Revert "converted GrCircleBlurFragmentProcessor to sksl"

This reverts commit 9b80ffc77b.

Reason for revert: breaking ANGLE and Android Vulkan GMs

Original change's description:
> converted GrCircleBlurFragmentProcessor to sksl
> 
> Bug: skia:
> Change-Id: I1b70ba2003c9e9de2b5b9acadaf25c9ed59b1198
> Reviewed-on: https://skia-review.googlesource.com/21727
> Commit-Queue: Ethan Nicholas <ethannicholas@google.com>
> Reviewed-by: Brian Salomon <bsalomon@google.com>

TBR=bsalomon@google.com,ethannicholas@google.com

# Not skipping CQ checks because original CL landed > 1 day ago.

Bug: skia:
Change-Id: Ia313013b4354b34fa5a02bdb16d007a462c5ca94
Reviewed-on: https://skia-review.googlesource.com/22028
Reviewed-by: Ethan Nicholas <ethannicholas@google.com>
Commit-Queue: Ethan Nicholas <ethannicholas@google.com>
This commit is contained in:
Ethan Nicholas 2017-07-10 13:12:07 +00:00 committed by Skia Commit-Bot
parent 086ce11386
commit 818ac5a00d
12 changed files with 412 additions and 640 deletions

View File

@ -25,6 +25,5 @@ skia_sksl_sources = [
skia_gpu_processor_sources = [
"$_src/effects/GrAlphaThresholdFragmentProcessor.fp",
"$_src/effects/GrCircleBlurFragmentProcessor.fp",
"$_src/gpu/effects/GrDitherEffect.fp",
]

View File

@ -9,8 +9,8 @@
* This file was autogenerated from GrAlphaThresholdFragmentProcessor.fp; do not modify.
*/
#include "GrAlphaThresholdFragmentProcessor.h"
#if SK_SUPPORT_GPU
#if SK_SUPPORT_GPU
inline GrFragmentProcessor::OptimizationFlags GrAlphaThresholdFragmentProcessor::optFlags(
float outerThreshold) {
if (outerThreshold >= 1.0) {
@ -98,4 +98,5 @@ sk_sp<GrFragmentProcessor> GrAlphaThresholdFragmentProcessor::TestCreate(GrProce
bounds);
}
#endif
#endif
#endif

View File

@ -45,10 +45,17 @@ in uniform float outerThreshold;
}
@header {
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "GrColorSpaceXform.h"
}
@headerEnd {
#endif
}
@cpp {
#if SK_SUPPORT_GPU
inline GrFragmentProcessor::OptimizationFlags GrAlphaThresholdFragmentProcessor::optFlags(
float outerThreshold) {
if (outerThreshold >= 1.0) {
@ -60,6 +67,10 @@ in uniform float outerThreshold;
}
}
@cppEnd {
#endif
}
void main() {
vec4 color = texture(image, sk_TransformedCoords2D[0], colorXform);
vec4 mask_color = texture(mask, sk_TransformedCoords2D[1]);

View File

@ -10,9 +10,9 @@
*/
#ifndef GrAlphaThresholdFragmentProcessor_DEFINED
#define GrAlphaThresholdFragmentProcessor_DEFINED
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "GrColorSpaceXform.h"
#include "GrFragmentProcessor.h"
#include "GrCoordTransform.h"
@ -75,5 +75,6 @@ private:
float fOuterThreshold;
typedef GrFragmentProcessor INHERITED;
};
#endif
#endif
#endif

