new scanconversion technique

This technique geometrically clips all segments against the clip bounds,
ensuring that we never send a value to the edgelist that might overflow in
fixedpoint.

Current disabled in SkScan_Path.cpp by a #define. There are a few minor pixel
differences between this and the old technique, as found by the gm tool, so
at the moment this new code is off by default.



git-svn-id: http://skia.googlecode.com/svn/trunk@432 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
reed@android.com 2009-11-18 16:09:51 +00:00
parent bb13586591
commit 909994fbae
10 changed files with 794 additions and 474 deletions

View File

@ -0,0 +1,58 @@
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SkEdgeClipper_DEFINED
#define SkEdgeClipper_DEFINED
#include "SkPath.h"
/** This is basically an iterator. It is initialized with an edge and a clip,
and then next() is called until it returns kDone_Verb.
*/
class SkEdgeClipper {
public:
bool clipQuad(const SkPoint pts[3], const SkRect& clip);
bool clipCubic(const SkPoint pts[4], const SkRect& clip);
SkPath::Verb next(SkPoint pts[]);
private:
SkPoint* fCurrPoint;
SkPath::Verb* fCurrVerb;
enum {
kMaxVerbs = 13,
kMaxPoints = 32
};
SkPoint fPoints[kMaxPoints];
SkPath::Verb fVerbs[kMaxVerbs];
void clipMonoQuad(const SkPoint srcPts[3], const SkRect& clip);
void clipMonoCubic(const SkPoint srcPts[4], const SkRect& clip);
void appendVLine(SkScalar x, SkScalar y0, SkScalar y1, bool reverse);
void appendQuad(const SkPoint pts[3], bool reverse);
void appendCubic(const SkPoint pts[4], bool reverse);
};
#ifdef SK_DEBUG
void sk_assert_monotonic_x(const SkPoint pts[], int count);
void sk_assert_monotonic_y(const SkPoint pts[], int count);
#else
#define sk_assert_monotonic_x(pts, count)
#define sk_assert_monotonic_y(pts, count)
#endif
#endif

View File

@ -57,8 +57,8 @@ int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
the resulting beziers are monotonic in Y. This is called by the scan converter.
Depending on what is returned, dst[] is treated as follows
1 dst[0..2] is the original quad
2 dst[0..2] and dst[2..4] are the two new quads
0 dst[0..2] is the original quad
1 dst[0..2] and dst[2..4] are the two new quads
*/
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
@ -110,12 +110,13 @@ int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar
/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
the resulting beziers are monotonic in Y. This is called by the scan converter.
Depending on what is returned, dst[] is treated as follows
1 dst[0..3] is the original cubic
2 dst[0..3] and dst[3..6] are the two new cubics
3 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
0 dst[0..3] is the original cubic
1 dst[0..3] and dst[3..6] are the two new cubics
2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
If dst == null, it is ignored and only the count is returned.
*/
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
inflection points.

View File

@ -15,7 +15,7 @@
#include "SkRandom.h"
#include "SkLineClipper.h"
#include "SkQuadClipper.h"
#include "SkEdgeClipper.h"
static void drawQuad(SkCanvas* canvas, const SkPoint pts[3], const SkPaint& p) {
SkPath path;
@ -63,7 +63,7 @@ static void quad_clipper(const SkPoint src[], const SkRect& clip,
SkCanvas* canvas, const SkPaint& p0, const SkPaint& p1) {
drawQuad(canvas, src, p1);
SkQuadClipper2 clipper;
SkEdgeClipper clipper;
if (clipper.clipQuad(src, clip)) {
SkPoint pts[3];
SkPath::Verb verb;
@ -88,7 +88,7 @@ static void cubic_clipper(const SkPoint src[], const SkRect& clip,
SkCanvas* canvas, const SkPaint& p0, const SkPaint& p1) {
drawCubic(canvas, src, p1);
SkQuadClipper2 clipper;
SkEdgeClipper clipper;
if (clipper.clipCubic(src, clip)) {
SkPoint pts[4];
SkPath::Verb verb;

154
src/core/SkEdgeBuilder.cpp Normal file
View File

@ -0,0 +1,154 @@
#include "SkEdgeBuilder.h"
#include "SkPath.h"
#include "SkEdge.h"
#include "SkEdgeClipper.h"
#include "SkLineClipper.h"
#include "SkGeometry.h"
SkEdgeBuilder::SkEdgeBuilder() : fAlloc(16*1024) {}
template <typename T> static T* typedAllocThrow(SkChunkAlloc& alloc) {
return static_cast<T*>(alloc.allocThrow(sizeof(T)));
}
///////////////////////////////////////////////////////////////////////////////
void SkEdgeBuilder::addLine(const SkPoint pts[]) {
SkEdge* edge = typedAllocThrow<SkEdge>(fAlloc);
if (edge->setLine(pts[0], pts[1], NULL, fShiftUp)) {
fList.push(edge);
} else {
// TODO: unallocate edge from storage...
}
}
void SkEdgeBuilder::addQuad(const SkPoint pts[]) {
SkQuadraticEdge* edge = typedAllocThrow<SkQuadraticEdge>(fAlloc);
if (edge->setQuadratic(pts, fShiftUp)) {
fList.push(edge);
} else {
// TODO: unallocate edge from storage...
}
}
void SkEdgeBuilder::addCubic(const SkPoint pts[]) {
SkCubicEdge* edge = typedAllocThrow<SkCubicEdge>(fAlloc);
if (edge->setCubic(pts, NULL, fShiftUp)) {
fList.push(edge);
} else {
// TODO: unallocate edge from storage...
}
}
void SkEdgeBuilder::addClipper(SkEdgeClipper* clipper) {
SkPoint pts[4];
SkPath::Verb verb;
while ((verb = clipper->next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
this->addLine(pts);
break;
case SkPath::kQuad_Verb:
this->addQuad(pts);
break;
case SkPath::kCubic_Verb:
this->addCubic(pts);
break;
default:
break;
}
}
}
///////////////////////////////////////////////////////////////////////////////
static void setShiftedClip(SkRect* dst, const SkIRect& src, int shift) {
dst->set(SkIntToScalar(src.fLeft >> shift),
SkIntToScalar(src.fTop >> shift),
SkIntToScalar(src.fRight >> shift),
SkIntToScalar(src.fBottom >> shift));
}
int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip,
int shiftUp) {
fAlloc.reset();
fList.reset();
fShiftUp = shiftUp;
SkPath::Iter iter(path, true);
SkPoint pts[4];
SkPath::Verb verb;
if (iclip) {
SkRect clip;
setShiftedClip(&clip, *iclip, shiftUp);
SkEdgeClipper clipper;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
// we ignore these, and just get the whole segment from
// the corresponding line/quad/cubic verbs
break;
case SkPath::kLine_Verb: {
SkPoint lines[SkLineClipper::kMaxPoints];
int lineCount = SkLineClipper::ClipLine(pts, clip, lines);
for (int i = 0; i < lineCount; i++) {
this->addLine(&lines[i]);
}
break;
}
case SkPath::kQuad_Verb:
if (clipper.clipQuad(pts, clip)) {
this->addClipper(&clipper);
}
break;
case SkPath::kCubic_Verb:
if (clipper.clipCubic(pts, clip)) {
this->addClipper(&clipper);
}
break;
default:
SkASSERT(!"unexpected verb");
break;
}
}
} else {
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
// we ignore these, and just get the whole segment from
// the corresponding line/quad/cubic verbs
break;
case SkPath::kLine_Verb:
this->addLine(pts);
break;
case SkPath::kQuad_Verb: {
SkPoint monoX[5];
int n = SkChopQuadAtYExtrema(pts, monoX);
for (int i = 0; i <= n; i++) {
this->addQuad(&monoX[i * 2]);
}
break;
}
case SkPath::kCubic_Verb: {
SkPoint monoY[10];
int n = SkChopCubicAtYExtrema(pts, monoY);
for (int i = 0; i <= n; i++) {
this->addCubic(&monoY[i * 3]);
}
break;
}
default:
SkASSERT(!"unexpected verb");
break;
}
}
}
return fList.count();
}

