SkPx: new approach to fixed-point SIMD
SkPx is like Sk4px, except each platform implementation of SkPx can declare a different sweet spot of N pixels, with extra loads and stores to handle the ragged edge of 0<n<N pixels. In this case, _sse's sweet spot remains 4 pixels. _neon jumps up to 8 so we can now use NEON's transposing loads and stores, and _none is just 1. This makes operations involving alpha considerably more efficient on NEON, as alpha is its own distinct 8x8 bit plane that's easy to toss around. This incorporates a few other improvements I've been wanting: - no requirement that we're dealing with SkPMColor. SkColor works too. - no anonymous namespace hack to differentiate implementations. Codegen and perf look good on Clang/x86-64 and GCC/ARMv7. The NEON code looks very similar to the old NEON code, as intended. No .skp or GM diffs on my laptop. Don't expect any. I intend this to replace Sk4px. Plan after landing: - port SkXfermode_opts.h - port Color32 in SkBlitRow_D32.cpp (and move to SkBlitRow_opts.h like other SkOpts code) - delete all Sk4px-related code - clean up evolutionary dead ends in SkNx (Sk16b, Sk16h, Sk4i, Sk4d, etc.) leaving Sk2f, Sk4f (and Sk2s, Sk4s). - find a machine with AVX2 to work on, write SkPx_avx2.h handling 8 pixels at a time. In the end we'll have Sk4f for float pixels, SkPx for fixed-point pixels. BUG=skia:4117 Committed: https://skia.googlesource.com/skia/+/82c93b45ed6ac0b628adb8375389c202d1f586f9 CQ_EXTRA_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;client.skia.compile:Build-Mac10.8-Clang-Arm7-Debug-Android-Trybot Review URL: https://codereview.chromium.org/1317233005
This commit is contained in:
parent
5cb4885b4c
commit
a7627dc5cc
89
src/core/SkPx.h
Normal file
89
src/core/SkPx.h
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2015 Google Inc.
|
||||||
|
*
|
||||||
|
* Use of this source code is governed by a BSD-style license that can be
|
||||||
|
* found in the LICENSE file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef SkPx_DEFINED
|
||||||
|
#define SkPx_DEFINED
|
||||||
|
|
||||||
|
#include "SkTypes.h"
|
||||||
|
#include "SkColorPriv.h"
|
||||||
|
|
||||||
|
// We'll include one of src/opts/SkPx_{sse,neon,none}.h to define a type SkPx.
|
||||||
|
//
|
||||||
|
// SkPx represents up to SkPx::N 8888 pixels. It's agnostic to whether these
|
||||||
|
// are SkColors or SkPMColors; it only assumes that alpha is the high byte.
|
||||||
|
static_assert(SK_A32_SHIFT == 24, "For both SkColor and SkPMColor, alpha is always the high byte.");
|
||||||
|
//
|
||||||
|
// SkPx::Alpha represents up to SkPx::N 8-bit values, usually coverage or alpha.
|
||||||
|
// SkPx::Wide represents up to SkPx::N pixels with 16 bits per component.
|
||||||
|
//
|
||||||
|
// SkPx supports the following methods:
|
||||||
|
// static SkPx Dup(uint32_t);
|
||||||
|
// static SkPx Load(const uint32_t*);
|
||||||
|
// static SkPx Load(const uint32_t*, int n); // where 0<n<SkPx::N
|
||||||
|
// void store(uint32_t*) const;
|
||||||
|
// void store(uint32_t*, int n) const; // where 0<n<SkPx::N
|
||||||
|
//
|
||||||
|
// Alpha alpha() const; // argb -> a
|
||||||
|
// Wide widenLo() const; // argb -> 0a0r0g0b
|
||||||
|
// Wide widenHi() const; // argb -> a0r0g0b0
|
||||||
|
// Wide widenLoHi() const; // argb -> aarrggbb
|
||||||
|
//
|
||||||
|
// SkPx operator+(const SkPx&) const;
|
||||||
|
// SkPx operator-(const SkPx&) const;
|
||||||
|
// SkPx saturatedAdd(const SkPx&) const;
|
||||||
|
//
|
||||||
|
// Wide operator*(const Alpha&) const; // argb * A -> (a*A)(r*A)(g*A)(b*A)
|
||||||
|
//
|
||||||
|
// // Fast approximate (px*a+127)/255.
|
||||||
|
// // Never off by more than 1, and always correct when px or a is 0 or 255.
|
||||||
|
// // We use the approximation (px*a+px)/256.
|
||||||
|
// SkPx approxMulDiv255(const Alpha&) const;
|
||||||
|
//
|
||||||
|
// SkPx addAlpha(const Alpha&) const; // argb + A -> (a+A)rgb
|
||||||
|
//
|
||||||
|
// SkPx::Alpha supports the following methods:
|
||||||
|
// static Alpha Dup(uint8_t);
|
||||||
|
// static Alpha Load(const uint8_t*);
|
||||||
|
// static Alpha Load(const uint8_t*, int n); // where 0<n<SkPx::N
|
||||||
|
//
|
||||||
|
// Alpha inv() const; // a -> 255-a
|
||||||
|
//
|
||||||
|
// SkPx::Wide supports the following methods:
|
||||||
|
// Wide operator+(const Wide&);
|
||||||
|
// Wide operator-(const Wide&);
|
||||||
|
// Wide operator<<(int bits);
|
||||||
|
// Wide operator>>(int bits);
|
||||||
|
//
|
||||||
|
// // Return the high byte of each component of (*this + o.widenLo()).
|
||||||
|
// SkPx addNarrowHi(const SkPx& o);
|
||||||
|
//
|
||||||
|
// Methods left unwritten, but certainly to come:
|
||||||
|
// SkPx SkPx::operator<(const SkPx&) const;
|
||||||
|
// SkPx SkPx::thenElse(const SkPx& then, const SkPx& else) const;
|
||||||
|
// Wide Wide::operator<(const Wide&) const;
|
||||||
|
// Wide Wide::thenElse(const Wide& then, const Wide& else) const;
|
||||||
|
//
|
||||||
|
// SkPx Wide::div255() const; // Rounds, think (*this + 127) / 255.
