Revert "ccpr: Draw curves in a single pass"

This reverts commit df04ce2949.

Reason for revert: Going to revisit AAA quality

Original change's description:
> ccpr: Draw curves in a single pass
> 
> Throws out the complicated MSAA curve corner shaders, and instead just
> ramps coverage to zero at bloat vertices that fall outside the curve.
> 
> Updates SampleCCPRGeometry to better visualize this new geometry by
> clearing to black and drawing with SkBlendMode::kPlus.
> 
> Bug: skia:
> Change-Id: Ibe86cbc741d8b015127b10dd43e3b52e7cb35732
> Reviewed-on: https://skia-review.googlesource.com/112626
> Commit-Queue: Chris Dalton <csmartdalton@google.com>
> Reviewed-by: Brian Salomon <bsalomon@google.com>

TBR=bsalomon@google.com,csmartdalton@google.com

Change-Id: I014baa60b248d870717f5ee8794e0bed66da86e6
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: skia:
Reviewed-on: https://skia-review.googlesource.com/113181
Reviewed-by: Chris Dalton <csmartdalton@google.com>
Commit-Queue: Chris Dalton <csmartdalton@google.com>
This commit is contained in:
Chris Dalton 2018-03-08 15:55:58 +00:00 committed by Skia Commit-Bot
parent fe462efbcb
commit baf3e78092
12 changed files with 528 additions and 288 deletions