View File

@ -1,316 +1,359 @@
/*
* Copyright 2017 Google Inc.
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* This file was autogenerated from GrCircleBlurFragmentProcessor.fp; do not modify.
*/
#include "GrCircleBlurFragmentProcessor.h"
#if SK_SUPPORT_GPU
#include "GrResourceProvider.h"
static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
const float invSigma = 1.f / sigma;
const float b = -0.5f * invSigma * invSigma;
float tot = 0.0f;
float t = 0.5f;
for (int i = 0; i < halfKernelSize; ++i) {
float value = expf(t * t * b);
tot += value;
halfKernel[i] = value;
t += 1.f;
}
return tot;
}
static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
int halfKernelSize, float sigma) {
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
float sum = 0.f;
for (int i = 0; i < halfKernelSize; ++i) {
halfKernel[i] /= tot;
sum += halfKernel[i];
summedHalfKernel[i] = sum;
}
}
void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
int halfKernelSize, const float* summedHalfKernelTable) {
float x = firstX;
for (int i = 0; i < numSteps; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
results[i] = 0;
continue;
}
float y = sqrtf(circleR * circleR - x * x);
y -= 0.5f;
int yInt = SkScalarFloorToInt(y);
SkASSERT(yInt >= -1);
if (y < 0) {
results[i] = (y + 0.5f) * summedHalfKernelTable[0];
} else if (yInt >= halfKernelSize - 1) {
results[i] = 0.5f;
} else {
float yFrac = y - yInt;
results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
yFrac * summedHalfKernelTable[yInt + 1];
}
}
}
static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
const float* yKernelEvaluations) {
float acc = 0;
float x = evalX - halfKernelSize;
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
continue;
}
float verticalEval = yKernelEvaluations[i];
acc += verticalEval * halfKernel[halfKernelSize - i - 1];
}
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
continue;
}
float verticalEval = yKernelEvaluations[i + halfKernelSize];
acc += verticalEval * halfKernel[i];
}
return SkUnitScalarClampToByte(2.f * acc);
}
static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
const int numSteps = profileTextureWidth;
uint8_t* weights = new uint8_t[numSteps];
int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
int numYSteps = numSteps + 2 * halfKernelSize;
SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
float* halfKernel = bulkAlloc.get();
float* summedKernel = bulkAlloc.get() + halfKernelSize;
float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
float firstX = -halfKernelSize + 0.5f;
apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
for (int i = 0; i < numSteps - 1; ++i) {
float evalX = i + 0.5f;
weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
}
weights[numSteps - 1] = 0;
return weights;
}
static uint8_t* create_half_plane_profile(int profileWidth) {
SkASSERT(!(profileWidth & 0x1));
float sigma = profileWidth / 6.f;
int halfKernelSize = profileWidth / 2;
SkAutoTArray<float> halfKernel(halfKernelSize);
uint8_t* profile = new uint8_t[profileWidth];
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize,
sigma);
float sum = 0.f;
for (int i = 0; i < halfKernelSize; ++i) {
halfKernel[halfKernelSize - i - 1] /= tot;
sum += halfKernel[halfKernelSize - i - 1];
profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
}
for (int i = 0; i < halfKernelSize; ++i) {
sum += halfKernel[i];
profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
}
profile[profileWidth - 1] = 0;
return profile;
}
static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
const SkRect& circle,
float sigma,
float* solidRadius, float* textureRadius) {
float circleR = circle.width() / 2.0f;
SkScalar sigmaToCircleRRatio = sigma / circleR;
sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
SkFixed sigmaToCircleRRatioFixed;
static const SkScalar kHalfPlaneThreshold = 0.1f;
bool useHalfPlaneApprox = false;
if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
useHalfPlaneApprox = true;
sigmaToCircleRRatioFixed = 0;
*solidRadius = circleR - 3 * sigma;
*textureRadius = 6 * sigma;
} else {
sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
sigmaToCircleRRatioFixed &= ~0xff;
sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
sigma = circleR * sigmaToCircleRRatio;
*solidRadius = 0;
*textureRadius = circleR + 3 * sigma;
}
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey key;
GrUniqueKey::Builder builder(&key, kDomain, 1);
builder[0] = sigmaToCircleRRatioFixed;
builder.finish();
sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
if (!blurProfile) {
static constexpr int kProfileTextureWidth = 512;
GrSurfaceDesc texDesc;
texDesc.fWidth = kProfileTextureWidth;
texDesc.fHeight = 1;
texDesc.fConfig = kAlpha_8_GrPixelConfig;
std::unique_ptr<uint8_t[]> profile(nullptr);
if (useHalfPlaneApprox) {
profile.reset(create_half_plane_profile(kProfileTextureWidth));
} else {
SkScalar scale = kProfileTextureWidth / *textureRadius;