|
||||||
|
//
|
||||||
|
// The different implementations of SkPx have complete freedom to choose
|
||||||
|
// SkPx::N and how they represent SkPx, SkPx::Alpha, and SkPx::Wide.
|
||||||
|
//
|
||||||
|
// All observable math must remain identical.
|
||||||
|
|
||||||
|
#if defined(SKNX_NO_SIMD)
|
||||||
|
#include "../opts/SkPx_none.h"
|
||||||
|
#else
|
||||||
|
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
||||||
|
#include "../opts/SkPx_sse.h"
|
||||||
|
#elif defined(SK_ARM_HAS_NEON)
|
||||||
|
#include "../opts/SkPx_neon.h"
|
||||||
|
#else
|
||||||
|
#include "../opts/SkPx_none.h"
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif//SkPx_DEFINED
|
@ -9,195 +9,62 @@
|
|||||||
#define SkBlitMask_opts_DEFINED
|
#define SkBlitMask_opts_DEFINED
|
||||||
|
|
||||||
#include "Sk4px.h"
|
#include "Sk4px.h"
|
||||||
|
#include "SkPx.h"
|
||||||
|
|
||||||
namespace SK_OPTS_NS {
|
namespace SK_OPTS_NS {
|
||||||
|
|
||||||
#if defined(SK_ARM_HAS_NEON)
|
template <typename Fn>
|
||||||
// The Sk4px versions below will work fine with NEON, but we have had many indications
|
static void blit_mask_d32_a8(const Fn& fn, SkPMColor* dst, size_t dstRB,
|
||||||
// that it doesn't perform as well as this NEON-specific code. TODO(mtklein): why?
|
const SkAlpha* mask, size_t maskRB,
|
||||||
#include "SkColor_opts_neon.h"
|
int w, int h) {
|
||||||
|
while (h --> 0) {
|
||||||
template <bool isColor>
|
int n = w;
|
||||||
static void D32_A8_Opaque_Color_neon(void* SK_RESTRICT dst, size_t dstRB,
|
while (n >= SkPx::N) {
|
||||||
const void* SK_RESTRICT maskPtr, size_t maskRB,
|
fn(SkPx::Load(dst), SkPx::Alpha::Load(mask)).store(dst);
|
||||||
SkColor color, int width, int height) {
|
dst += SkPx::N; mask += SkPx::N; n -= SkPx::N;
|
||||||
SkPMColor pmc = SkPreMultiplyColor(color);
|
|
||||||
SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
|
|
||||||
const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
|
|
||||||
uint8x8x4_t vpmc;
|
|
||||||
|
|
||||||
maskRB -= width;
|
|
||||||
dstRB -= (width << 2);
|
|
||||||
|
|
||||||
if (width >= 8) {
|
|
||||||
vpmc.val[NEON_A] = vdup_n_u8(SkGetPackedA32(pmc));
|
|
||||||
vpmc.val[NEON_R] = vdup_n_u8(SkGetPackedR32(pmc));
|
|
||||||
vpmc.val[NEON_G] = vdup_n_u8(SkGetPackedG32(pmc));
|
|
||||||
vpmc.val[NEON_B] = vdup_n_u8(SkGetPackedB32(pmc));
|
|
||||||
}
|
}
|
||||||
do {
|
if (n > 0) {
|
||||||
int w = width;
|
fn(SkPx::Load(dst, n), SkPx::Alpha::Load(mask, n)).store(dst, n);
|
||||||
while (w >= 8) {
|
dst += n; mask += n;
|
||||||
uint8x8_t vmask = vld1_u8(mask);
|
}
|
||||||
uint16x8_t vscale, vmask256 = SkAlpha255To256_neon8(vmask);
|
dst += dstRB / sizeof(*dst) - w;
|
||||||
if (isColor) {
|
mask += maskRB / sizeof(*mask) - w;
|
||||||
vscale = vsubw_u8(vdupq_n_u16(256),
|
|
||||||
SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256));
|
|
||||||
} else {
|
|
||||||
vscale = vsubw_u8(vdupq_n_u16(256), vmask);
|
|
||||||
}
|
|
||||||
uint8x8x4_t vdev = vld4_u8((uint8_t*)device);
|
|
||||||
|
|
||||||
vdev.val[NEON_A] = SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256)
|
|
||||||
+ SkAlphaMul_neon8(vdev.val[NEON_A], vscale);
|
|
||||||
vdev.val[NEON_R] = SkAlphaMul_neon8(vpmc.val[NEON_R], vmask256)
|
|
||||||
+ SkAlphaMul_neon8(vdev.val[NEON_R], vscale);
|
|
||||||
vdev.val[NEON_G] = SkAlphaMul_neon8(vpmc.val[NEON_G], vmask256)
|
|
||||||
+ SkAlphaMul_neon8(vdev.val[NEON_G], vscale);
|
|
||||||
vdev.val[NEON_B] = SkAlphaMul_neon8(vpmc.val[NEON_B], vmask256)
|
|
||||||
+ SkAlphaMul_neon8(vdev.val[NEON_B], vscale);
|
|
||||||
|
|
||||||
vst4_u8((uint8_t*)device, vdev);
|
|
||||||
|
|
||||||
mask += 8;
|
|
||||||
device += 8;
|
|
||||||
w -= 8;
|
|
||||||
}
|
|
||||||
|
|
||||||
while (w--) {
|
|
||||||
unsigned aa = *mask++;
|
|
||||||
if (isColor) {
|
|
||||||
*device = SkBlendARGB32(pmc, *device, aa);
|
|
||||||
} else {
|
|
||||||
*device = SkAlphaMulQ(pmc, SkAlpha255To256(aa))
|
|
||||||
+ SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
|
|
||||||
}
|
|
||||||
device += 1;
|
|
||||||
};
|
|
||||||
|
|
||||||
device = (uint32_t*)((char*)device + dstRB);
|
|
||||||
mask += maskRB;
|
|
||||||
|
|
||||||
} while (--height != 0);
|
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
|
static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
|
||||||
const SkAlpha* mask, size_t maskRB,
|
const SkAlpha* mask, size_t maskRB,
|
||||||
SkColor color, int w, int h) {
|
SkColor color, int w, int h) {
|
||||||
D32_A8_Opaque_Color_neon<true>(dst, dstRB, mask, maskRB, color, w, h);
|
auto s = SkPx::Dup(SkPreMultiplyColor(color));
|
||||||
}
|
|
||||||
|
|
||||||
// As above, but made slightly simpler by requiring that color is opaque.