View File

@ -32,6 +32,10 @@ using RenderPass = GrCCCoverageProcessor::RenderPass;
static constexpr float kDebugBloat = 40; static constexpr float kDebugBloat = 40;
static int is_quadratic(RenderPass pass) {
return pass == RenderPass::kQuadratics || pass == RenderPass::kQuadraticCorners;
}
/** /**
* This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It * This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It
* increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green, * increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green,
@ -115,13 +119,14 @@ static void draw_klm_line(int w, int h, SkCanvas* canvas, const SkScalar line[3]
} }
void CCPRGeometryView::onDrawContent(SkCanvas* canvas) { void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
canvas->clear(SK_ColorBLACK); SkAutoCanvasRestore acr(canvas, true);
canvas->setMatrix(SkMatrix::I());
SkPath outline; SkPath outline;
outline.moveTo(fPoints[0]); outline.moveTo(fPoints[0]);
if (RenderPass::kCubics == fRenderPass) { if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]); outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]);
} else if (RenderPass::kQuadratics == fRenderPass) { } else if (is_quadratic(fRenderPass)) {
outline.quadTo(fPoints[1], fPoints[3]); outline.quadTo(fPoints[1], fPoints[3]);
} else { } else {
outline.lineTo(fPoints[1]); outline.lineTo(fPoints[1]);
@ -130,7 +135,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
} }
SkPaint outlinePaint; SkPaint outlinePaint;
outlinePaint.setColor(0x80ffffff); outlinePaint.setColor(0x30000000);
outlinePaint.setStyle(SkPaint::kStroke_Style); outlinePaint.setStyle(SkPaint::kStroke_Style);
outlinePaint.setStrokeWidth(0); outlinePaint.setStrokeWidth(0);
outlinePaint.setAntiAlias(true); outlinePaint.setAntiAlias(true);
@ -154,7 +159,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
if (GrRenderTargetContext* rtc = canvas->internal_private_accessTopLayerRenderTargetContext()) { if (GrRenderTargetContext* rtc = canvas->internal_private_accessTopLayerRenderTargetContext()) {
rtc->priv().testingOnly_addDrawOp(skstd::make_unique<Op>(this)); rtc->priv().testingOnly_addDrawOp(skstd::make_unique<Op>(this));
caption.appendf("RenderPass_%s", GrCCCoverageProcessor::RenderPassName(fRenderPass)); caption.appendf("RenderPass_%s", GrCCCoverageProcessor::RenderPassName(fRenderPass));
if (RenderPass::kCubics == fRenderPass) { if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
caption.appendf(" (%s)", SkCubicTypeName(fCubicType)); caption.appendf(" (%s)", SkCubicTypeName(fCubicType));
} }
} else { } else {
@ -166,7 +171,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
pointsPaint.setStrokeWidth(8); pointsPaint.setStrokeWidth(8);
pointsPaint.setAntiAlias(true); pointsPaint.setAntiAlias(true);
if (RenderPass::kCubics == fRenderPass) { if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
int w = this->width(), h = this->height(); int w = this->width(), h = this->height();
canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint); canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint);
draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW); draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW);
@ -179,7 +184,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
SkPaint captionPaint; SkPaint captionPaint;
captionPaint.setTextSize(20); captionPaint.setTextSize(20);