profile.reset(create_circle_profile(sigma * scale, circleR * scale,
kProfileTextureWidth));
}
blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
texDesc, SkBudgeted::kYes, profile.get(), 0);
if (!blurProfile) {
return nullptr;
}
resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
}
return blurProfile;
}
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(
GrResourceProvider* resourceProvider,
const SkRect& circle,
float sigma) {
float solidRadius;
float textureRadius;
sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
&solidRadius, &textureRadius));
if (!profile) {
return nullptr;
}
return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
textureRadius,
solidRadius,
std::move(profile),
resourceProvider));
}
#include "glsl/GrGLSLColorSpaceXformHelper.h"
#include "GrContext.h"
#include "GrResourceProvider.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramBuilder.h"
#include "SkSLCPP.h"
#include "SkSLUtil.h"
class GrGLSLCircleBlurFragmentProcessor : public GrGLSLFragmentProcessor {
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "SkFixed.h"
class GrCircleBlurFragmentProcessor::GLSLProcessor : public GrGLSLFragmentProcessor {
public:
GrGLSLCircleBlurFragmentProcessor() {}
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
const GrCircleBlurFragmentProcessor& _outer = args.fFp.cast<GrCircleBlurFragmentProcessor>();
(void) _outer;
fCircleDataVar = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "circleData");
fragBuilder->codeAppendf("vec2 vec = vec2((sk_FragCoord.x - %s.x) * %s.w, (sk_FragCoord.y - %s.y) * %s.w);\nfloat dist = length(vec) + (0.5 - %s.z) * %s.w;\n%s = %s * texture(%s, vec2(dist, 0.5));\n", args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fOutputColor, args.fInputColor ? args.fInputColor : "vec4(1)", fragBuilder->getProgramBuilder()->samplerVariable(args.fTexSamplers[0]).c_str());
}
void emitCode(EmitArgs&) override;
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
private:
void onSetData(const GrGLSLProgramDataManager& data, const GrFragmentProcessor& _proc) override {
const GrCircleBlurFragmentProcessor& _outer = _proc.cast<GrCircleBlurFragmentProcessor>();
auto circleRect = _outer.circleRect();
(void) circleRect;
auto textureRadius = _outer.textureRadius();
(void) textureRadius;
auto solidRadius = _outer.solidRadius();
(void) solidRadius;
UniformHandle& blurProfileSampler = fBlurProfileSamplerVar;
(void) blurProfileSampler;
UniformHandle& circleData = fCircleDataVar;
(void) circleData;
GrGLSLProgramDataManager::UniformHandle fDataUniform;
data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius,
1.f / textureRadius);
}
UniformHandle fCircleDataVar;
UniformHandle fBlurProfileSamplerVar;
typedef GrGLSLFragmentProcessor INHERITED;
};
GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
return new GrGLSLCircleBlurFragmentProcessor();
}
void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const {
}
bool GrCircleBlurFragmentProcessor::onIsEqual(const GrFragmentProcessor& other) const {
const GrCircleBlurFragmentProcessor& that = other.cast<GrCircleBlurFragmentProcessor>();
(void) that;
if (fCircleRect != that.fCircleRect) return false;
if (fTextureRadius != that.fTextureRadius) return false;
if (fSolidRadius != that.fSolidRadius) return false;
if (fBlurProfileSampler != that.fBlurProfileSampler) return false;
return true;
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor);
#if GR_TEST_UTILS
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* testData) {
SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f);
SkScalar sigma = testData->fRandom->nextRangeF(1.f,10.f);
void GrCircleBlurFragmentProcessor::GLSLProcessor::emitCode(EmitArgs& args) {
const char *dataName;
// The data is formatted as:
// x,y - the center of the circle
// z - inner radius that should map to 0th entry in the texture.
// w - the inverse of the distance over which the texture is stretched.
fDataUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType,
kDefault_GrSLPrecision,
"data",
&dataName);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
if (args.fInputColor) {
fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
} else {
fragBuilder->codeAppendf("vec4 src=vec4(1);");
}
// We just want to compute "(length(vec) - %s.z + 0.5) * %s.w" but need to rearrange
// for precision.
fragBuilder->codeAppendf("vec2 vec = vec2( (sk_FragCoord.x - %s.x) * %s.w, "
"(sk_FragCoord.y - %s.y) * %s.w );",
dataName, dataName, dataName, dataName);
fragBuilder->codeAppendf("float dist = length(vec) + (0.5 - %s.z) * %s.w;",
dataName, dataName);
fragBuilder->codeAppendf("float intensity = ");
fragBuilder->appendTextureLookup(args.fTexSamplers[0], "vec2(dist, 0.5)");
fragBuilder->codeAppend(".a;");
fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor );
}
void GrCircleBlurFragmentProcessor::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& proc) {