|
if (color == SK_ColorBLACK) {
|
||||||
static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
|
auto fn = [](const SkPx& d, const SkPx::Alpha& aa) {
|
||||||
const SkAlpha* mask, size_t maskRB,
|
// = (s + d(1-sa))aa + d(1-aa)
|
||||||
SkColor color, int w, int h) {
|
// = s*aa + d(1-sa*aa)
|
||||||
D32_A8_Opaque_Color_neon<false>(dst, dstRB, mask, maskRB, color, w, h);
|
// ~~~>
|
||||||
}
|
// a = 1*aa + d(1-1*aa) = aa + d(1-aa)
|
||||||
|
// c = 0*aa + d(1-1*aa) = d(1-aa)
|
||||||
// Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
|
return d.approxMulDiv255(aa.inv()).addAlpha(aa);
|
||||||
static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
|
|
||||||
const SkAlpha* maskPtr, size_t maskRB,
|
|
||||||
int width, int height) {
|
|
||||||
SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
|
|
||||||
const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
|
|
||||||
|
|
||||||
maskRB -= width;
|
|
||||||
dstRB -= (width << 2);
|
|
||||||
do {
|
|
||||||
int w = width;
|
|
||||||
while (w >= 8) {
|
|
||||||
uint8x8_t vmask = vld1_u8(mask);
|
|
||||||
uint16x8_t vscale = vsubw_u8(vdupq_n_u16(256), vmask);
|
|
||||||
uint8x8x4_t vdevice = vld4_u8((uint8_t*)device);
|
|
||||||
|
|
||||||
vdevice = SkAlphaMulQ_neon8(vdevice, vscale);
|
|
||||||
vdevice.val[NEON_A] += vmask;
|
|
||||||
|
|
||||||
vst4_u8((uint8_t*)device, vdevice);
|
|
||||||
|
|
||||||
mask += 8;
|
|
||||||
device += 8;
|
|
||||||
w -= 8;
|
|
||||||
}
|
|
||||||
while (w-- > 0) {
|
|
||||||
unsigned aa = *mask++;
|
|
||||||
*device = (aa << SK_A32_SHIFT)
|
|
||||||
+ SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
|
|
||||||
device += 1;
|
|
||||||
};
|
|
||||||
device = (uint32_t*)((char*)device + dstRB);
|
|
||||||
mask += maskRB;
|
|
||||||
} while (--height != 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
#else
|
|
||||||
static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
|
|
||||||
const SkAlpha* mask, size_t maskRB,
|
|
||||||
SkColor color, int w, int h) {
|
|
||||||
auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color));
|
|
||||||
auto fn = [&](const Sk4px& d, const Sk4px& aa) {
|
|
||||||
// = (s + d(1-sa))aa + d(1-aa)
|
|
||||||
// = s*aa + d(1-sa*aa)
|
|
||||||
auto left = s.approxMulDiv255(aa),
|
|
||||||
right = d.approxMulDiv255(left.alphas().inv());
|
|
||||||
return left + right; // This does not overflow (exhaustively checked).
|
|
||||||
};
|
};
|
||||||
while (h --> 0) {
|
blit_mask_d32_a8(fn, dst, dstRB, mask, maskRB, w, h);
|
||||||
Sk4px::MapDstAlpha(w, dst, mask, fn);
|
} else if (SkColorGetA(color) == 0xFF) {
|
||||||
dst += dstRB / sizeof(*dst);
|
auto fn = [&](const SkPx& d, const SkPx::Alpha& aa) {
|
||||||
mask += maskRB / sizeof(*mask);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// As above, but made slightly simpler by requiring that color is opaque.
|
|
||||||
static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
|
|
||||||
const SkAlpha* mask, size_t maskRB,
|
|
||||||
SkColor color, int w, int h) {
|
|
||||||
SkASSERT(SkColorGetA(color) == 0xFF);
|
|
||||||
auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color));
|
|
||||||
auto fn = [&](const Sk4px& d, const Sk4px& aa) {
|
|
||||||
// = (s + d(1-sa))aa + d(1-aa)
|
// = (s + d(1-sa))aa + d(1-aa)
|
||||||
// = s*aa + d(1-sa*aa)
|
// = s*aa + d(1-sa*aa)
|
||||||
// ~~~>
|
// ~~~>
|
||||||
// = s*aa + d(1-aa)
|
// = s*aa + d(1-aa)
|
||||||
return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv());
|
return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv());
|
||||||
};
|
};
|
||||||
while (h --> 0) {
|
blit_mask_d32_a8(fn, dst, dstRB, mask, maskRB, w, h);
|
||||||
Sk4px::MapDstAlpha(w, dst, mask, fn);
|
|
||||||
dst += dstRB / sizeof(*dst);
|
|
||||||
mask += maskRB / sizeof(*mask);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
|
|
||||||
static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
|
|
||||||
const SkAlpha* mask, size_t maskRB,
|
|
||||||
int w, int h) {
|
|
||||||
auto fn = [](const Sk4px& d, const Sk4px& aa) {
|
|
||||||
// = (s + d(1-sa))aa + d(1-aa)
|
|
||||||
// = s*aa + d(1-sa*aa)
|
|
||||||
// ~~~>
|
|
||||||
// a = 1*aa + d(1-1*aa) = aa + d(1-aa)
|
|
||||||
// c = 0*aa + d(1-1*aa) = d(1-aa)
|
|
||||||
return aa.zeroColors() + d.approxMulDiv255(aa.inv());
|
|
||||||
};
|
|
||||||
while (h --> 0) {
|
|
||||||
Sk4px::MapDstAlpha(w, dst, mask, fn);
|
|
||||||
dst += dstRB / sizeof(*dst);
|
|
||||||
mask += maskRB / sizeof(*mask);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
|
|
||||||
const SkAlpha* mask, size_t maskRB,
|
|
||||||
SkColor color, int w, int h) {
|
|
||||||
if (color == SK_ColorBLACK) {
|
|
||||||
blit_mask_d32_a8_black(dst, dstRB, mask, maskRB, w, h);
|
|
||||||
} else if (SkColorGetA(color) == 0xFF) {
|
|
||||||
blit_mask_d32_a8_opaque(dst, dstRB, mask, maskRB, color, w, h);
|
|
||||||
} else {
|
} else {
|
||||||
blit_mask_d32_a8_general(dst, dstRB, mask, maskRB, color, w, h);
|
auto fn = [&](const SkPx& d, const SkPx::Alpha& aa) {
|
||||||
|
// = (s + d(1-sa))aa + d(1-aa)
|
||||||
|
// = s*aa + d(1-sa*aa)
|
||||||
|
auto left = s.approxMulDiv255(aa),
|
||||||
|
right = d.approxMulDiv255(left.alpha().inv());
|
||||||
|
return left + right; // This does not overflow (exhaustively checked).