31
src/core/SkEdgeBuilder.h Normal file
View File

@ -0,0 +1,31 @@
#ifndef SkEdgeBuilder_DEFINED
#define SkEdgeBuilder_DEFINED
#include "SkChunkAlloc.h"
#include "SkRect.h"
#include "SkTDArray.h"
class SkEdge;
class SkEdgeClipper;
class SkPath;
class SkEdgeBuilder {
public:
SkEdgeBuilder();
int build(const SkPath& path, const SkIRect* clip, int shiftUp);
SkEdge** edgeList() { return fList.begin(); }
private:
SkChunkAlloc fAlloc;
SkTDArray<SkEdge*> fList;
int fShiftUp;
void addLine(const SkPoint pts[]);
void addQuad(const SkPoint pts[]);
void addCubic(const SkPoint pts[]);
void addClipper(SkEdgeClipper*);
};
#endif

508
src/core/SkEdgeClipper.cpp Normal file
View File

@ -0,0 +1,508 @@
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkEdgeClipper.h"
#include "SkGeometry.h"
static bool quick_reject(const SkRect& bounds, const SkRect& clip) {
return bounds.fTop >= clip.fBottom || bounds.fBottom <= clip.fTop;
}
static inline void clamp_le(SkScalar& value, SkScalar max) {
if (value > max) {
value = max;
}
}
static inline void clamp_ge(SkScalar& value, SkScalar min) {
if (value < min) {
value = min;
}
}
/* src[] must be monotonic in Y. This routine copies src into dst, and sorts
it to be increasing in Y. If it had to reverse the order of the points,
it returns true, otherwise it returns false
*/
static bool sort_increasing_Y(SkPoint dst[], const SkPoint src[], int count) {
// we need the data to be monotonically increasing in Y
if (src[0].fY > src[count - 1].fY) {
for (int i = 0; i < count; i++) {
dst[i] = src[count - i - 1];
}
return true;
} else {
memcpy(dst, src, count * sizeof(SkPoint));
return false;
}
}
///////////////////////////////////////////////////////////////////////////////
static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2,
SkScalar target, SkScalar* t) {
/* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2
* We solve for t, using quadratic equation, hence we have to rearrange
* our cooefficents to look like At^2 + Bt + C
*/
SkScalar A = c0 - c1 - c1 + c2;
SkScalar B = 2*(c1 - c0);
SkScalar C = c0 - target;
SkScalar roots[2]; // we only expect one, but make room for 2 for safety
int count = SkFindUnitQuadRoots(A, B, C, roots);
if (count) {
*t = roots[0];
return true;
}
return false;
}
static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) {
return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t);
}
static bool chopMonoQuadAtX(SkPoint pts[3], SkScalar x, SkScalar* t) {
return chopMonoQuadAt(pts[0].fX, pts[1].fX, pts[2].fX, x, t);
}
// Modify pts[] in place so that it is clipped in Y to the clip rect
static void chop_quad_in_Y(SkPoint pts[3], const SkRect& clip) {
SkScalar t;
SkPoint tmp[5]; // for SkChopQuadAt
// are we partially above
if (pts[0].fY < clip.fTop) {
if (chopMonoQuadAtY(pts, clip.fTop, &t)) {
// take the 2nd chopped quad
SkChopQuadAt(pts, tmp, t);
clamp_ge(tmp[2].fY, clip.fTop);
clamp_ge(tmp[3].fY, clip.fTop);
pts[0] = tmp[2];
pts[1] = tmp[3];
} else {
// if chopMonoQuadAtY failed, then we may have hit inexact numerics
// so we just clamp against the top
for (int i = 0; i < 3; i++) {
if (pts[i].fY < clip.fTop) {
pts[i].fY = clip.fTop;
}
}
}
}
// are we partially below
if (pts[2].fY > clip.fBottom) {
if (chopMonoQuadAtY(pts, clip.fBottom, &t)) {
SkChopQuadAt(pts, tmp, t);
clamp_le(tmp[1].fY, clip.fBottom);
clamp_le(tmp[2].fY, clip.fBottom);
pts[1] = tmp[1];
pts[2] = tmp[2];
} else {
// if chopMonoQuadAtY failed, then we may have hit inexact numerics
// so we just clamp against the bottom
for (int i = 0; i < 3; i++) {
if (pts[i].fY > clip.fBottom) {
pts[i].fY = clip.fBottom;
}
}
}
}
}
// srcPts[] must be monotonic in X and Y
void SkEdgeClipper::clipMonoQuad(const SkPoint srcPts[3], const SkRect& clip) {
SkPoint pts[3];
bool reverse = sort_increasing_Y(pts, srcPts, 3);
// are we completely above or below
if (pts[2].fY <= clip.fTop || pts[0].fY >= clip.fBottom) {
return;
}
// Now chop so that pts is contained within clip in Y
chop_quad_in_Y(pts, clip);
if (pts[0].fX > pts[2].fX) {
SkTSwap<SkPoint>(pts[0], pts[2]);
reverse = !reverse;
}
SkASSERT(pts[0].fX <= pts[1].fX);
SkASSERT(pts[1].fX <= pts[2].fX);
// Now chop in X has needed, and record the segments
if (pts[2].fX <= clip.fLeft) { // wholly to the left
this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse);
return;
}
if (pts[0].fX >= clip.fRight) { // wholly to the right
this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse);
return;
}
SkScalar t;