const GrCircleBlurFragmentProcessor& cbfp = proc.cast<GrCircleBlurFragmentProcessor>();
const SkRect& circle = cbfp.fCircle;
// The data is formatted as:
// x,y - the center of the circle
// z - inner radius that should map to 0th entry in the texture.
// w - the inverse of the distance over which the profile texture is stretched.
pdman.set4f(fDataUniform, circle.centerX(), circle.centerY(), cbfp.fSolidRadius,
1.f / cbfp.fTextureRadius);
}
///////////////////////////////////////////////////////////////////////////////
GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(const SkRect& circle,
float textureRadius,
float solidRadius,
sk_sp<GrTextureProxy> blurProfile)
: INHERITED(kCompatibleWithCoverageAsAlpha_OptimizationFlag)
, fCircle(circle)
, fSolidRadius(solidRadius)
, fTextureRadius(textureRadius)
, fBlurProfileSampler(std::move(blurProfile), GrSamplerParams::kBilerp_FilterMode) {
this->initClassID<GrCircleBlurFragmentProcessor>();
this->addTextureSampler(&fBlurProfileSampler);
}
GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
return new GLSLProcessor;
}
void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
// The code for this processor is always the same so there is nothing to add to the key.
return;
}
// Computes an unnormalized half kernel (right side). Returns the summation of all the half kernel
// values.
static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
const float invSigma = 1.f / sigma;
const float b = -0.5f * invSigma * invSigma;
float tot = 0.0f;
// Compute half kernel values at half pixel steps out from the center.
float t = 0.5f;
for (int i = 0; i < halfKernelSize; ++i) {
float value = expf(t * t * b);
tot += value;
halfKernel[i] = value;
t += 1.f;
}
return tot;
}
// Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number of
// discrete steps. The half kernel is normalized to sum to 0.5.
static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
int halfKernelSize, float sigma) {
// The half kernel should sum to 0.5 not 1.0.
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
float sum = 0.f;
for (int i = 0; i < halfKernelSize; ++i) {
halfKernel[i] /= tot;
sum += halfKernel[i];
summedHalfKernel[i] = sum;
}
}
// Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
// origin with radius circleR.
void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
int halfKernelSize, const float* summedHalfKernelTable) {
float x = firstX;
for (int i = 0; i < numSteps; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
results[i] = 0;
continue;
}
float y = sqrtf(circleR * circleR - x * x);
// In the column at x we exit the circle at +y and -y
// The summed table entry j is actually reflects an offset of j + 0.5.
y -= 0.5f;
int yInt = SkScalarFloorToInt(y);
SkASSERT(yInt >= -1);
if (y < 0) {
results[i] = (y + 0.5f) * summedHalfKernelTable[0];
} else if (yInt >= halfKernelSize - 1) {
results[i] = 0.5f;
} else {
float yFrac = y - yInt;
results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
yFrac * summedHalfKernelTable[yInt + 1];
}
}
}
// Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
// This relies on having a half kernel computed for the Gaussian and a table of applications of
// the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
// halfKernel) passed in as yKernelEvaluations.
static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
const float* yKernelEvaluations) {
float acc = 0;
float x = evalX - halfKernelSize;
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
continue;
}
float verticalEval = yKernelEvaluations[i];
acc += verticalEval * halfKernel[halfKernelSize - i - 1];
}
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
continue;
}
float verticalEval = yKernelEvaluations[i + halfKernelSize];
acc += verticalEval * halfKernel[i];
}
// Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about the
// x axis).
return SkUnitScalarClampToByte(2.f * acc);
}
// This function creates a profile of a blurred circle. It does this by computing a kernel for
// half the Gaussian and a matching summed area table. The summed area table is used to compute
// an array of vertical applications of the half kernel to the circle along the x axis. The table
// of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is the size
// of the profile being computed. Then for each of the n profile entries we walk out k steps in each
// horizontal direction multiplying the corresponding y evaluation by the half kernel entry and
// sum these values to compute the profile entry.
static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
const int numSteps = profileTextureWidth;
uint8_t* weights = new uint8_t[numSteps];
// The full kernel is 6 sigmas wide.
int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
// round up to next multiple of 2 and then divide by 2
halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
// Number of x steps at which to apply kernel in y to cover all the profile samples in x.