|
||||||
|
};
|
||||||
|
blit_mask_d32_a8(fn, dst, dstRB, mask, maskRB, w, h);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
214
src/opts/SkPx_neon.h
Normal file
214
src/opts/SkPx_neon.h
Normal file
@ -0,0 +1,214 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2015 Google Inc.
|
||||||
|
*
|
||||||
|
* Use of this source code is governed by a BSD-style license that can be
|
||||||
|
* found in the LICENSE file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef SkPx_neon_DEFINED
|
||||||
|
#define SkPx_neon_DEFINED
|
||||||
|
|
||||||
|
// When we have NEON, we like to work 8 pixels at a time.
|
||||||
|
// This lets us exploit vld4/vst4 and represent SkPx as planar uint8x8x4_t,
|
||||||
|
// Wide as planar uint16x8x4_t, and Alpha as a single uint8x8_t plane.
|
||||||
|
|
||||||
|
struct SkPx_neon {
|
||||||
|
static const int N = 8;
|
||||||
|
|
||||||
|
uint8x8x4_t fVec;
|
||||||
|
SkPx_neon(uint8x8x4_t vec) : fVec(vec) {}
|
||||||
|
|
||||||
|
static SkPx_neon Dup(uint32_t px) { return vld4_dup_u8((const uint8_t*)&px); }
|
||||||
|
static SkPx_neon Load(const uint32_t* px) { return vld4_u8((const uint8_t*)px); }
|
||||||
|
static SkPx_neon Load(const uint32_t* px, int n) {
|
||||||
|
SkASSERT(0 < n && n < 8);
|
||||||
|
uint8x8x4_t v = vld4_dup_u8((const uint8_t*)px); // n>=1, so start all lanes with pixel 0.
|
||||||
|
switch (n) {
|
||||||
|
case 7: v = vld4_lane_u8((const uint8_t*)(px+6), v, 6); // fall through
|
||||||
|
case 6: v = vld4_lane_u8((const uint8_t*)(px+5), v, 5); // fall through
|
||||||
|
case 5: v = vld4_lane_u8((const uint8_t*)(px+4), v, 4); // fall through
|
||||||
|
case 4: v = vld4_lane_u8((const uint8_t*)(px+3), v, 3); // fall through
|
||||||
|
case 3: v = vld4_lane_u8((const uint8_t*)(px+2), v, 2); // fall through
|
||||||
|
case 2: v = vld4_lane_u8((const uint8_t*)(px+1), v, 1);
|
||||||
|
}
|
||||||
|
return v;
|
||||||
|
}
|
||||||
|
|
||||||
|
void store(uint32_t* px) const { vst4_u8((uint8_t*)px, fVec); }
|
||||||
|
void store(uint32_t* px, int n) const {
|
||||||
|
SkASSERT(0 < n && n < 8);
|
||||||
|
switch (n) {
|
||||||
|
case 7: vst4_lane_u8((uint8_t*)(px+6), fVec, 6);
|
||||||
|
case 6: vst4_lane_u8((uint8_t*)(px+5), fVec, 5);
|
||||||
|
case 5: vst4_lane_u8((uint8_t*)(px+4), fVec, 4);
|
||||||
|
case 4: vst4_lane_u8((uint8_t*)(px+3), fVec, 3);
|
||||||
|
case 3: vst4_lane_u8((uint8_t*)(px+2), fVec, 2);
|
||||||
|
case 2: vst4_lane_u8((uint8_t*)(px+1), fVec, 1);
|
||||||
|
case 1: vst4_lane_u8((uint8_t*)(px+0), fVec, 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Alpha {
|
||||||
|
uint8x8_t fA;
|
||||||
|
Alpha(uint8x8_t a) : fA(a) {}
|
||||||
|
|
||||||
|
static Alpha Dup(uint8_t a) { return vdup_n_u8(a); }
|
||||||
|
static Alpha Load(const uint8_t* a) { return vld1_u8(a); }
|
||||||
|
static Alpha Load(const uint8_t* a, int n) {
|
||||||
|
SkASSERT(0 < n && n < 8);
|
||||||
|
uint8x8_t v = vld1_dup_u8(a); // n>=1, so start all lanes with alpha 0.