SkPoint tmp[5]; // for SkChopQuadAt
// are we partially to the left
if (pts[0].fX < clip.fLeft) {
if (chopMonoQuadAtX(pts, clip.fLeft, &t)) {
SkChopQuadAt(pts, tmp, t);
this->appendVLine(clip.fLeft, tmp[0].fY, tmp[2].fY, reverse);
clamp_ge(tmp[2].fX, clip.fLeft);
clamp_ge(tmp[3].fX, clip.fLeft);
pts[0] = tmp[2];
pts[1] = tmp[3];
} else {
// if chopMonoQuadAtY failed, then we may have hit inexact numerics
// so we just clamp against the left
this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse);
}
}
// are we partially to the right
if (pts[2].fX > clip.fRight) {
if (chopMonoQuadAtX(pts, clip.fRight, &t)) {
SkChopQuadAt(pts, tmp, t);
clamp_le(tmp[1].fX, clip.fRight);
clamp_le(tmp[2].fX, clip.fRight);
this->appendQuad(tmp, reverse);
this->appendVLine(clip.fRight, tmp[2].fY, tmp[4].fY, reverse);
} else {
// if chopMonoQuadAtY failed, then we may have hit inexact numerics
// so we just clamp against the right
this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse);
}
} else { // wholly inside the clip
this->appendQuad(pts, reverse);
}
}
bool SkEdgeClipper::clipQuad(const SkPoint srcPts[3], const SkRect& clip) {
fCurrPoint = fPoints;
fCurrVerb = fVerbs;
SkRect bounds;
bounds.set(srcPts, 3);
if (!quick_reject(bounds, clip)) {
SkPoint monoY[5];
int countY = SkChopQuadAtYExtrema(srcPts, monoY);
for (int y = 0; y <= countY; y++) {
SkPoint monoX[5];
int countX = SkChopQuadAtXExtrema(&monoY[y * 2], monoX);
for (int x = 0; x <= countX; x++) {
this->clipMonoQuad(&monoX[x * 2], clip);
SkASSERT(fCurrVerb - fVerbs < kMaxVerbs);
SkASSERT(fCurrPoint - fPoints <= kMaxPoints);
}
}
}
*fCurrVerb = SkPath::kDone_Verb;
fCurrPoint = fPoints;
fCurrVerb = fVerbs;
return SkPath::kDone_Verb != fVerbs[0];
}
///////////////////////////////////////////////////////////////////////////////
static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C,
SkScalar D, SkScalar t) {
return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
}
/* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the
t value such that cubic(t) = target
*/
static bool chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
SkScalar target, SkScalar* t) {
// SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3);
SkASSERT(c0 < target && target < c3);
SkScalar D = c0;
SkScalar A = c3 + 3*(c1 - c2) - c0;
SkScalar B = 3*(c2 - c1 - c1 + c0);
SkScalar C = 3*(c1 - c0);
SkScalar minT = 0;
SkScalar maxT = SK_Scalar1;
for (int i = 0; i < 8; i++) {
SkScalar mid = SkScalarAve(minT, maxT);
SkScalar coord = eval_cubic_coeff(A, B, C, D, mid);
if (coord < target) {
minT = mid;
} else {
maxT = mid;
}
}
*t = SkScalarAve(minT, maxT);
return true;
}
static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) {
return chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, t);
}
static bool chopMonoCubicAtX(SkPoint pts[4], SkScalar x, SkScalar* t) {
return chopMonoCubicAt(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, x, t);
}
// Modify pts[] in place so that it is clipped in Y to the clip rect
static void chop_cubic_in_Y(SkPoint pts[4], const SkRect& clip) {
SkScalar t;
SkPoint tmp[7]; // for SkChopCubicAt
// are we partially above
if (pts[0].fY < clip.fTop) {
if (chopMonoCubicAtY(pts, clip.fTop, &t)) {
SkChopCubicAt(pts, tmp, t);
clamp_ge(tmp[3].fY, clip.fTop);
clamp_ge(tmp[4].fY, clip.fTop);
clamp_ge(tmp[5].fY, clip.fTop);
pts[0] = tmp[3];
pts[1] = tmp[4];
pts[2] = tmp[5];
} else {
// if chopMonoCubicAtY failed, then we may have hit inexact numerics
// so we just clamp against the top
for (int i = 0; i < 4; i++) {
clamp_ge(pts[i].fY, clip.fTop);
}
}
}
// are we partially below
if (pts[3].fY > clip.fBottom) {
if (chopMonoCubicAtY(pts, clip.fBottom, &t)) {
SkChopCubicAt(pts, tmp, t);
clamp_le(tmp[1].fY, clip.fBottom);
clamp_le(tmp[2].fY, clip.fBottom);
clamp_le(tmp[3].fY, clip.fBottom);
pts[1] = tmp[1];
pts[2] = tmp[2];
pts[3] = tmp[3];
} else {
// if chopMonoCubicAtY failed, then we may have hit inexact numerics
// so we just clamp against the bottom
for (int i = 0; i < 4; i++) {
clamp_le(pts[i].fY, clip.fBottom);
}
}
}
}
// srcPts[] must be monotonic in X and Y
void SkEdgeClipper::clipMonoCubic(const SkPoint src[4], const SkRect& clip) {
SkPoint pts[4];
bool reverse = sort_increasing_Y(pts, src, 4);
// are we completely above or below
if (pts[3].fY <= clip.fTop || pts[0].fY >= clip.fBottom) {
return;
}
// Now chop so that pts is contained within clip in Y
chop_cubic_in_Y(pts, clip);
if (pts[0].fX > pts[3].fX) {