captionPaint.setColor(SK_ColorWHITE); captionPaint.setColor(SK_ColorBLACK);
captionPaint.setAntiAlias(true); captionPaint.setAntiAlias(true);
canvas->drawText(caption.c_str(), caption.size(), 10, 30, captionPaint); canvas->drawText(caption.c_str(), caption.size(), 10, 30, captionPaint);
} }
@ -188,7 +193,7 @@ void CCPRGeometryView::updateGpuData() {
fTriPointInstances.reset(); fTriPointInstances.reset();
fQuadPointInstances.reset(); fQuadPointInstances.reset();
if (RenderPass::kCubics == fRenderPass) { if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
double t[2], s[2]; double t[2], s[2];
fCubicType = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s); fCubicType = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s);
GrCCGeometry geometry; GrCCGeometry geometry;
@ -212,7 +217,7 @@ void CCPRGeometryView::updateGpuData() {
continue; continue;
} }
} }
} else if (RenderPass::kQuadratics == fRenderPass) { } else if (is_quadratic(fRenderPass)) {
GrCCGeometry geometry; GrCCGeometry geometry;
geometry.beginContour(fPoints[0]); geometry.beginContour(fPoints[0]);
geometry.quadraticTo(fPoints[1], fPoints[3]); geometry.quadraticTo(fPoints[1], fPoints[3]);
@ -249,7 +254,7 @@ void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) {
SkDEBUGCODE(proc.enableDebugVisualizations(kDebugBloat)); SkDEBUGCODE(proc.enableDebugVisualizations(kDebugBloat));
SkSTArray<1, GrMesh> mesh; SkSTArray<1, GrMesh> mesh;
if (RenderPass::kCubics == fView->fRenderPass) { if (GrCCCoverageProcessor::RenderPassIsCubic(fView->fRenderPass)) {
sk_sp<GrBuffer> instBuff(rp->createBuffer( sk_sp<GrBuffer> instBuff(rp->createBuffer(
fView->fQuadPointInstances.count() * sizeof(QuadPointInstance), fView->fQuadPointInstances.count() * sizeof(QuadPointInstance),
kVertex_GrBufferType, kDynamic_GrAccessPattern, kVertex_GrBufferType, kDynamic_GrAccessPattern,
@ -270,11 +275,11 @@ void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) {
} }
GrPipeline pipeline(state->drawOpArgs().fProxy, GrPipeline::ScissorState::kDisabled, GrPipeline pipeline(state->drawOpArgs().fProxy, GrPipeline::ScissorState::kDisabled,
SkBlendMode::kPlus); SkBlendMode::kSrcOver);
if (glGpu) { if (glGpu) {
glGpu->handleDirtyContext(); glGpu->handleDirtyContext();
// GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE)); GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH)); GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH));
} }
@ -313,7 +318,7 @@ private:
SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) { SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) {
for (int i = 0; i < 4; ++i) { for (int i = 0; i < 4; ++i) {
if (RenderPass::kCubics != fRenderPass && 2 == i) { if (!GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass) && 2 == i) {
continue; continue;
} }
if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) { if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) {
@ -337,7 +342,7 @@ bool CCPRGeometryView::onQuery(SkEvent* evt) {
} }
SkUnichar unichar; SkUnichar unichar;
if (SampleCode::CharQ(*evt, &unichar)) { if (SampleCode::CharQ(*evt, &unichar)) {
if (unichar >= '1' && unichar <= '4') { if (unichar >= '1' && unichar <= '6') {
fRenderPass = RenderPass(unichar - '1'); fRenderPass = RenderPass(unichar - '1');
this->updateAndInval(); this->updateAndInval();
return true; return true;