|
||||||
|
switch (n) {
|
||||||
|
case 7: v = vld1_lane_u8(a+6, v, 6); // fall through
|
||||||
|
case 6: v = vld1_lane_u8(a+5, v, 5); // fall through
|
||||||
|
case 5: v = vld1_lane_u8(a+4, v, 4); // fall through
|
||||||
|
case 4: v = vld1_lane_u8(a+3, v, 3); // fall through
|
||||||
|
case 3: v = vld1_lane_u8(a+2, v, 2); // fall through
|
||||||
|
case 2: v = vld1_lane_u8(a+1, v, 1);
|
||||||
|
}
|
||||||
|
return v;
|
||||||
|
}
|
||||||
|
Alpha inv() const { return vsub_u8(vdup_n_u8(255), fA); }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct Wide {
|
||||||
|
uint16x8x4_t fVec;
|
||||||
|
Wide(uint16x8x4_t vec) : fVec(vec) {}
|
||||||
|
|
||||||
|
Wide operator+(const Wide& o) const {
|
||||||
|
return (uint16x8x4_t) {{
|
||||||
|
vaddq_u16(fVec.val[0], o.fVec.val[0]),
|
||||||
|
vaddq_u16(fVec.val[1], o.fVec.val[1]),
|
||||||
|
vaddq_u16(fVec.val[2], o.fVec.val[2]),
|
||||||
|
vaddq_u16(fVec.val[3], o.fVec.val[3]),
|
||||||
|
}};
|
||||||
|
}
|
||||||
|
Wide operator-(const Wide& o) const {
|
||||||
|
return (uint16x8x4_t) {{
|
||||||
|
vsubq_u16(fVec.val[0], o.fVec.val[0]),
|
||||||
|
vsubq_u16(fVec.val[1], o.fVec.val[1]),
|
||||||
|
vsubq_u16(fVec.val[2], o.fVec.val[2]),
|
||||||
|
vsubq_u16(fVec.val[3], o.fVec.val[3]),
|
||||||
|
}};
|
||||||
|
}
|
||||||
|
Wide operator<<(int bits) const {
|
||||||
|
#if defined(SK_DEBUG)
|
||||||
|
return (uint16x8x4_t) {{
|
||||||
|
shift_slow(fVec.val[0], -bits),
|
||||||
|
shift_slow(fVec.val[1], -bits),
|
||||||
|
shift_slow(fVec.val[2], -bits),
|
||||||
|
shift_slow(fVec.val[3], -bits),
|
||||||
|
}};
|
||||||
|
#else
|
||||||
|
return (uint16x8x4_t) {{
|
||||||
|
vshlq_n_u16(fVec.val[0], bits),
|
||||||
|
vshlq_n_u16(fVec.val[1], bits),
|
||||||
|
vshlq_n_u16(fVec.val[2], bits),
|
||||||
|
vshlq_n_u16(fVec.val[3], bits),
|
||||||
|
}};
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
Wide operator>>(int bits) const {
|
||||||
|
#if defined(SK_DEBUG)
|
||||||
|
return (uint16x8x4_t) {{
|
||||||
|
shift_slow(fVec.val[0], bits),
|
||||||
|
shift_slow(fVec.val[1], bits),
|
||||||
|
shift_slow(fVec.val[2], bits),
|
||||||
|
shift_slow(fVec.val[3], bits),
|
||||||
|
}};
|
||||||
|
#else
|
||||||
|
return (uint16x8x4_t) {{
|
||||||
|
vshrq_n_u16(fVec.val[0], bits),
|
||||||
|
vshrq_n_u16(fVec.val[1], bits),
|
||||||
|
vshrq_n_u16(fVec.val[2], bits),
|
||||||
|
vshrq_n_u16(fVec.val[3], bits),
|
||||||
|
}};
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
// v >> bits, for bits in [-15, 16].
|
||||||
|
static uint16x8_t shift_slow(uint16x8_t v, int bits) {
|
||||||
|
SkASSERT(bits >= -16 && bits <= 16);
|
||||||
|
switch (bits) {
|
||||||
|
#define L(n) case -n: return vshlq_n_u16(v, n);
|
||||||
|
#define R(n) case n: return vshrq_n_u16(v, n);
|
||||||
|
L(15) L(14) L(13) L(10) L(9) L(8) L(7) L(6) L(5) L(4) L(3) L(2) L(1)
|
||||||
|
R(16) R(15) R(14) R(13) R(10) R(9) R(8) R(7) R(6) R(5) R(4) R(3) R(2) R(1)
|
||||||
|
#undef L
|
||||||
|
#undef R
|
||||||
|
}
|
||||||
|
return v;
|
||||||
|
}
|
||||||
|
|
||||||
|
SkPx_neon addNarrowHi(const SkPx_neon& o) const {
|
||||||
|
return (uint8x8x4_t) {{
|
||||||
|
vshrn_n_u16(vaddw_u8(fVec.val[0], o.fVec.val[0]), 8),
|
||||||
|
vshrn_n_u16(vaddw_u8(fVec.val[1], o.fVec.val[1]), 8),
|
||||||
|
vshrn_n_u16(vaddw_u8(fVec.val[2], o.fVec.val[2]), 8),
|
||||||
|
vshrn_n_u16(vaddw_u8(fVec.val[3], o.fVec.val[3]), 8),
|
||||||
|
}};
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
Alpha alpha() const { return fVec.val[3]; }
|
||||||
|
|
||||||
|
Wide widenLo() const {
|
||||||
|
return (uint16x8x4_t) {{
|
||||||
|
vmovl_u8(fVec.val[0]),
|
||||||
|
vmovl_u8(fVec.val[1]),
|
||||||
|
vmovl_u8(fVec.val[2]),
|
||||||
|
vmovl_u8(fVec.val[3]),
|
||||||
|
}};
|
||||||
|
}
|
||||||
|
// TODO: these two can probably be done faster.