SkTSwap<SkPoint>(pts[0], pts[3]);
SkTSwap<SkPoint>(pts[1], pts[2]);
reverse = !reverse;
}
// Now chop in X has needed, and record the segments
if (pts[3].fX <= clip.fLeft) { // wholly to the left
this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse);
return;
}
if (pts[0].fX >= clip.fRight) { // wholly to the right
this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse);
return;
}
SkScalar t;
SkPoint tmp[7];
// are we partially to the left
if (pts[0].fX < clip.fLeft) {
if (chopMonoCubicAtX(pts, clip.fLeft, &t)) {
SkChopCubicAt(pts, tmp, t);
this->appendVLine(clip.fLeft, tmp[0].fY, tmp[3].fY, reverse);
clamp_ge(tmp[3].fX, clip.fLeft);
clamp_ge(tmp[4].fX, clip.fLeft);
clamp_ge(tmp[5].fX, clip.fLeft);
pts[0] = tmp[3];
pts[1] = tmp[4];
pts[2] = tmp[5];
} else {
// if chopMonocubicAtY failed, then we may have hit inexact numerics
// so we just clamp against the left
this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse);
}
}
// are we partially to the right
if (pts[3].fX > clip.fRight) {
if (chopMonoCubicAtX(pts, clip.fRight, &t)) {
SkChopCubicAt(pts, tmp, t);
clamp_le(tmp[1].fX, clip.fRight);
clamp_le(tmp[2].fX, clip.fRight);
clamp_le(tmp[3].fX, clip.fRight);
this->appendCubic(tmp, reverse);
this->appendVLine(clip.fRight, tmp[3].fY, tmp[6].fY, reverse);
} else {
// if chopMonoCubicAtX failed, then we may have hit inexact numerics
// so we just clamp against the right
this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse);
}
} else { // wholly inside the clip
this->appendCubic(pts, reverse);
}
}
bool SkEdgeClipper::clipCubic(const SkPoint srcPts[4], const SkRect& clip) {
fCurrPoint = fPoints;
fCurrVerb = fVerbs;
SkRect bounds;
bounds.set(srcPts, 4);
if (!quick_reject(bounds, clip)) {
SkPoint monoY[10];
int countY = SkChopCubicAtYExtrema(srcPts, monoY);
for (int y = 0; y <= countY; y++) {
// sk_assert_monotonic_y(&monoY[y * 3], 4);
SkPoint monoX[10];
int countX = SkChopCubicAtXExtrema(&monoY[y * 3], monoX);
for (int x = 0; x <= countX; x++) {
// sk_assert_monotonic_y(&monoX[x * 3], 4);
// sk_assert_monotonic_x(&monoX[x * 3], 4);
this->clipMonoCubic(&monoX[x * 3], clip);
SkASSERT(fCurrVerb - fVerbs < kMaxVerbs);
SkASSERT(fCurrPoint - fPoints <= kMaxPoints);
}
}
}
*fCurrVerb = SkPath::kDone_Verb;
fCurrPoint = fPoints;
fCurrVerb = fVerbs;
return SkPath::kDone_Verb != fVerbs[0];
}
///////////////////////////////////////////////////////////////////////////////
void SkEdgeClipper::appendVLine(SkScalar x, SkScalar y0, SkScalar y1,
bool reverse) {
*fCurrVerb++ = SkPath::kLine_Verb;
if (reverse) {
SkTSwap<SkScalar>(y0, y1);
}
fCurrPoint[0].set(x, y0);
fCurrPoint[1].set(x, y1);
fCurrPoint += 2;
}
void SkEdgeClipper::appendQuad(const SkPoint pts[3], bool reverse) {
*fCurrVerb++ = SkPath::kQuad_Verb;
if (reverse) {
fCurrPoint[0] = pts[2];
fCurrPoint[2] = pts[0];
} else {
fCurrPoint[0] = pts[0];
fCurrPoint[2] = pts[2];
}
fCurrPoint[1] = pts[1];
fCurrPoint += 3;
}
void SkEdgeClipper::appendCubic(const SkPoint pts[4], bool reverse) {
*fCurrVerb++ = SkPath::kCubic_Verb;
if (reverse) {
for (int i = 0; i < 4; i++) {
fCurrPoint[i] = pts[3 - i];
}
} else {
memcpy(fCurrPoint, pts, 4 * sizeof(SkPoint));
}
fCurrPoint += 4;
}
SkPath::Verb SkEdgeClipper::next(SkPoint pts[]) {
SkPath::Verb verb = *fCurrVerb;
switch (verb) {
case SkPath::kLine_Verb:
memcpy(pts, fCurrPoint, 2 * sizeof(SkPoint));
fCurrPoint += 2;
fCurrVerb += 1;
break;
case SkPath::kQuad_Verb:
memcpy(pts, fCurrPoint, 3 * sizeof(SkPoint));
fCurrPoint += 3;
fCurrVerb += 1;
break;
case SkPath::kCubic_Verb:
memcpy(pts, fCurrPoint, 4 * sizeof(SkPoint));
fCurrPoint += 4;
fCurrVerb += 1;
break;
case SkPath::kDone_Verb:
break;
default:
SkASSERT(!"unexpected verb in quadclippper2 iter");
break;
}
return verb;
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
static void assert_monotonic(const SkScalar coord[], int count) {
if (coord[0] > coord[(count - 1) * 2]) {
for (int i = 1; i < count; i++) {
SkASSERT(coord[2 * (i - 1)] >= coord[i * 2]);
}
} else if (coord[0] < coord[(count - 1) * 2]) {
for (int i = 1; i < count; i++) {
SkASSERT(coord[2 * (i - 1)] <= coord[i * 2]);
}
} else {
for (int i = 1; i < count; i++) {
SkASSERT(coord[2 * (i - 1)] == coord[i * 2]);
}
}
}
void sk_assert_monotonic_y(const SkPoint pts[], int count) {
if (count > 1) {
assert_monotonic(&pts[0].fY, count);
}
}
void sk_assert_monotonic_x(const SkPoint pts[], int count) {
if (count > 1) {
assert_monotonic(&pts[0].fX, count);
}
}
#endif

