) override;
const int fClipShift;
};
class SkAnalyticEdgeBuilder final : public SkEdgeBuilder {
public:
SkAnalyticEdgeBuilder() {}
SkAnalyticEdge** analyticEdgeList() { return (SkAnalyticEdge**)fEdgeList; }
private:
Combine combineVertical(const SkAnalyticEdge* edge, SkAnalyticEdge* last);
Combine checkVertical(const SkAnalyticEdge* edge, SkAnalyticEdge** edgePtr);
bool verticalLine(const SkAnalyticEdge* edge);
void addLine(const SkPoint pts[]);
void addQuad(const SkPoint pts[]);
void addCubic(const SkPoint pts[]);
void addClipper(SkEdgeClipper*);
void addPolyLine(SkPoint pts[], char* &edge, size_t edgeSize, char** &edgePtr);
char* allocEdges(size_t, size_t*) override;
SkRect recoverClip(const SkIRect&) const override;
bool chopCubics() const override { return true; }
void addLine (const SkPoint pts[]) override;
void addQuad (const SkPoint pts[]) override;
void addCubic(const SkPoint pts[]) override;
Combine addPolyLine(SkPoint pts[], char* edge, char** edgePtr) override;
};
// In general mode we allocate pointers in fList and this points to its head.
// In polygon mode we preallocated pointers in fAlloc and this points there.
void** fEdgeList;
SkSTArenaAlloc<512> fAlloc;
SkTDArray<void*> fList;
class SkBezierEdgeBuilder final : public SkEdgeBuilder {
public:
SkBezierEdgeBuilder() {}
const EdgeType fEdgeType;
const int fShiftUp;
bool fIsFinite;
SkBezier** bezierList() { return (SkBezier**)fEdgeList; }
private:
char* allocEdges(size_t, size_t*) override;
SkRect recoverClip(const SkIRect&) const override;
bool chopCubics() const override { return false; }
void addLine (const SkPoint pts[]) override;
void addQuad (const SkPoint pts[]) override;
void addCubic(const SkPoint pts[]) override;
Combine addPolyLine(SkPoint pts[], char* edge, char** edgePtr) override;
};
#endif

View File

@ -1594,8 +1594,8 @@ static SK_ALWAYS_INLINE void aaa_fill_path(const SkPath& path, const SkIRect& cl
bool isUsingMask, bool forceRLE) { // forceRLE implies that SkAAClip is calling us
SkASSERT(blitter);
SkEdgeBuilder builder(SkEdgeBuilder::kAnalyticEdge, 0);
int count = builder.buildEdges(path, &clipRect, pathContainedInClip);
SkAnalyticEdgeBuilder builder;
int count = builder.buildEdges(path, pathContainedInClip ? nullptr : &clipRect);
SkAnalyticEdge** list = builder.analyticEdgeList();
SkIRect rect = clipRect;

View File

@ -160,10 +160,10 @@ template<class Deltas> static SK_ALWAYS_INLINE
void gen_alpha_deltas(const SkPath& path, const SkIRect& clippedIR, const SkIRect& clipBounds,
Deltas& result, SkBlitter* blitter, bool skipRect, bool pathContainedInClip) {
// 1. Build edges
SkEdgeBuilder builder(SkEdgeBuilder::kBezier, 0);
SkBezierEdgeBuilder builder;
// We have to use clipBounds instead of clippedIR to build edges because of "canCullToTheRight":
// if the builder finds a right edge past the right clip, it won't build that right edge.
int count = builder.buildEdges(path, &clipBounds, pathContainedInClip);
int count = builder.buildEdges(path, pathContainedInClip ? nullptr : &clipBounds);
if (count == 0) {
return;

View File

@ -406,8 +406,8 @@ void sk_fill_path(const SkPath& path, const SkIRect& clipRect, SkBlitter* blitte
shiftedClip.fTop = SkLeftShift(shiftedClip.fTop, shiftEdgesUp);
shiftedClip.fBottom = SkLeftShift(shiftedClip.fBottom, shiftEdgesUp);
SkEdgeBuilder builder(SkEdgeBuilder::kEdge, shiftEdgesUp);
int count = builder.buildEdges(path, &shiftedClip, pathContainedInClip);
SkBasicEdgeBuilder builder(shiftEdgesUp);
int count = builder.buildEdges(path, pathContainedInClip ? nullptr : &shiftedClip);
SkEdge** list = builder.edgeList();
if (0 == count) {