View File

@ -15,59 +15,35 @@
#include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLVertexGeoBuilder.h" #include "glsl/GrGLSLVertexGeoBuilder.h"
void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
GrProcessorKeyBuilder* b) const {
int key = (int)fRenderPass << 2;
if (WindMethod::kInstanceData == fWindMethod) {
key |= 2;
}
if (Impl::kVertexShader == fImpl) {
key |= 1;
}
#ifdef SK_DEBUG
uint32_t bloatBits;
memcpy(&bloatBits, &fDebugBloat, 4);
b->add32(bloatBits);
#endif
b->add32(key);
}
GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
std::unique_ptr<Shader> shader;
switch (fRenderPass) {
case RenderPass::kTriangles:
shader = skstd::make_unique<GrCCTriangleShader>();
break;
case RenderPass::kTriangleCorners:
shader = skstd::make_unique<GrCCTriangleCornerShader>();
break;
case RenderPass::kQuadratics:
shader = skstd::make_unique<GrCCQuadraticShader>();
break;
case RenderPass::kCubics:
shader = skstd::make_unique<GrCCCubicShader>();
break;
}
return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
: this->createVSImpl(std::move(shader));
}
void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc, void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc,
GrGLSLFPFragmentBuilder* f, GrGLSLFPFragmentBuilder* f,
const char* skOutputColor, const char* skOutputColor,
const char* skOutputCoverage) const { const char* skOutputCoverage) const {
f->codeAppendf("half coverage = 0;"); f->codeAppendf("half coverage = 0;");
this->onEmitFragmentCode(proc, f, "coverage"); this->onEmitFragmentCode(f, "coverage");
f->codeAppendf("%s.a = coverage;", skOutputColor); f->codeAppendf("%s.a = coverage;", skOutputColor);
f->codeAppendf("%s = half4(1);", skOutputCoverage); f->codeAppendf("%s = half4(1);", skOutputCoverage);
#ifdef SK_DEBUG #ifdef SK_DEBUG
if (proc.debugVisualizationsEnabled()) { if (proc.debugVisualizationsEnabled()) {
f->codeAppendf("%s = half4(-%s.a, %s.a, 0, abs(%s.a));", f->codeAppendf("%s = half4(-%s.a, %s.a, 0, 1);",
skOutputColor, skOutputColor, skOutputColor, skOutputColor); skOutputColor, skOutputColor, skOutputColor);
} }
#endif #endif
} }
void GrCCCoverageProcessor::Shader::EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder* s,
const char* leftPt,
const char* rightPt,
const char* outputDistanceEquation) {
s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
rightPt, leftPt, leftPt, rightPt);
s->codeAppend ("float nwidth = (abs(n.x) + abs(n.y)) * (bloat * 2);");
// When nwidth=0, wind must also be 0 (and coverage * wind = 0). So it doesn't matter what we
// come up with here as long as it isn't NaN or Inf.
s->codeAppend ("n /= (0 != nwidth) ? nwidth : 1;");
s->codeAppendf("%s = float3(-n, dot(n, %s) - .5);", outputDistanceEquation, leftPt);
}
void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s, void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s,
const char* leftPt, const char* leftPt,
const char* rightPt, const char* rightPt,
@ -102,3 +78,66 @@ void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGe
// GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0. // GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0.
s->codeAppendf("%s = (abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;", outputCoverage); s->codeAppendf("%s = (abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;", outputCoverage);
} }
int GrCCCoverageProcessor::Shader::DefineSoftSampleLocations(GrGLSLFPFragmentBuilder* f,
const char* samplesName) {
// Standard DX11 sample locations.
#if defined(SK_BUILD_FOR_ANDROID) || defined(SK_BUILD_FOR_IOS)
f->defineConstant("float2[8]", samplesName, "float2[8]("
"float2(+1, -3)/16, float2(-1, +3)/16, float2(+5, +1)/16, float2(-3, -5)/16, "
"float2(-5, +5)/16, float2(-7, -1)/16, float2(+3, +7)/16, float2(+7, -7)/16."
")");
return 8;
#else
f->defineConstant("float2[16]", samplesName, "float2[16]("
"float2(+1, +1)/16, float2(-1, -3)/16, float2(-3, +2)/16, float2(+4, -1)/16, "
"float2(-5, -2)/16, float2(+2, +5)/16, float2(+5, +3)/16, float2(+3, -5)/16, "
"float2(-2, +6)/16, float2( 0, -7)/16, float2(-4, -6)/16, float2(-6, +4)/16, "
"float2(-8, 0)/16, float2(+7, -4)/16, float2(+6, +7)/16, float2(-7, -8)/16."
")");
return 16;
#endif
}
void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
GrProcessorKeyBuilder* b) const {
int key = (int)fRenderPass << 2;
if (WindMethod::kInstanceData == fWindMethod) {
key |= 2;
}
if (Impl::kVertexShader == fImpl) {
key |= 1;
}
#ifdef SK_DEBUG
uint32_t bloatBits;
memcpy(&bloatBits, &fDebugBloat, 4);
b->add32(bloatBits);
#endif
b->add32(key);
}
GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
std::unique_ptr<Shader> shader;
switch (fRenderPass) {
case RenderPass::kTriangles:
shader = skstd::make_unique<GrCCTriangleShader>();
break;
case RenderPass::kTriangleCorners:
shader = skstd::make_unique<GrCCTriangleCornerShader>();
break;
case RenderPass::kQuadratics:
shader = skstd::make_unique<GrCCQuadraticHullShader>();
break;
case RenderPass::kQuadraticCorners:
shader = skstd::make_unique<GrCCQuadraticCornerShader>();
break;
case RenderPass::kCubics:
shader = skstd::make_unique<GrCCCubicHullShader>();
break;
case RenderPass::kCubicCorners:
shader = skstd::make_unique<GrCCCubicCornerShader>();
break;
}
return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
: this->createVSImpl(std::move(shader));
}