|
||||||
|
Wide widenHi() const { return this->widenLo() << 8; }
|
||||||
|
Wide widenLoHi() const { return this->widenLo() + this->widenHi(); }
|
||||||
|
|
||||||
|
SkPx_neon operator+(const SkPx_neon& o) const {
|
||||||
|
return (uint8x8x4_t) {{
|
||||||
|
vadd_u8(fVec.val[0], o.fVec.val[0]),
|
||||||
|
vadd_u8(fVec.val[1], o.fVec.val[1]),
|
||||||
|
vadd_u8(fVec.val[2], o.fVec.val[2]),
|
||||||
|
vadd_u8(fVec.val[3], o.fVec.val[3]),
|
||||||
|
}};
|
||||||
|
}
|
||||||
|
SkPx_neon operator-(const SkPx_neon& o) const {
|
||||||
|
return (uint8x8x4_t) {{
|
||||||
|
vsub_u8(fVec.val[0], o.fVec.val[0]),
|
||||||
|
vsub_u8(fVec.val[1], o.fVec.val[1]),
|
||||||
|
vsub_u8(fVec.val[2], o.fVec.val[2]),
|
||||||
|
vsub_u8(fVec.val[3], o.fVec.val[3]),
|
||||||
|
}};
|
||||||
|
}
|
||||||
|
SkPx_neon saturatedAdd(const SkPx_neon& o) const {
|
||||||
|
return (uint8x8x4_t) {{
|
||||||
|
vqadd_u8(fVec.val[0], o.fVec.val[0]),
|
||||||
|
vqadd_u8(fVec.val[1], o.fVec.val[1]),
|
||||||
|
vqadd_u8(fVec.val[2], o.fVec.val[2]),
|
||||||
|
vqadd_u8(fVec.val[3], o.fVec.val[3]),
|
||||||
|
}};
|
||||||
|
}
|
||||||
|
|
||||||
|
Wide operator*(const Alpha& a) const {
|
||||||
|
return (uint16x8x4_t) {{
|
||||||
|
vmull_u8(fVec.val[0], a.fA),
|
||||||
|
vmull_u8(fVec.val[1], a.fA),
|
||||||
|
vmull_u8(fVec.val[2], a.fA),
|
||||||
|
vmull_u8(fVec.val[3], a.fA),
|
||||||
|
}};
|
||||||
|
}
|
||||||
|
SkPx_neon approxMulDiv255(const Alpha& a) const {
|
||||||
|
return (*this * a).addNarrowHi(*this);
|
||||||
|
}
|
||||||
|
|
||||||
|
SkPx_neon addAlpha(const Alpha& a) const {
|
||||||
|
return (uint8x8x4_t) {{
|
||||||
|
fVec.val[0],
|
||||||
|
fVec.val[1],
|
||||||
|
fVec.val[2],
|
||||||
|
vadd_u8(fVec.val[3], a.fA),
|
||||||
|
}};
|
||||||
|
}
|
||||||
|
};
|
||||||
|
typedef SkPx_neon SkPx;
|
||||||
|
|
||||||
|
#endif//SkPx_neon_DEFINED
|
106
src/opts/SkPx_none.h
Normal file
106
src/opts/SkPx_none.h
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2015 Google Inc.
|
||||||
|
*
|
||||||
|
* Use of this source code is governed by a BSD-style license that can be
|
||||||
|
* found in the LICENSE file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef SkPx_none_DEFINED
|
||||||
|
#define SkPx_none_DEFINED
|
||||||
|
|
||||||
|
// Nothing fancy here. We're the backup _none case after all.
|
||||||
|
// Our declared sweet spot is simply a single pixel at a time.
|
||||||
|
|
||||||
|
struct SkPx_none {
|
||||||
|
static const int N = 1;
|
||||||
|
uint8_t f8[4];
|
||||||
|
|
||||||
|
SkPx_none(uint32_t px) { memcpy(f8, &px, 4); }
|
||||||
|
SkPx_none(uint8_t x, uint8_t y, uint8_t z, uint8_t a) {
|
||||||
|
f8[0] = x; f8[1] = y; f8[2] = z; f8[3] = a;
|
||||||
|
}
|
||||||
|
|
||||||
|
static SkPx_none Dup(uint32_t px) { return px; }
|
||||||
|
static SkPx_none Load(const uint32_t* px) { return *px; }
|
||||||
|
static SkPx_none Load(const uint32_t* px, int n) {
|
||||||
|
SkASSERT(false); // There are no 0<n<1.
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void store(uint32_t* px) const { memcpy(px, f8, 4); }
|
||||||
|
void store(uint32_t* px, int n) const {
|
||||||
|
SkASSERT(false); // There are no 0<n<1.
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Alpha {
|
||||||
|
uint8_t fA;
|
||||||
|
Alpha(uint8_t a) : fA(a) {}
|
||||||
|
|
||||||
|
static Alpha Dup(uint8_t a) { return a; }
|
||||||
|
static Alpha Load(const uint8_t* a) { return *a; }
|
||||||
|
static Alpha Load(const uint8_t* a, int n) {
|
||||||
|
SkASSERT(false); // There are no 0<n<1.