View File

@ -17,10 +17,6 @@
#include "SkQuadClipper.h"
#include "SkGeometry.h"
static bool quick_reject(const SkRect& bounds, const SkRect& clip) {
return bounds.fTop >= clip.fBottom || bounds.fBottom <= clip.fTop;
}
static inline void clamp_le(SkScalar& value, SkScalar max) {
if (value > max) {
value = max;
@ -33,23 +29,6 @@ static inline void clamp_ge(SkScalar& value, SkScalar min) {
}
}
/* src[] must be monotonic in Y. This routine copies src into dst, and sorts
it to be increasing in Y. If it had to reverse the order of the points,
it returns true, otherwise it returns false
*/
static bool sort_increasing_Y(SkPoint dst[], const SkPoint src[], int count) {
// we need the data to be monotonically increasing in Y
if (src[0].fY > src[count - 1].fY) {
for (int i = 0; i < count; i++) {
dst[i] = src[count - i - 1];
}
return true;
} else {
memcpy(dst, src, count * sizeof(SkPoint));
return false;
}
}
SkQuadClipper::SkQuadClipper() {}
void SkQuadClipper::setClip(const SkIRect& clip) {
@ -82,409 +61,8 @@ static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) {
return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t);
}
static bool chopMonoQuadAtX(SkPoint pts[3], SkScalar x, SkScalar* t) {
return chopMonoQuadAt(pts[0].fX, pts[1].fX, pts[2].fX, x, t);
}
// Modify pts[] in place so that it is clipped in Y to the clip rect
static void chop_quad_in_Y(SkPoint pts[3], const SkRect& clip) {
SkScalar t;
SkPoint tmp[5]; // for SkChopQuadAt
// are we partially above
if (pts[0].fY < clip.fTop) {
if (chopMonoQuadAtY(pts, clip.fTop, &t)) {
// take the 2nd chopped quad
SkChopQuadAt(pts, tmp, t);
clamp_ge(tmp[2].fY, clip.fTop);
clamp_ge(tmp[3].fY, clip.fTop);
pts[0] = tmp[2];
pts[1] = tmp[3];
} else {
// if chopMonoQuadAtY failed, then we may have hit inexact numerics
// so we just clamp against the top
for (int i = 0; i < 3; i++) {
if (pts[i].fY < clip.fTop) {
pts[i].fY = clip.fTop;
}
}
}
}
// are we partially below
if (pts[2].fY > clip.fBottom) {
if (chopMonoQuadAtY(pts, clip.fBottom, &t)) {
SkChopQuadAt(pts, tmp, t);
clamp_le(tmp[1].fY, clip.fBottom);
clamp_le(tmp[2].fY, clip.fBottom);
pts[1] = tmp[1];
pts[2] = tmp[2];
} else {
// if chopMonoQuadAtY failed, then we may have hit inexact numerics
// so we just clamp against the bottom
for (int i = 0; i < 3; i++) {
if (pts[i].fY > clip.fBottom) {
pts[i].fY = clip.fBottom;
}
}
}
}
}
// srcPts[] must be monotonic in X and Y
void SkQuadClipper2::clipMonoQuad(const SkPoint srcPts[3], const SkRect& clip) {
SkPoint pts[3];
bool reverse = sort_increasing_Y(pts, srcPts, 3);
// are we completely above or below
if (pts[2].fY <= clip.fTop || pts[0].fY >= clip.fBottom) {
return;
}
// Now chop so that pts is contained within clip in Y
chop_quad_in_Y(pts, clip);
if (pts[0].fX > pts[2].fX) {
SkTSwap<SkPoint>(pts[0], pts[2]);
reverse = !reverse;
}
SkASSERT(pts[0].fX <= pts[1].fX);
SkASSERT(pts[1].fX <= pts[2].fX);
// Now chop in X has needed, and record the segments
if (pts[2].fX <= clip.fLeft) { // wholly to the left
this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse);
return;
}
if (pts[0].fX >= clip.fRight) { // wholly to the right
this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse);
return;
}
SkScalar t;
SkPoint tmp[5]; // for SkChopQuadAt
// are we partially to the left
if (pts[0].fX < clip.fLeft) {
if (chopMonoQuadAtX(pts, clip.fLeft, &t)) {
SkChopQuadAt(pts, tmp, t);
this->appendVLine(clip.fLeft, tmp[0].fY, tmp[2].fY, reverse);
clamp_ge(tmp[2].fX, clip.fLeft);
clamp_ge(tmp[3].fX, clip.fLeft);
pts[0] = tmp[2];
pts[1] = tmp[3];
} else {
// if chopMonoQuadAtY failed, then we may have hit inexact numerics
// so we just clamp against the left
this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse);
}
}
// are we partially to the right
if (pts[2].fX > clip.fRight) {
if (chopMonoQuadAtX(pts, clip.fRight, &t)) {
SkChopQuadAt(pts, tmp, t);
clamp_le(tmp[1].fX, clip.fRight);
clamp_le(tmp[2].fX, clip.fRight);
this->appendQuad(tmp, reverse);
this->appendVLine(clip.fRight, tmp[2].fY, tmp[4].fY, reverse);
} else {
// if chopMonoQuadAtY failed, then we may have hit inexact numerics
// so we just clamp against the right
this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse);
}
} else { // wholly inside the clip
this->appendQuad(pts, reverse);
}
}
bool SkQuadClipper2::clipQuad(const SkPoint srcPts[3], const SkRect& clip) {
fCurrPoint = fPoints;
fCurrVerb = fVerbs;
SkRect bounds;
bounds.set(srcPts, 3);
if (!quick_reject(bounds, clip)) {
SkPoint monoY[5];
int countY = SkChopQuadAtYExtrema(srcPts, monoY);
for (int y = 0; y <= countY; y++) {
SkPoint monoX[5];
int countX = SkChopQuadAtXExtrema(&monoY[y * 2], monoX);
for (int x = 0; x <= countX; x++) {
this->clipMonoQuad(&monoX[x * 2], clip);
SkASSERT(fCurrVerb - fVerbs < kMaxVerbs);
SkASSERT(fCurrPoint - fPoints <= kMaxPoints);
}
}
}
*fCurrVerb = SkPath::kDone_Verb;
fCurrPoint = fPoints;
fCurrVerb = fVerbs;
return SkPath::kDone_Verb != fVerbs[0];
}
///////////////////////////////////////////////////////////////////////////////
static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C,
SkScalar D, SkScalar t) {
return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
}
/* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the
t value such that cubic(t) = target
*/
static bool chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
SkScalar target, SkScalar* t) {
// SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3);
SkASSERT(c0 < target && target < c3);
SkScalar D = c0;
SkScalar A = c3 + 3*(c1 - c2) - c0;
SkScalar B = 3*(c2 - c1 - c1 + c0);
SkScalar C = 3*(c1 - c0);
SkScalar minT = 0;
SkScalar maxT = SK_Scalar1;
for (int i = 0; i < 8; i++) {
SkScalar mid = SkScalarAve(minT, maxT);
SkScalar coord = eval_cubic_coeff(A, B, C, D, mid);
if (coord < target) {
minT = mid;
} else {
maxT = mid;
}
}
*t = SkScalarAve(minT, maxT);
return true;
}
static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) {
return chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, t);
}
static bool chopMonoCubicAtX(SkPoint pts[4], SkScalar x, SkScalar* t) {
return chopMonoCubicAt(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, x, t);
}
// Modify pts[] in place so that it is clipped in Y to the clip rect