View File

@ -53,15 +53,20 @@ public:
void set(const SkPoint[4], float dx, float dy); void set(const SkPoint[4], float dx, float dy);
void set(const SkPoint&, const SkPoint&, const SkPoint&, const Sk2f& trans, float w); void set(const SkPoint&, const SkPoint&, const SkPoint&, const Sk2f& trans, float w);
}; };
// Here we enumerate every render pass needed in order to produce a complete coverage count
// mask. Triangles require two render passes: One to draw a rough outline, and a second pass to // All primitive shapes (triangles and closed, convex bezier curves) require two
// touch up the corners. This is an exhaustive list of all ccpr coverage shaders. // render passes: One to draw a rough outline of the shape, and a second pass to touch up the
// corners. Here we enumerate every render pass needed in order to produce a complete
// coverage count mask. This is an exhaustive list of all ccpr coverage shaders.
enum class RenderPass { enum class RenderPass {
kTriangles, kTriangles,
kTriangleCorners, kTriangleCorners,
kQuadratics, kQuadratics,
kQuadraticCorners,
kCubics, kCubics,
kCubicCorners
}; };
static bool RenderPassIsCubic(RenderPass);
static const char* RenderPassName(RenderPass); static const char* RenderPassName(RenderPass);
enum class WindMethod : bool { enum class WindMethod : bool {
@ -147,6 +152,13 @@ public:
void emitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, void emitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
const char* skOutputColor, const char* skOutputCoverage) const; const char* skOutputColor, const char* skOutputCoverage) const;
// Defines an equation ("dot(float3(pt, 1), distance_equation)") that is -1 on the outside
// border of a conservative raster edge and 0 on the inside. 'leftPt' and 'rightPt' must be
// ordered clockwise.
static void EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder*, const char* leftPt,
const char* rightPt,
const char* outputDistanceEquation);
// Calculates an edge's coverage at a conservative raster vertex. The edge is defined by two // Calculates an edge's coverage at a conservative raster vertex. The edge is defined by two
// clockwise-ordered points, 'leftPt' and 'rightPt'. 'rasterVertexDir' is a pair of +/-1 // clockwise-ordered points, 'leftPt' and 'rightPt'. 'rasterVertexDir' is a pair of +/-1
// values that point in the direction of conservative raster bloat, starting from an // values that point in the direction of conservative raster bloat, starting from an
@ -169,7 +181,7 @@ public:
const char* wind) = 0; const char* wind) = 0;
// Emits the fragment code that calculates a pixel's signed coverage value. // Emits the fragment code that calculates a pixel's signed coverage value.
virtual void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, virtual void onEmitFragmentCode(GrGLSLFPFragmentBuilder*,
const char* outputCoverage) const = 0; const char* outputCoverage) const = 0;
// Returns the name of a Shader's internal varying at the point where where its value is // Returns the name of a Shader's internal varying at the point where where its value is
@ -179,6 +191,12 @@ public:
SkASSERT(Scope::kVertToGeo != varying.scope()); SkASSERT(Scope::kVertToGeo != varying.scope());
return Scope::kGeoToFrag == varying.scope() ? varying.gsOut() : varying.vsOut(); return Scope::kGeoToFrag == varying.scope() ? varying.gsOut() : varying.vsOut();
} }
// Defines a global float2 array that contains MSAA sample locations as offsets from pixel
// center. Subclasses can use this for software multisampling.
//
// Returns the number of samples.
static int DefineSoftSampleLocations(GrGLSLFPFragmentBuilder* f, const char* samplesName);
}; };
class GSImpl; class GSImpl;
@ -190,7 +208,7 @@ private:
static constexpr float kAABloatRadius = 0.491111f; static constexpr float kAABloatRadius = 0.491111f;
// Number of bezier points for curves, or 3 for triangles. // Number of bezier points for curves, or 3 for triangles.
int numInputPoints() const { return RenderPass::kCubics == fRenderPass ? 4 : 3; } int numInputPoints() const { return RenderPassIsCubic(fRenderPass) ? 4 : 3; }
enum class Impl : bool { enum class Impl : bool {
kGeometryShader, kGeometryShader,
@ -251,12 +269,29 @@ inline void GrCCCoverageProcessor::QuadPointInstance::set(const SkPoint& p0, con
Sk2f::Store4(this, P0, P1, P2, W); Sk2f::Store4(this, P0, P1, P2, W);
} }
inline bool GrCCCoverageProcessor::RenderPassIsCubic(RenderPass pass) {
switch (pass) {
case RenderPass::kTriangles:
case RenderPass::kTriangleCorners:
case RenderPass::kQuadratics:
case RenderPass::kQuadraticCorners:
return false;
case RenderPass::kCubics:
case RenderPass::kCubicCorners:
return true;
}
SK_ABORT("Invalid RenderPass");
return false;
}
inline const char* GrCCCoverageProcessor::RenderPassName(RenderPass pass) { inline const char* GrCCCoverageProcessor::RenderPassName(RenderPass pass) {
switch (pass) { switch (pass) {
case RenderPass::kTriangles: return "kTriangles"; case RenderPass::kTriangles: return "kTriangles";
case RenderPass::kTriangleCorners: return "kTriangleCorners"; case RenderPass::kTriangleCorners: return "kTriangleCorners";
case RenderPass::kQuadratics: return "kQuadratics"; case RenderPass::kQuadratics: return "kQuadratics";
case RenderPass::kQuadraticCorners: return "kQuadraticCorners";
case RenderPass::kCubics: return "kCubics"; case RenderPass::kCubics: return "kCubics";
case RenderPass::kCubicCorners: return "kCubicCorners";
} }
SK_ABORT("Invalid RenderPass"); SK_ABORT("Invalid RenderPass");
return ""; return "";