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
Alpha inv() const { return 255 - fA; }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct Wide {
|
||||||
|
uint16_t f16[4];
|
||||||
|
|
||||||
|
Wide(uint16_t x, uint16_t y, uint16_t z, uint16_t a) {
|
||||||
|
f16[0] = x; f16[1] = y; f16[2] = z; f16[3] = a;
|
||||||
|
}
|
||||||
|
|
||||||
|
Wide operator+(const Wide& o) const {
|
||||||
|
return Wide(f16[0]+o.f16[0], f16[1]+o.f16[1], f16[2]+o.f16[2], f16[3]+o.f16[3]);
|
||||||
|
}
|
||||||
|
Wide operator-(const Wide& o) const {
|
||||||
|
return Wide(f16[0]-o.f16[0], f16[1]-o.f16[1], f16[2]-o.f16[2], f16[3]-o.f16[3]);
|
||||||
|
}
|
||||||
|
Wide operator<<(int bits) const {
|
||||||
|
return Wide(f16[0]<<bits, f16[1]<<bits, f16[2]<<bits, f16[3]<<bits);
|
||||||
|
}
|
||||||
|
Wide operator>>(int bits) const {
|
||||||
|
return Wide(f16[0]>>bits, f16[1]>>bits, f16[2]>>bits, f16[3]>>bits);
|
||||||
|
}
|
||||||
|
|
||||||
|
SkPx_none addNarrowHi(const SkPx_none& o) const {
|
||||||
|
Wide sum = (*this + o.widenLo()) >> 8;
|
||||||
|
return SkPx_none(sum.f16[0], sum.f16[1], sum.f16[2], sum.f16[3]);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
Alpha alpha() const { return f8[3]; }
|
||||||
|
|
||||||
|
Wide widenLo() const { return Wide(f8[0], f8[1], f8[2], f8[3]); }
|
||||||
|
Wide widenHi() const { return this->widenLo() << 8; }
|
||||||
|
Wide widenLoHi() const { return this->widenLo() + this->widenHi(); }
|
||||||
|
|
||||||
|
SkPx_none operator+(const SkPx_none& o) const {
|
||||||
|
return SkPx_none(f8[0]+o.f8[0], f8[1]+o.f8[1], f8[2]+o.f8[2], f8[3]+o.f8[3]);
|
||||||
|
}
|
||||||
|
SkPx_none operator-(const SkPx_none& o) const {
|
||||||
|
return SkPx_none(f8[0]-o.f8[0], f8[1]-o.f8[1], f8[2]-o.f8[2], f8[3]-o.f8[3]);
|
||||||
|
}
|
||||||
|
SkPx_none saturatedAdd(const SkPx_none& o) const {
|
||||||
|
return SkPx_none(SkTMax(0, SkTMin(255, f8[0]+o.f8[0])),
|
||||||
|
SkTMax(0, SkTMin(255, f8[1]+o.f8[1])),
|
||||||
|
SkTMax(0, SkTMin(255, f8[2]+o.f8[2])),
|
||||||
|
SkTMax(0, SkTMin(255, f8[3]+o.f8[3])));
|
||||||
|
}
|
||||||
|
|
||||||
|
Wide operator*(const Alpha& a) const {
|
||||||
|
return Wide(f8[0]*a.fA, f8[1]*a.fA, f8[2]*a.fA, f8[3]*a.fA);
|
||||||
|
}
|
||||||
|
SkPx_none approxMulDiv255(const Alpha& a) const {
|
||||||
|
return (*this * a).addNarrowHi(*this);
|
||||||
|
}
|
||||||
|
|
||||||
|
SkPx_none addAlpha(const Alpha& a) const {
|
||||||
|
return SkPx_none(f8[0], f8[1], f8[2], f8[3]+a.fA);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
typedef SkPx_none SkPx;
|
||||||
|
|
||||||
|
#endif//SkPx_none_DEFINED
|
150
src/opts/SkPx_sse.h
Normal file
150
src/opts/SkPx_sse.h
Normal file
@ -0,0 +1,150 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2015 Google Inc.
|
||||||
|
*
|
||||||
|
* Use of this source code is governed by a BSD-style license that can be
|
||||||
|
* found in the LICENSE file.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef SkPx_sse_DEFINED
|
||||||
|
#define SkPx_sse_DEFINED
|
||||||
|
|
||||||
|
// SkPx_sse's sweet spot is to work with 4 pixels at a time,
|
||||||
|
// stored interlaced, just as they sit in memory: rgba rgba rgba rgba.
|
||||||
|
|
||||||
|
// SkPx_sse's best way to work with alphas is similar,
|
||||||
|
// replicating the 4 alphas 4 times each across the pixel: aaaa aaaa aaaa aaaa.
|
||||||
|
|
||||||
|
// When working with fewer than 4 pixels, we load the pixels in the low lanes,
|
||||||
|
// usually filling the top lanes with zeros (but who cares, might be junk).
|
||||||
|
|
||||||
|
struct SkPx_sse {
|
||||||
|
static const int N = 4;
|
||||||
|
|
||||||
|
__m128i fVec;
|
||||||
|
SkPx_sse(__m128i vec) : fVec(vec) {}
|
||||||
|
|
||||||
|
static SkPx_sse Dup(uint32_t px) { return _mm_set1_epi32(px); }
|
||||||
|
static SkPx_sse Load(const uint32_t* px) { return _mm_loadu_si128((const __m128i*)px); }
|
||||||
|
static SkPx_sse Load(const uint32_t* px, int n) {
|
||||||
|
SkASSERT(n > 0 && n < 4);
|
||||||
|
switch (n) {
|
||||||
|
case 1: return _mm_cvtsi32_si128(px[0]);
|
||||||
|
case 2: return _mm_loadl_epi64((const __m128i*)px);
|
||||||
|
case 3: return _mm_or_si128(_mm_loadl_epi64((const __m128i*)px),
|
||||||
|
_mm_slli_si128(_mm_cvtsi32_si128(px[2]), 8));
|
||||||
|
}
|
||||||
|
return _mm_setzero_si128(); // Not actually reachable.