int numYSteps = numSteps + 2 * halfKernelSize;
SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
float* halfKernel = bulkAlloc.get();
float* summedKernel = bulkAlloc.get() + halfKernelSize;
float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
float firstX = -halfKernelSize + 0.5f;
apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
for (int i = 0; i < numSteps - 1; ++i) {
float evalX = i + 0.5f;
weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
}
// Ensure the tail of the Gaussian goes to zero.
weights[numSteps - 1] = 0;
return weights;
}
static uint8_t* create_half_plane_profile(int profileWidth) {
SkASSERT(!(profileWidth & 0x1));
// The full kernel is 6 sigmas wide.
float sigma = profileWidth / 6.f;
int halfKernelSize = profileWidth / 2;
SkAutoTArray<float> halfKernel(halfKernelSize);
uint8_t* profile = new uint8_t[profileWidth];
// The half kernel should sum to 0.5.
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
float sum = 0.f;
// Populate the profile from the right edge to the middle.
for (int i = 0; i < halfKernelSize; ++i) {
halfKernel[halfKernelSize - i - 1] /= tot;
sum += halfKernel[halfKernelSize - i - 1];
profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
}
// Populate the profile from the middle to the left edge (by flipping the half kernel and
// continuing the summation).
for (int i = 0; i < halfKernelSize; ++i) {
sum += halfKernel[i];
profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
}
// Ensure tail goes to 0.
profile[profileWidth - 1] = 0;
return profile;
}
static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
const SkRect& circle,
float sigma,
float* solidRadius, float* textureRadius) {
float circleR = circle.width() / 2.0f;
// Profile textures are cached by the ratio of sigma to circle radius and by the size of the
// profile texture (binned by powers of 2).
SkScalar sigmaToCircleRRatio = sigma / circleR;
// When sigma is really small this becomes a equivalent to convolving a Gaussian with a half-
// plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the Guassian
// and the profile texture is a just a Gaussian evaluation. However, we haven't yet implemented
// this latter optimization.
sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
SkFixed sigmaToCircleRRatioFixed;
static const SkScalar kHalfPlaneThreshold = 0.1f;
bool useHalfPlaneApprox = false;
if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
useHalfPlaneApprox = true;
sigmaToCircleRRatioFixed = 0;
*solidRadius = circleR - 3 * sigma;
*textureRadius = 6 * sigma;
} else {
// Convert to fixed point for the key.
sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
// We shave off some bits to reduce the number of unique entries. We could probably shave
// off more than we do.
sigmaToCircleRRatioFixed &= ~0xff;
sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
sigma = circleR * sigmaToCircleRRatio;
*solidRadius = 0;
*textureRadius = circleR + 3 * sigma;
}
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey key;
GrUniqueKey::Builder builder(&key, kDomain, 1);
builder[0] = sigmaToCircleRRatioFixed;
builder.finish();
sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
if (!blurProfile) {
static constexpr int kProfileTextureWidth = 512;
GrSurfaceDesc texDesc;
texDesc.fWidth = kProfileTextureWidth;
texDesc.fHeight = 1;
texDesc.fConfig = kAlpha_8_GrPixelConfig;
std::unique_ptr<uint8_t[]> profile(nullptr);
if (useHalfPlaneApprox) {
profile.reset(create_half_plane_profile(kProfileTextureWidth));
} else {
// Rescale params to the size of the texture we're creating.
SkScalar scale = kProfileTextureWidth / *textureRadius;
profile.reset(create_circle_profile(sigma * scale, circleR * scale,
kProfileTextureWidth));
}
blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
texDesc, SkBudgeted::kYes, profile.get(), 0);
if (!blurProfile) {
return nullptr;
}
resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
}
return blurProfile;
}
//////////////////////////////////////////////////////////////////////////////
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(GrResourceProvider* resourceProvider,
const SkRect& circle, float sigma) {
float solidRadius;
float textureRadius;
sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
&solidRadius, &textureRadius));
if (!profile) {
return nullptr;
}
return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
textureRadius, solidRadius,
std::move(profile)));
}
//////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor);
#if GR_TEST_UTILS
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* d) {
SkScalar wh = d->fRandom->nextRangeScalar(100.f, 1000.f);
SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f);
SkRect circle = SkRect::MakeWH(wh, wh);
return GrCircleBlurFragmentProcessor::Make(testData->resourceProvider(), circle, sigma);
return GrCircleBlurFragmentProcessor::Make(d->resourceProvider(), circle, sigma);
}
#endif
#endif