View File

@ -76,7 +76,7 @@ protected:
SkSTArray<2, GrShaderVar> emitArgs; SkSTArray<2, GrShaderVar> emitArgs;
const char* position = emitArgs.emplace_back("position", kFloat2_GrSLType).c_str(); const char* position = emitArgs.emplace_back("position", kFloat2_GrSLType).c_str();
const char* coverage = nullptr; const char* coverage = nullptr;
if (RenderPass::kTriangleCorners != proc.fRenderPass) { if (RenderPass::kTriangles == proc.fRenderPass) {
coverage = emitArgs.emplace_back("coverage", kHalf_GrSLType).c_str(); coverage = emitArgs.emplace_back("coverage", kHalf_GrSLType).c_str();
} }
g->emitFunction(kVoid_GrSLType, "emitVertex", emitArgs.count(), emitArgs.begin(), [&]() { g->emitFunction(kVoid_GrSLType, "emitVertex", emitArgs.count(), emitArgs.begin(), [&]() {
@ -212,8 +212,7 @@ public:
}; };
/** /**
* Generates a conservative raster hull around a convex quadrilateral that encloses a cubic or * Generates a conservative raster around a convex quadrilateral that encloses a cubic or quadratic.
* quadratic, as well as its shared edge.
*/ */
class GSHull4Impl : public GrCCCoverageProcessor::GSImpl { class GSHull4Impl : public GrCCCoverageProcessor::GSImpl {
public: public:
@ -232,85 +231,54 @@ public:
// Visualize the input (convex) quadrilateral as a square. Paying special attention to wind, // Visualize the input (convex) quadrilateral as a square. Paying special attention to wind,
// we can identify the points by their corresponding corner. // we can identify the points by their corresponding corner.
// //
// NOTE: For the hull we split the square down the diagonal from top-right to bottom-left, // NOTE: We split the square down the diagonal from top-right to bottom-left, and generate
// and generate it in two independent invocations. All invocations, including the shared // the hull in two independent invocations. Each invocation designates the corner it will
// edge, designate the corner they will begin with as top-left. // begin with as top-left.
g->codeAppendf("bool is_shared_edge = (2 == sk_InvocationID);"); g->codeAppend ("int i = sk_InvocationID * 2;");
g->codeAppendf("int i = !is_shared_edge ? sk_InvocationID * 2 : (%s > 0 ? 3 : 0);",
wind.c_str());
g->codeAppendf("float2 topleft = %s[i];", hullPts); g->codeAppendf("float2 topleft = %s[i];", hullPts);
g->codeAppendf("float2 topright = %s[(i + (%s > 0 ? 1 : 3)) & 3];", hullPts, wind.c_str()); g->codeAppendf("float2 topright = %s[%s > 0 ? i + 1 : 3 - i];", hullPts, wind.c_str());
g->codeAppendf("float2 bottomleft = %s[(i + (%s > 0 ? 3 : 1)) & 3];", g->codeAppendf("float2 bottomleft = %s[%s > 0 ? 3 - i : i + 1];", hullPts, wind.c_str());
hullPts, wind.c_str()); g->codeAppendf("float2 bottomright = %s[2 - i];", hullPts);
g->codeAppendf("float2 bottomright = %s[(i + 2) & 3];", hullPts);
// Determine how much to outset the conservative raster hull from the relevant edges. // Determine how much to outset the conservative raster hull from the relevant edges.
g->codeAppend ("float2 leftbloat = sign(topleft - bottomleft) * bloat;"); g->codeAppend ("float2 leftbloat = float2(topleft.y > bottomleft.y ? +bloat : -bloat, "
g->codeAppend ("leftbloat = float2(0 != leftbloat.y ? leftbloat.y : leftbloat.x, " "topleft.x > bottomleft.x ? -bloat : bloat);");
"0 != leftbloat.x ? -leftbloat.x : -leftbloat.y);"); g->codeAppend ("float2 upbloat = float2(topright.y > topleft.y ? +bloat : -bloat, "
"topright.x > topleft.x ? -bloat : +bloat);");
g->codeAppend ("float2 upbloat = sign(topright - topleft) * bloat;"); g->codeAppend ("float2 rightbloat = float2(bottomright.y > topright.y ? +bloat : -bloat, "
g->codeAppend ("upbloat = float2(0 != upbloat.y ? upbloat.y : upbloat.x, " "bottomright.x > topright.x ? -bloat : +bloat);");
"0 != upbloat.x ? -upbloat.x : -upbloat.y);");