|
||||||
|
}
|
||||||
|
|
||||||
|
void store(uint32_t* px) const { _mm_storeu_si128((__m128i*)px, fVec); }
|
||||||
|
void store(uint32_t* px, int n) const {
|
||||||
|
SkASSERT(n > 0 && n < 4);
|
||||||
|
__m128i v = fVec;
|
||||||
|
if (n & 1) {
|
||||||
|
*px++ = _mm_cvtsi128_si32(v);
|
||||||
|
v = _mm_srli_si128(v, 4);
|
||||||
|
}
|
||||||
|
if (n & 2) {
|
||||||
|
_mm_storel_epi64((__m128i*)px, v);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Alpha {
|
||||||
|
__m128i fVec;
|
||||||
|
Alpha(__m128i vec) : fVec(vec) {}
|
||||||
|
|
||||||
|
static Alpha Dup(uint8_t a) { return _mm_set1_epi8(a); }
|
||||||
|
static Alpha Load(const uint8_t* a) {
|
||||||
|
__m128i as = _mm_cvtsi32_si128(*(const uint32_t*)a); // ____ ____ ____ 3210
|
||||||
|
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
|
||||||
|
return _mm_shuffle_epi8(as, _mm_set_epi8(3,3,3,3, 2,2,2,2, 1,1,1,1, 0,0,0,0));
|
||||||
|
#else
|
||||||
|
as = _mm_unpacklo_epi8 (as, _mm_setzero_si128()); // ____ ____ _3_2 _1_0
|
||||||
|
as = _mm_unpacklo_epi16(as, _mm_setzero_si128()); // ___3 ___2 ___1 ___0
|
||||||
|
as = _mm_or_si128(as, _mm_slli_si128(as, 1)); // __33 __22 __11 __00
|
||||||
|
return _mm_or_si128(as, _mm_slli_si128(as, 2)); // 3333 2222 1111 0000
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
static Alpha Load(const uint8_t* a, int n) {
|
||||||
|
SkASSERT(n > 0 && n < 4);
|
||||||
|
uint8_t a4[] = { 0,0,0,0 };
|
||||||
|
switch (n) {
|
||||||
|
case 3: a4[2] = a[2]; // fall through
|
||||||
|
case 2: a4[1] = a[1]; // fall through
|
||||||
|
case 1: a4[0] = a[0];
|
||||||
|
}
|
||||||
|
return Load(a4);
|
||||||
|
}
|
||||||
|
|
||||||
|
Alpha inv() const { return _mm_sub_epi8(_mm_set1_epi8(~0), fVec); }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct Wide {
|
||||||
|
__m128i fLo, fHi;
|
||||||
|
Wide(__m128i lo, __m128i hi) : fLo(lo), fHi(hi) {}
|
||||||
|
|
||||||
|
Wide operator+(const Wide& o) const {
|
||||||
|
return Wide(_mm_add_epi16(fLo, o.fLo), _mm_add_epi16(fHi, o.fHi));
|
||||||
|
}
|
||||||
|
Wide operator-(const Wide& o) const {
|
||||||
|
return Wide(_mm_sub_epi16(fLo, o.fLo), _mm_sub_epi16(fHi, o.fHi));
|
||||||
|
}
|
||||||
|
Wide operator<<(int bits) const {
|
||||||
|
return Wide(_mm_slli_epi16(fLo, bits), _mm_slli_epi16(fHi, bits));
|
||||||
|
}
|
||||||
|
Wide operator>>(int bits) const {
|
||||||
|
return Wide(_mm_srli_epi16(fLo, bits), _mm_srli_epi16(fHi, bits));
|
||||||
|
}
|
||||||
|
|
||||||
|
SkPx_sse addNarrowHi(const SkPx_sse& o) const {
|
||||||
|
Wide sum = (*this + o.widenLo()) >> 8;
|
||||||
|
return _mm_packus_epi16(sum.fLo, sum.fHi);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
Alpha alpha() const {
|
||||||
|
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
|
||||||
|
return _mm_shuffle_epi8(fVec, _mm_set_epi8(15,15,15,15, 11,11,11,11, 7,7,7,7, 3,3,3,3));
|
||||||
|
#else
|
||||||
|
__m128i as = _mm_srli_epi32(fVec, 24); // ___3 ___2 ___1 ___0
|
||||||
|
as = _mm_or_si128(as, _mm_slli_si128(as, 1)); // __33 __22 __11 __00
|
||||||
|
return _mm_or_si128(as, _mm_slli_si128(as, 2)); // 3333 2222 1111 0000
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
Wide widenLo() const {
|
||||||
|
return Wide(_mm_unpacklo_epi8(fVec, _mm_setzero_si128()),
|
||||||
|
_mm_unpackhi_epi8(fVec, _mm_setzero_si128()));
|
||||||
|
}
|
||||||
|
Wide widenHi() const {
|
||||||
|
return Wide(_mm_unpacklo_epi8(_mm_setzero_si128(), fVec),
|
||||||
|
_mm_unpackhi_epi8(_mm_setzero_si128(), fVec));
|
||||||
|
}
|
||||||
|
Wide widenLoHi() const {
|
||||||
|
return Wide(_mm_unpacklo_epi8(fVec, fVec),
|
||||||
|
_mm_unpackhi_epi8(fVec, fVec));
|
||||||
|
}
|
||||||
|
|
||||||
|
SkPx_sse operator+(const SkPx_sse& o) const { return _mm_add_epi8(fVec, o.fVec); }
|
||||||
|
SkPx_sse operator-(const SkPx_sse& o) const { return _mm_sub_epi8(fVec, o.fVec); }
|
||||||
|
SkPx_sse saturatedAdd(const SkPx_sse& o) const { return _mm_adds_epi8(fVec, o.fVec); }
|
||||||
|
|
||||||
|
Wide operator*(const Alpha& a) const {
|
||||||
|
__m128i pLo = _mm_unpacklo_epi8( fVec, _mm_setzero_si128()),
|
||||||
|
aLo = _mm_unpacklo_epi8(a.fVec, _mm_setzero_si128()),
|
||||||
|
pHi = _mm_unpackhi_epi8( fVec, _mm_setzero_si128()),
|
||||||
|
aHi = _mm_unpackhi_epi8(a.fVec, _mm_setzero_si128());
|
||||||
|
return Wide(_mm_mullo_epi16(pLo, aLo), _mm_mullo_epi16(pHi, aHi));
|
||||||
|
}
|
||||||
|
SkPx_sse approxMulDiv255(const Alpha& a) const {
|
||||||
|
return (*this * a).addNarrowHi(*this);
|
||||||
|
}
|
||||||
|
|
||||||
|
SkPx_sse addAlpha(const Alpha& a) const {
|
||||||
|
return _mm_add_epi8(fVec, _mm_and_si128(a.fVec, _mm_set1_epi32(0xFF000000)));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef SkPx_sse SkPx;
|
||||||
|
|
||||||
|
#endif//SkPx_sse_DEFINED
|
Loading…
Reference in New Issue
Block a user