View File

@ -1,289 +0,0 @@
in vec4 circleRect;
in float textureRadius;
in float solidRadius;
in uniform sampler2D blurProfileSampler;
// The data is formatted as:
// x, y - the center of the circle
// z - inner radius that should map to 0th entry in the texture.
// w - the inverse of the distance over which the texture is stretched.
uniform vec4 circleData;
@optimizationFlags {
kCompatibleWithCoverageAsAlpha_OptimizationFlag
}
@constructorParams {
GrResourceProvider* resourceProvider
}
@make {
static sk_sp<GrFragmentProcessor> Make(GrResourceProvider* resourceProvider,
const SkRect& circle, float sigma);
}
@setData(data) {
data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius,
1.f / textureRadius);
}
@cpp {
#include "GrResourceProvider.h"
// Computes an unnormalized half kernel (right side). Returns the summation of all the half
// kernel values.
static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
const float invSigma = 1.f / sigma;
const float b = -0.5f * invSigma * invSigma;
float tot = 0.0f;
// Compute half kernel values at half pixel steps out from the center.
float t = 0.5f;
for (int i = 0; i < halfKernelSize; ++i) {
float value = expf(t * t * b);
tot += value;
halfKernel[i] = value;
t += 1.f;
}
return tot;
}
// Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
// of discrete steps. The half kernel is normalized to sum to 0.5.
static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
int halfKernelSize, float sigma) {
// The half kernel should sum to 0.5 not 1.0.
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
float sum = 0.f;
for (int i = 0; i < halfKernelSize; ++i) {
halfKernel[i] /= tot;
sum += halfKernel[i];
summedHalfKernel[i] = sum;
}
}
// Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
// origin with radius circleR.
void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
int halfKernelSize, const float* summedHalfKernelTable) {
float x = firstX;
for (int i = 0; i < numSteps; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
results[i] = 0;
continue;
}
float y = sqrtf(circleR * circleR - x * x);
// In the column at x we exit the circle at +y and -y
// The summed table entry j is actually reflects an offset of j + 0.5.
y -= 0.5f;
int yInt = SkScalarFloorToInt(y);
SkASSERT(yInt >= -1);
if (y < 0) {
results[i] = (y + 0.5f) * summedHalfKernelTable[0];
} else if (yInt >= halfKernelSize - 1) {
results[i] = 0.5f;
} else {
float yFrac = y - yInt;
results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
yFrac * summedHalfKernelTable[yInt + 1];
}
}
}
// Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
// This relies on having a half kernel computed for the Gaussian and a table of applications of
// the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
// halfKernel) passed in as yKernelEvaluations.
static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
const float* yKernelEvaluations) {
float acc = 0;
float x = evalX - halfKernelSize;
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
continue;
}
float verticalEval = yKernelEvaluations[i];
acc += verticalEval * halfKernel[halfKernelSize - i - 1];
}
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
continue;
}
float verticalEval = yKernelEvaluations[i + halfKernelSize];
acc += verticalEval * halfKernel[i];
}
// Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
// the x axis).
return SkUnitScalarClampToByte(2.f * acc);
}
// This function creates a profile of a blurred circle. It does this by computing a kernel for
// half the Gaussian and a matching summed area table. The summed area table is used to compute
// an array of vertical applications of the half kernel to the circle along the x axis. The
// table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
// the size of the profile being computed. Then for each of the n profile entries we walk out k
// steps in each horizontal direction multiplying the corresponding y evaluation by the half
// kernel entry and sum these values to compute the profile entry.
static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
const int numSteps = profileTextureWidth;
uint8_t* weights = new uint8_t[numSteps];
// The full kernel is 6 sigmas wide.
int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
// round up to next multiple of 2 and then divide by 2
halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
// Number of x steps at which to apply kernel in y to cover all the profile samples in x.
int numYSteps = numSteps + 2 * halfKernelSize;
SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
float* halfKernel = bulkAlloc.get();
float* summedKernel = bulkAlloc.get() + halfKernelSize;
float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
float firstX = -halfKernelSize + 0.5f;
apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
for (int i = 0; i < numSteps - 1; ++i) {
float evalX = i + 0.5f;
weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
}
// Ensure the tail of the Gaussian goes to zero.
weights[numSteps - 1] = 0;
return weights;
}
static uint8_t* create_half_plane_profile(int profileWidth) {
SkASSERT(!(profileWidth & 0x1));
// The full kernel is 6 sigmas wide.
float sigma = profileWidth / 6.f;
int halfKernelSize = profileWidth / 2;
SkAutoTArray<float> halfKernel(halfKernelSize);
uint8_t* profile = new uint8_t[profileWidth];
// The half kernel should sum to 0.5.
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize,
sigma);
float sum = 0.f;
// Populate the profile from the right edge to the middle.
for (int i = 0; i < halfKernelSize; ++i) {
halfKernel[halfKernelSize - i - 1] /= tot;
sum += halfKernel[halfKernelSize - i - 1];
profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
}
// Populate the profile from the middle to the left edge (by flipping the half kernel and
// continuing the summation).
for (int i = 0; i < halfKernelSize; ++i) {
sum += halfKernel[i];
profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
}
// Ensure tail goes to 0.
profile[profileWidth - 1] = 0;
return profile;
}
static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
const SkRect& circle,
float sigma,
float* solidRadius, float* textureRadius) {
float circleR = circle.width() / 2.0f;
// Profile textures are cached by the ratio of sigma to circle radius and by the size of the
// profile texture (binned by powers of 2).
SkScalar sigmaToCircleRRatio = sigma / circleR;
// When sigma is really small this becomes a equivalent to convolving a Gaussian with a
// half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
// Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
// implemented this latter optimization.
sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
SkFixed sigmaToCircleRRatioFixed;
static const SkScalar kHalfPlaneThreshold = 0.1f;
bool useHalfPlaneApprox = false;
if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
useHalfPlaneApprox = true;
sigmaToCircleRRatioFixed = 0;
*solidRadius = circleR - 3 * sigma;
*textureRadius = 6 * sigma;
} else {
// Convert to fixed point for the key.
sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
// We shave off some bits to reduce the number of unique entries. We could probably
// shave off more than we do.
sigmaToCircleRRatioFixed &= ~0xff;
sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
sigma = circleR * sigmaToCircleRRatio;
*solidRadius = 0;
*textureRadius = circleR + 3 * sigma;
}
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey key;
GrUniqueKey::Builder builder(&key, kDomain, 1);
builder[0] = sigmaToCircleRRatioFixed;
builder.finish();
sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
if (!blurProfile) {
static constexpr int kProfileTextureWidth = 512;
GrSurfaceDesc texDesc;
texDesc.fWidth = kProfileTextureWidth;
texDesc.fHeight = 1;
texDesc.fConfig = kAlpha_8_GrPixelConfig;
std::unique_ptr<uint8_t[]> profile(nullptr);
if (useHalfPlaneApprox) {
profile.reset(create_half_plane_profile(kProfileTextureWidth));
} else {
// Rescale params to the size of the texture we're creating.
SkScalar scale = kProfileTextureWidth / *textureRadius;
profile.reset(create_circle_profile(sigma * scale, circleR * scale,
kProfileTextureWidth));
}
blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
texDesc, SkBudgeted::kYes, profile.get(), 0);
if (!blurProfile) {
return nullptr;
}
resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
}
return blurProfile;
}
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(
GrResourceProvider* resourceProvider,
const SkRect& circle,
float sigma) {
float solidRadius;
float textureRadius;
sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
&solidRadius, &textureRadius));
if (!profile) {
return nullptr;
}
return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
textureRadius,
solidRadius,
std::move(profile),
resourceProvider));
}
}
void main() {
// We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need to
// rearrange for precision.
vec2 vec = vec2((sk_FragCoord.x - circleData.x) * circleData.w,
(sk_FragCoord.y - circleData.y) * circleData.w);
float dist = length(vec) + (0.5 - circleData.z) * circleData.w;
sk_OutColor = sk_InColor * texture(blurProfileSampler, vec2(dist, 0.5));
}
@test(testData) {
SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f);
SkScalar sigma = testData->fRandom->nextRangeF(1.f,10.f);
SkRect circle = SkRect::MakeWH(wh, wh);
return GrCircleBlurFragmentProcessor::Make(testData->resourceProvider(), circle, sigma);
}