g->codeAppend ("float2 rightbloat = sign(bottomright - topright) * bloat;");
g->codeAppend ("rightbloat = float2(0 != rightbloat.y ? rightbloat.y : rightbloat.x, "
"0 != rightbloat.x ? -rightbloat.x : -rightbloat.y);");
// The hull raster has a coverage of +1 all around.
g->codeAppend ("half2 coverages = half2(+1);");
g->codeAppend ("if (is_shared_edge) {");
// On bloat vertices along the shared edge that fall outside the input
// points, ramp coverage to 0. We do this by using coverage=-1 to erase
// what the hull just wrote.
g->codeAppend ( "coverages = half2(-1, 0);");
// Reassign bloats to characterize a conservative raster around just the
// shared edge, rather than the entire hull.
g->codeAppend ( "leftbloat = rightbloat = -upbloat;");
g->codeAppend ("}");
// Here we generate the conservative raster geometry. It is the convex hull of 4 pixel-size // Here we generate the conservative raster geometry. It is the convex hull of 4 pixel-size
// boxes centered on the input points, split evenly between two invocations. This translates // boxes centered on the input points, split evenly between two invocations. This translates
// to a polygon with either one, two, or three vertices at each input point, depending on // to a polygon with either one, two, or three vertices at each input point, depending on
// how sharp the corner is. The shared edge raster is the convex hull of 2 pixel-size boxes, // how sharp the corner is. For more details on conservative raster, see:
// one at each endpoint. For more details on conservative raster, see:
// https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
g->codeAppendf("bool2 left_up_notequal = notEqual(leftbloat, upbloat);"); g->codeAppendf("bool2 left_up_notequal = notEqual(leftbloat, upbloat);");
g->codeAppend ("if (all(left_up_notequal)) {"); g->codeAppend ("if (all(left_up_notequal)) {");
// The top-left corner will have three conservative raster vertices. // The top-left corner will have three conservative raster vertices.
// Emit the middle one first to the triangle strip. // Emit the middle one first to the triangle strip.
g->codeAppendf( "%s(topleft + float2(-leftbloat.y, leftbloat.x), coverages[0]);", g->codeAppendf( "%s(topleft + float2(-leftbloat.y, leftbloat.x));", emitVertexFn);
emitVertexFn);
g->codeAppend ("}"); g->codeAppend ("}");
g->codeAppend ("if (any(left_up_notequal)) {"); g->codeAppend ("if (any(left_up_notequal)) {");
// Second conservative raster vertex for the top-left corner. // Second conservative raster vertex for the top-left corner.
g->codeAppendf( "%s(topleft + leftbloat, coverages[1]);", emitVertexFn); g->codeAppendf( "%s(topleft + leftbloat);", emitVertexFn);
g->codeAppend ("}"); g->codeAppend ("}");
g->codeAppendf("%s(topleft + upbloat, coverages[0]);", emitVertexFn);
g->codeAppend ("if (!is_shared_edge) {");
// Main interior body of this invocation's half of the hull. // Main interior body of this invocation's half of the hull.
g->codeAppendf( "%s(bottomleft + leftbloat, +1);", emitVertexFn); g->codeAppendf("%s(topleft + upbloat);", emitVertexFn);
g->codeAppend ("}"); g->codeAppendf("%s(bottomleft + leftbloat);", emitVertexFn);
g->codeAppendf("%s(topright + upbloat);", emitVertexFn);
g->codeAppendf("%s(topright + (is_shared_edge ? rightbloat : upbloat), coverages[1]);",
emitVertexFn);
// Remaining two conservative raster vertices for the top-right corner. // Remaining two conservative raster vertices for the top-right corner.
g->codeAppendf("bool2 up_right_notequal = notEqual(upbloat, rightbloat);"); g->codeAppendf("bool2 up_right_notequal = notEqual(upbloat, rightbloat);");
g->codeAppend ("if (any(up_right_notequal)) {"); g->codeAppend ("if (any(up_right_notequal)) {");