static void chop_cubic_in_Y(SkPoint pts[4], const SkRect& clip) {
SkScalar t;
SkPoint tmp[7]; // for SkChopCubicAt
// are we partially above
if (pts[0].fY < clip.fTop) {
if (chopMonoCubicAtY(pts, clip.fTop, &t)) {
SkChopCubicAt(pts, tmp, t);
clamp_ge(tmp[3].fY, clip.fTop);
clamp_ge(tmp[4].fY, clip.fTop);
clamp_ge(tmp[5].fY, clip.fTop);
pts[0] = tmp[3];
pts[1] = tmp[4];
pts[2] = tmp[5];
} else {
// if chopMonoCubicAtY failed, then we may have hit inexact numerics
// so we just clamp against the top
for (int i = 0; i < 4; i++) {
clamp_ge(pts[i].fY, clip.fTop);
}
}
}
// are we partially below
if (pts[3].fY > clip.fBottom) {
if (chopMonoCubicAtY(pts, clip.fBottom, &t)) {
SkChopCubicAt(pts, tmp, t);
clamp_le(tmp[1].fY, clip.fBottom);
clamp_le(tmp[2].fY, clip.fBottom);
clamp_le(tmp[3].fY, clip.fBottom);
pts[1] = tmp[1];
pts[2] = tmp[2];
pts[3] = tmp[3];
} else {
// if chopMonoCubicAtY failed, then we may have hit inexact numerics
// so we just clamp against the bottom
for (int i = 0; i < 4; i++) {
clamp_le(pts[i].fY, clip.fBottom);
}
}
}
}
// srcPts[] must be monotonic in X and Y
void SkQuadClipper2::clipMonoCubic(const SkPoint src[4], const SkRect& clip) {
SkPoint pts[4];
bool reverse = sort_increasing_Y(pts, src, 4);
// are we completely above or below
if (pts[3].fY <= clip.fTop || pts[0].fY >= clip.fBottom) {
return;
}
// Now chop so that pts is contained within clip in Y
chop_cubic_in_Y(pts, clip);
if (pts[0].fX > pts[3].fX) {
SkTSwap<SkPoint>(pts[0], pts[3]);
SkTSwap<SkPoint>(pts[1], pts[2]);
reverse = !reverse;
}
// Now chop in X has needed, and record the segments
if (pts[3].fX <= clip.fLeft) { // wholly to the left
this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse);
return;
}
if (pts[0].fX >= clip.fRight) { // wholly to the right
this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse);
return;
}
SkScalar t;
SkPoint tmp[7];
// are we partially to the left
if (pts[0].fX < clip.fLeft) {
if (chopMonoCubicAtX(pts, clip.fLeft, &t)) {
SkChopCubicAt(pts, tmp, t);
this->appendVLine(clip.fLeft, tmp[0].fY, tmp[3].fY, reverse);
clamp_ge(tmp[3].fX, clip.fLeft);
clamp_ge(tmp[4].fX, clip.fLeft);
clamp_ge(tmp[5].fX, clip.fLeft);
pts[0] = tmp[3];
pts[1] = tmp[4];
pts[2] = tmp[5];
} else {
// if chopMonocubicAtY failed, then we may have hit inexact numerics
// so we just clamp against the left
this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse);
}
}
// are we partially to the right
if (pts[3].fX > clip.fRight) {
if (chopMonoCubicAtX(pts, clip.fRight, &t)) {
SkChopCubicAt(pts, tmp, t);
clamp_le(tmp[1].fX, clip.fRight);
clamp_le(tmp[2].fX, clip.fRight);
clamp_le(tmp[3].fX, clip.fRight);
this->appendCubic(tmp, reverse);
this->appendVLine(clip.fRight, tmp[3].fY, tmp[6].fY, reverse);
} else {
// if chopMonoCubicAtX failed, then we may have hit inexact numerics
// so we just clamp against the right
this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse);
}
} else { // wholly inside the clip
this->appendCubic(pts, reverse);
}
}
bool SkQuadClipper2::clipCubic(const SkPoint srcPts[4], const SkRect& clip) {
fCurrPoint = fPoints;
fCurrVerb = fVerbs;
SkRect bounds;
bounds.set(srcPts, 4);
if (!quick_reject(bounds, clip)) {
SkPoint monoY[10];
int countY = SkChopCubicAtYExtrema(srcPts, monoY);
for (int y = 0; y <= countY; y++) {
// sk_assert_monotonic_y(&monoY[y * 3], 4);
SkPoint monoX[10];
int countX = SkChopCubicAtXExtrema(&monoY[y * 3], monoX);
for (int x = 0; x <= countX; x++) {
// sk_assert_monotonic_y(&monoX[x * 3], 4);
// sk_assert_monotonic_x(&monoX[x * 3], 4);
this->clipMonoCubic(&monoX[x * 3], clip);
SkASSERT(fCurrVerb - fVerbs < kMaxVerbs);
SkASSERT(fCurrPoint - fPoints <= kMaxPoints);
}
}
}
*fCurrVerb = SkPath::kDone_Verb;
fCurrPoint = fPoints;
fCurrVerb = fVerbs;
return SkPath::kDone_Verb != fVerbs[0];
}
///////////////////////////////////////////////////////////////////////////////
void SkQuadClipper2::appendVLine(SkScalar x, SkScalar y0, SkScalar y1,
bool reverse) {
*fCurrVerb++ = SkPath::kLine_Verb;
if (reverse) {
SkTSwap<SkScalar>(y0, y1);
}
fCurrPoint[0].set(x, y0);
fCurrPoint[1].set(x, y1);
fCurrPoint += 2;
}
void SkQuadClipper2::appendQuad(const SkPoint pts[3], bool reverse) {
*fCurrVerb++ = SkPath::kQuad_Verb;
if (reverse) {
fCurrPoint[0] = pts[2];
fCurrPoint[2] = pts[0];
} else {
fCurrPoint[0] = pts[0];
fCurrPoint[2] = pts[2];
}
fCurrPoint[1] = pts[1];
fCurrPoint += 3;
}
void SkQuadClipper2::appendCubic(const SkPoint pts[4], bool reverse) {
*fCurrVerb++ = SkPath::kCubic_Verb;
if (reverse) {
for (int i = 0; i < 4; i++) {
fCurrPoint[i] = pts[3 - i];
}
} else {
memcpy(fCurrPoint, pts, 4 * sizeof(SkPoint));
}
fCurrPoint += 4;
}
SkPath::Verb SkQuadClipper2::next(SkPoint pts[]) {
SkPath::Verb verb = *fCurrVerb;
switch (verb) {
case SkPath::kLine_Verb:
memcpy(pts, fCurrPoint, 2 * sizeof(SkPoint));
fCurrPoint += 2;
fCurrVerb += 1;
break;
case SkPath::kQuad_Verb:
memcpy(pts, fCurrPoint, 3 * sizeof(SkPoint));
fCurrPoint += 3;
fCurrVerb += 1;
break;
case SkPath::kCubic_Verb:
memcpy(pts, fCurrPoint, 4 * sizeof(SkPoint));
fCurrPoint += 4;
fCurrVerb += 1;
break;
case SkPath::kDone_Verb:
break;
default:
SkASSERT(!"unexpected verb in quadclippper2 iter");
break;
}
return verb;
}
//////////
//////////
/* If we somehow returned the fact that we had to flip the pts in Y, we could
communicate that to setQuadratic, and then avoid having to flip it back
here (only to have setQuadratic do the flip again)
@ -554,34 +132,3 @@ bool SkQuadClipper::clipQuad(const SkPoint srcPts[3], SkPoint dst[3]) {
return true;
}
///////////////////////////
#ifdef SK_DEBUG
static void assert_monotonic(const SkScalar coord[], int count) {
if (coord[0] > coord[(count - 1) * 2]) {
for (int i = 1; i < count; i++) {
SkASSERT(coord[2 * (i - 1)] >= coord[i * 2]);
}
} else if (coord[0] < coord[(count - 1) * 2]) {
for (int i = 1; i < count; i++) {
SkASSERT(coord[2 * (i - 1)] <= coord[i * 2]);
}
} else {
for (int i = 1; i < count; i++) {
SkASSERT(coord[2 * (i - 1)] == coord[i * 2]);
}
}
}
void sk_assert_monotonic_y(const SkPoint pts[], int count) {
if (count > 1) {
assert_monotonic(&pts[0].fY, count);
}
}
void sk_assert_monotonic_x(const SkPoint pts[], int count) {
if (count > 1) {
assert_monotonic(&pts[0].fX, count);
}
}
#endif