View File

@ -1,52 +1,73 @@
/*
* Copyright 2017 Google Inc.
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* This file was autogenerated from GrCircleBlurFragmentProcessor.fp; do not modify.
*/
#ifndef GrCircleBlurFragmentProcessor_DEFINED
#define GrCircleBlurFragmentProcessor_DEFINED
#include "SkString.h"
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "GrFragmentProcessor.h"
#include "GrCoordTransform.h"
#include "effects/GrProxyMove.h"
#include "GrProcessorUnitTest.h"
class GrResourceProvider;
// This FP handles the special case of a blurred circle. It uses a 1D
// profile that is just rotated about the origin of the circle.
class GrCircleBlurFragmentProcessor : public GrFragmentProcessor {
public:
SkRect circleRect() const { return fCircleRect; }
float textureRadius() const { return fTextureRadius; }
float solidRadius() const { return fSolidRadius; }
static sk_sp<GrFragmentProcessor> Make(GrResourceProvider*, const SkRect& circle, float sigma);
static sk_sp<GrFragmentProcessor> Make(GrResourceProvider* resourceProvider,
const SkRect& circle, float sigma);
const char* name() const override { return "CircleBlurFragmentProcessor"; }
private:
GrCircleBlurFragmentProcessor(SkRect circleRect, float textureRadius, float solidRadius, sk_sp<GrTextureProxy> blurProfileSampler,
GrResourceProvider* resourceProvider
)
: INHERITED((OptimizationFlags)
kCompatibleWithCoverageAsAlpha_OptimizationFlag
)
, fCircleRect(circleRect)
, fTextureRadius(textureRadius)
, fSolidRadius(solidRadius)
, fBlurProfileSampler(std::move(blurProfileSampler)) {
this->addTextureSampler(&fBlurProfileSampler);
this->initClassID<GrCircleBlurFragmentProcessor>();
~GrCircleBlurFragmentProcessor() override {}
const char* name() const override { return "CircleBlur"; }
SkString dumpInfo() const override {
SkString str;
str.appendf("Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], solidR: %.2f, textureR: %.2f",
fCircle.fLeft, fCircle.fTop, fCircle.fRight, fCircle.fBottom,
fSolidRadius, fTextureRadius);
return str;
}
private:
// This nested GLSL processor implementation is defined in the cpp file.
class GLSLProcessor;
/**
* Creates a profile texture for the circle and sigma. The texture will have a height of 1.
* The x texture coord should map from 0 to 1 across the radius range of solidRadius to
* solidRadius + textureRadius.
*/
GrCircleBlurFragmentProcessor(const SkRect& circle,
float textureRadius, float innerRadius,
sk_sp<GrTextureProxy> blurProfile);
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrShaderCaps&,GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrFragmentProcessor& other) const override {
const GrCircleBlurFragmentProcessor& cbfp = other.cast<GrCircleBlurFragmentProcessor>();
return fCircle == cbfp.fCircle && fSolidRadius == cbfp.fSolidRadius &&
fTextureRadius == cbfp.fTextureRadius;
}
SkRect fCircle;
SkScalar fSolidRadius;
float fTextureRadius;
TextureSampler fBlurProfileSampler;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
SkRect fCircleRect;
float fTextureRadius;
float fSolidRadius;
TextureSampler fBlurProfileSampler;
typedef GrFragmentProcessor INHERITED;
};
#endif
#endif

View File

@ -9,7 +9,6 @@
* This file was autogenerated from GrDitherEffect.fp; do not modify.
*/
#include "GrDitherEffect.h"
#if SK_SUPPORT_GPU
#include "glsl/GrGLSLColorSpaceXformHelper.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
@ -46,4 +45,3 @@ sk_sp<GrFragmentProcessor> GrDitherEffect::TestCreate(GrProcessorTestData* testD
return GrDitherEffect::Make();
}
#endif
#endif

View File

@ -10,8 +10,6 @@
*/
#ifndef GrDitherEffect_DEFINED
#define GrDitherEffect_DEFINED
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "GrFragmentProcessor.h"
#include "GrCoordTransform.h"
#include "effects/GrProxyMove.h"
@ -33,4 +31,3 @@ private:
typedef GrFragmentProcessor INHERITED;
};
#endif
#endif

View File

@ -542,8 +542,7 @@ bool CPPCodeGenerator::generateCode() {
const char* baseName = fName.c_str();
const char* fullName = fFullName.c_str();
this->writef(kFragmentProcessorHeader, fullName);
this->writef("#include \"%s.h\"\n"
"#if SK_SUPPORT_GPU\n", fullName);
this->writef("#include \"%s.h\"\n", fullName);
this->writeSection(CPP_SECTION);
this->writef("#include \"glsl/GrGLSLColorSpaceXformHelper.h\"\n"
"#include \"glsl/GrGLSLFragmentProcessor.h\"\n"
@ -594,7 +593,6 @@ bool CPPCodeGenerator::generateCode() {
"}\n");
this->writeTest();
this->writeSection(CPP_END_SECTION);
this->write("#endif\n");
result &= 0 == fErrors.errorCount();
return result;
}

View File

@ -201,8 +201,6 @@ bool HCodeGenerator::generateCode() {
"#define %s_DEFINED\n",
fFullName.c_str(),
fFullName.c_str());
this->writef("#include \"SkTypes.h\"\n"
"#if SK_SUPPORT_GPU\n");
this->writeSection(HEADER_SECTION);
this->writef("#include \"GrFragmentProcessor.h\"\n"
"#include \"GrCoordTransform.h\"\n"
@ -233,8 +231,7 @@ bool HCodeGenerator::generateCode() {
this->writef(" typedef GrFragmentProcessor INHERITED;\n"
"};\n");
this->writeSection(HEADER_END_SECTION);
this->writef("#endif\n"
"#endif\n");
this->writef("#endif\n");
return 0 == fErrors.errorCount();
}

View File

@ -78,8 +78,6 @@ DEF_TEST(SkSLFPHelloWorld, r) {
" */\n"
"#ifndef GrTest_DEFINED\n"
"#define GrTest_DEFINED\n"
"#include \"SkTypes.h\"\n"
"#if SK_SUPPORT_GPU\n"
"#include \"GrFragmentProcessor.h\"\n"
"#include \"GrCoordTransform.h\"\n"
"#include \"effects/GrProxyMove.h\"\n"
@ -102,7 +100,6 @@ DEF_TEST(SkSLFPHelloWorld, r) {
" typedef GrFragmentProcessor INHERITED;\n"
"};\n"
"#endif\n"
"#endif\n"
},
{
"/*\n"
@ -116,7 +113,6 @@ DEF_TEST(SkSLFPHelloWorld, r) {
" * This file was autogenerated from GrTest.fp; do not modify.\n"
" */\n"
"#include \"GrTest.h\"\n"
"#if SK_SUPPORT_GPU\n"
"#include \"glsl/GrGLSLColorSpaceXformHelper.h\"\n"
"#include \"glsl/GrGLSLFragmentProcessor.h\"\n"
"#include \"glsl/GrGLSLFragmentShaderBuilder.h\"\n"
@ -148,7 +144,6 @@ DEF_TEST(SkSLFPHelloWorld, r) {
" (void) that;\n"
" return true;\n"
"}\n"
"#endif\n"
});
}
@ -216,7 +211,7 @@ DEF_TEST(SkSLFPSections, r) {
"}",
*SkSL::ShaderCapsFactory::Default(),
{
"#if SK_SUPPORT_GPU\n header section"
"#define GrTest_DEFINED\n header section"
},
{});
test(r,