View File

@ -24,6 +24,8 @@
#include "SkRegion.h"
#include "SkTemplates.h"
//#define USE_NEW_BUILDER
#define kEDGE_HEAD_Y SK_MinS32
#define kEDGE_TAIL_Y SK_MaxS32
@ -301,6 +303,9 @@ static inline bool line_too_big(const SkPoint pts[2])
SkScalarAbs(dy) > SkIntToScalar(511);
}
#ifdef USE_NEW_BUILDER
#include "SkEdgeBuilder.h"
#else
static int build_edges(SkEdge edge[], const SkPath& path,
const SkIRect* clipRect, SkEdge* list[], int shiftUp) {
SkEdge** start = list;
@ -428,6 +433,7 @@ static int cheap_worst_case_edge_count(const SkPath& path, size_t* storage) {
*storage = quadSize;
return edgeCount;
}
#endif
///////////////////////////////////////////////////////////////////////////////
@ -474,6 +480,12 @@ void sk_fill_path(const SkPath& path, const SkIRect* clipRect, SkBlitter* blitte
{
SkASSERT(&path && blitter);
#ifdef USE_NEW_BUILDER
SkEdgeBuilder builder;
int count = builder.build(path, clipRect, shiftEdgesUp);
SkEdge** list = builder.edgeList();
#else
size_t size;
int maxCount = cheap_worst_case_edge_count(path, &size);
@ -488,17 +500,19 @@ void sk_fill_path(const SkPath& path, const SkIRect* clipRect, SkBlitter* blitte
SkAutoMalloc memory(maxCount * sizeof(SkEdge*) + size);
SkEdge** list = (SkEdge**)memory.get();
SkEdge* edge = (SkEdge*)(list + maxCount);
int count = build_edges(edge, path, clipRect, list, shiftEdgesUp);
SkEdge headEdge, tailEdge, *last;
SkEdge* initialEdge = (SkEdge*)(list + maxCount);
int count = build_edges(initialEdge, path, clipRect, list,
shiftEdgesUp);
SkASSERT(count <= maxCount);
#endif
if (count < 2) {
return;
}
SkEdge headEdge, tailEdge, *last;
// this returns the first and last edge after they're sorted into a dlink list
edge = sort_edges(list, count, &last);
SkEdge* edge = sort_edges(list, count, &last);
headEdge.fPrev = NULL;
headEdge.fNext = edge;

View File

@ -34,6 +34,8 @@ SOURCE := \
SkDither.cpp \
SkDraw.cpp \
SkEdge.cpp \
SkEdgeBuilder.cpp \
SkEdgeClipper.cpp \
SkFilterProc.cpp \
SkFlattenable.cpp \
SkFloat.cpp \
@ -43,6 +45,7 @@ SOURCE := \
SkGlobals.cpp \
SkGlyphCache.cpp \
SkGraphics.cpp \
SkLineClipper.cpp \
SkMMapStream.cpp \
SkMask.cpp \
SkMaskFilter.cpp \

View File

@ -33,7 +33,6 @@
005F25820EF94F7900582A90 /* SkBitmapShader16BilerpTemplate.h in Headers */ = {isa = PBXBuildFile; fileRef = 005F25090EF94F7900582A90 /* SkBitmapShader16BilerpTemplate.h */; };
005F25830EF94F7900582A90 /* SkBitmapShaderTemplate.h in Headers */ = {isa = PBXBuildFile; fileRef = 005F250A0EF94F7900582A90 /* SkBitmapShaderTemplate.h */; };
005F25840EF94F7900582A90 /* SkBlitBWMaskTemplate.h in Headers */ = {isa = PBXBuildFile; fileRef = 005F250B0EF94F7900582A90 /* SkBlitBWMaskTemplate.h */; };
005F25850EF94F7900582A90 /* SkBlitRow.h in Headers */ = {isa = PBXBuildFile; fileRef = 005F250C0EF94F7900582A90 /* SkBlitRow.h */; };
005F25860EF94F7900582A90 /* SkBlitRow_D16.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 005F250D0EF94F7900582A90 /* SkBlitRow_D16.cpp */; };
005F25870EF94F7900582A90 /* SkBlitRow_D4444.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 005F250E0EF94F7900582A90 /* SkBlitRow_D4444.cpp */; };
005F25880EF94F7900582A90 /* SkBlitter.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 005F250F0EF94F7900582A90 /* SkBlitter.cpp */; };
@ -129,7 +128,9 @@
005F26960EF955D400582A90 /* SkComposeShader.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 005F26950EF955D400582A90 /* SkComposeShader.cpp */; };
007C786A0F3B4D5F0004B142 /* SkQuadClipper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 007C78690F3B4D5F0004B142 /* SkQuadClipper.cpp */; };
0096586E0FC7205100C3AE15 /* SkShape.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 0096586D0FC7205100C3AE15 /* SkShape.cpp */; };
009CC7920F5DAF4B002185BE /* SkCubicClipper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 009CC7910F5DAF4B002185BE /* SkCubicClipper.cpp */; };
00F043FC10B445F50049C54C /* SkEdgeBuilder.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 00F043F910B445F50049C54C /* SkEdgeBuilder.cpp */; };
00F043FD10B445F50049C54C /* SkEdgeClipper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 00F043FA10B445F50049C54C /* SkEdgeClipper.cpp */; };
00F043FE10B445F50049C54C /* SkLineClipper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 00F043FB10B445F50049C54C /* SkLineClipper.cpp */; };
/* End PBXBuildFile section */
/* Begin PBXFileReference section */
@ -159,7 +160,6 @@
005F25090EF94F7900582A90 /* SkBitmapShader16BilerpTemplate.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = SkBitmapShader16BilerpTemplate.h; path = ../../src/core/SkBitmapShader16BilerpTemplate.h; sourceTree = SOURCE_ROOT; };
005F250A0EF94F7900582A90 /* SkBitmapShaderTemplate.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = SkBitmapShaderTemplate.h; path = ../../src/core/SkBitmapShaderTemplate.h; sourceTree = SOURCE_ROOT; };
005F250B0EF94F7900582A90 /* SkBlitBWMaskTemplate.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = SkBlitBWMaskTemplate.h; path = ../../src/core/SkBlitBWMaskTemplate.h; sourceTree = SOURCE_ROOT; };
005F250C0EF94F7900582A90 /* SkBlitRow.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = SkBlitRow.h; path = ../../src/core/SkBlitRow.h; sourceTree = SOURCE_ROOT; };
005F250D0EF94F7900582A90 /* SkBlitRow_D16.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = SkBlitRow_D16.cpp; path = ../../src/core/SkBlitRow_D16.cpp; sourceTree = SOURCE_ROOT; };
005F250E0EF94F7900582A90 /* SkBlitRow_D4444.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = SkBlitRow_D4444.cpp; path = ../../src/core/SkBlitRow_D4444.cpp; sourceTree = SOURCE_ROOT; };
005F250F0EF94F7900582A90 /* SkBlitter.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = SkBlitter.cpp; path = ../../src/core/SkBlitter.cpp; sourceTree = SOURCE_ROOT; };
@ -255,7 +255,9 @@
005F26950EF955D400582A90 /* SkComposeShader.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = SkComposeShader.cpp; path = ../../src/core/SkComposeShader.cpp; sourceTree = SOURCE_ROOT; };
007C78690F3B4D5F0004B142 /* SkQuadClipper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = SkQuadClipper.cpp; path = ../../src/core/SkQuadClipper.cpp; sourceTree = SOURCE_ROOT; };
0096586D0FC7205100C3AE15 /* SkShape.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = SkShape.cpp; path = ../../src/core/SkShape.cpp; sourceTree = SOURCE_ROOT; };
009CC7910F5DAF4B002185BE /* SkCubicClipper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = SkCubicClipper.cpp; path = ../../src/core/SkCubicClipper.cpp; sourceTree = SOURCE_ROOT; };
00F043F910B445F50049C54C /* SkEdgeBuilder.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = SkEdgeBuilder.cpp; path = ../../src/core/SkEdgeBuilder.cpp; sourceTree = SOURCE_ROOT; };
00F043FA10B445F50049C54C /* SkEdgeClipper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = SkEdgeClipper.cpp; path = ../../src/core/SkEdgeClipper.cpp; sourceTree = SOURCE_ROOT; };
00F043FB10B445F50049C54C /* SkLineClipper.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = SkLineClipper.cpp; path = ../../src/core/SkLineClipper.cpp; sourceTree = SOURCE_ROOT; };
D2AAC046055464E500DB518D /* libcore.a */ = {isa = PBXFileReference; explicitFileType = archive.ar; includeInIndex = 0; path = libcore.a; sourceTree = BUILT_PRODUCTS_DIR; };
/* End PBXFileReference section */
@ -300,12 +302,14 @@
08FB7795FE84155DC02AAC07 /* src */ = {
isa = PBXGroup;
children = (
00F043F910B445F50049C54C /* SkEdgeBuilder.cpp */,
00F043FA10B445F50049C54C /* SkEdgeClipper.cpp */,
00F043FB10B445F50049C54C /* SkLineClipper.cpp */,
00244E0F106A6DEA00B8F4D8 /* SkBlitRow_D32.cpp */,
00554E0C102733D300C9C8ED /* SkBitmapProcState_opts_none.cpp */,
002B342710213340000F04C6 /* SkBlitRow_opts_none.cpp */,
005DC79A10179AE000F00DFB /* SkFontHost.cpp */,
005DC79810179ACD00F00DFB /* SkBlitter_ARGB32_Subpixel.cpp */,
009CC7910F5DAF4B002185BE /* SkCubicClipper.cpp */,
007C78690F3B4D5F0004B142 /* SkQuadClipper.cpp */,
002884D40EFAB8F80083E387 /* SkStream.cpp */,
002884C70EFAB8B90083E387 /* SkMMapStream.cpp */,
@ -329,7 +333,6 @@
005F25090EF94F7900582A90 /* SkBitmapShader16BilerpTemplate.h */,
005F250A0EF94F7900582A90 /* SkBitmapShaderTemplate.h */,
005F250B0EF94F7900582A90 /* SkBlitBWMaskTemplate.h */,
005F250C0EF94F7900582A90 /* SkBlitRow.h */,
005F250D0EF94F7900582A90 /* SkBlitRow_D16.cpp */,
005F250E0EF94F7900582A90 /* SkBlitRow_D4444.cpp */,
005F250F0EF94F7900582A90 /* SkBlitter.cpp */,
@ -459,7 +462,6 @@
005F25820EF94F7900582A90 /* SkBitmapShader16BilerpTemplate.h in Headers */,
005F25830EF94F7900582A90 /* SkBitmapShaderTemplate.h in Headers */,
005F25840EF94F7900582A90 /* SkBlitBWMaskTemplate.h in Headers */,
005F25850EF94F7900582A90 /* SkBlitRow.h in Headers */,
005F25970EF94F7900582A90 /* SkCordic.h in Headers */,
005F25980EF94F7900582A90 /* SkCoreBlitters.h in Headers */,
005F259F0EF94F7900582A90 /* SkDrawProcs.h in Headers */,
@ -609,13 +611,15 @@
002884C80EFAB8B90083E387 /* SkMMapStream.cpp in Sources */,
002884D50EFAB8F80083E387 /* SkStream.cpp in Sources */,
007C786A0F3B4D5F0004B142 /* SkQuadClipper.cpp in Sources */,
009CC7920F5DAF4B002185BE /* SkCubicClipper.cpp in Sources */,
0096586E0FC7205100C3AE15 /* SkShape.cpp in Sources */,
005DC79910179ACD00F00DFB /* SkBlitter_ARGB32_Subpixel.cpp in Sources */,
005DC79B10179AE000F00DFB /* SkFontHost.cpp in Sources */,
002B342810213340000F04C6 /* SkBlitRow_opts_none.cpp in Sources */,
00554E0D102733D300C9C8ED /* SkBitmapProcState_opts_none.cpp in Sources */,
00244E10106A6DEA00B8F4D8 /* SkBlitRow_D32.cpp in Sources */,
00F043FC10B445F50049C54C /* SkEdgeBuilder.cpp in Sources */,
00F043FD10B445F50049C54C /* SkEdgeClipper.cpp in Sources */,
00F043FE10B445F50049C54C /* SkLineClipper.cpp in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
};