g->codeAppendf( "%s(topright + (is_shared_edge ? upbloat : rightbloat), " g->codeAppendf( "%s(topright + rightbloat);", emitVertexFn);
"coverages[0]);", emitVertexFn);
g->codeAppend ("}"); g->codeAppend ("}");
g->codeAppend ("if (all(up_right_notequal)) {"); g->codeAppend ("if (all(up_right_notequal)) {");
g->codeAppendf( "%s(topright + float2(-upbloat.y, upbloat.x), coverages[0]);", g->codeAppendf( "%s(topright + float2(-upbloat.y, upbloat.x));", emitVertexFn);
emitVertexFn);
g->codeAppend ("}"); g->codeAppend ("}");
// 3 invocations: 2 hull invocations and 1 shared edge. g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 2);
g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 3);
} }
}; };
@ -344,15 +312,17 @@ private:
void GrCCCoverageProcessor::initGS() { void GrCCCoverageProcessor::initGS() {
SkASSERT(Impl::kGeometryShader == fImpl); SkASSERT(Impl::kGeometryShader == fImpl);
if (RenderPass::kCubics == fRenderPass || WindMethod::kInstanceData == fWindMethod) { if (RenderPassIsCubic(fRenderPass) || WindMethod::kInstanceData == fWindMethod) {
SkASSERT(WindMethod::kCrossProduct == fWindMethod || 3 == this->numInputPoints()); SkASSERT(WindMethod::kCrossProduct == fWindMethod || 3 == this->numInputPoints());
this->addVertexAttrib("x_or_y_values", kFloat4_GrVertexAttribType); this->addVertexAttrib("x_or_y_values", kFloat4_GrVertexAttribType);
SkASSERT(sizeof(QuadPointInstance) == this->getVertexStride() * 2); SkASSERT(sizeof(QuadPointInstance) == this->getVertexStride() * 2);
SkASSERT(offsetof(QuadPointInstance, fY) == this->getVertexStride()); SkASSERT(offsetof(QuadPointInstance, fY) == this->getVertexStride());
GR_STATIC_ASSERT(0 == offsetof(QuadPointInstance, fX));
} else { } else {
this->addVertexAttrib("x_or_y_values", kFloat3_GrVertexAttribType); this->addVertexAttrib("x_or_y_values", kFloat3_GrVertexAttribType);
SkASSERT(sizeof(TriPointInstance) == this->getVertexStride() * 2); SkASSERT(sizeof(TriPointInstance) == this->getVertexStride() * 2);
SkASSERT(offsetof(TriPointInstance, fY) == this->getVertexStride()); SkASSERT(offsetof(TriPointInstance, fY) == this->getVertexStride());
GR_STATIC_ASSERT(0 == offsetof(TriPointInstance, fX));
} }
this->setWillUseGeoShader(); this->setWillUseGeoShader();
} }
@ -378,6 +348,9 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGSImpl(std::unique_ptr<Sh
case RenderPass::kQuadratics: case RenderPass::kQuadratics:
case RenderPass::kCubics: case RenderPass::kCubics:
return new GSHull4Impl(std::move(shadr)); return new GSHull4Impl(std::move(shadr));
case RenderPass::kQuadraticCorners:
case RenderPass::kCubicCorners:
return new GSCornerImpl(std::move(shadr), 2);
} }
SK_ABORT("Invalid RenderPass"); SK_ABORT("Invalid RenderPass");
return nullptr; return nullptr;

View File

@ -92,13 +92,13 @@ protected:
static constexpr int kVertexData_LeftNeighborIdShift = 9; static constexpr int kVertexData_LeftNeighborIdShift = 9;
static constexpr int kVertexData_RightNeighborIdShift = 7; static constexpr int kVertexData_RightNeighborIdShift = 7;
static constexpr int kVertexData_BloatIdxShift = 5; static constexpr int kVertexData_BloatIdxShift = 5;
static constexpr int kVertexData_InvertNegativeCoverageBit = 1 << 4; static constexpr int kVertexData_InvertCoverageBit = 1 << 4;
static constexpr int kVertexData_IsEdgeBit = 1 << 3; static constexpr int kVertexData_IsEdgeBit = 1 << 3;
static constexpr int kVertexData_IsHullBit = 1 << 2; static constexpr int kVertexData_IsHullBit = 1 << 2;
/** /**
* Vertex data tells the shader how to offset vertices for conservative raster, and how/whether to * Vertex data tells the shader how to offset vertices for conservative raster, and how/whether to
* calculate coverage values. See VSHullAndEdgeImpl. * calculate initial coverage values for edges. See VSHullAndEdgeImpl.
*/ */
static constexpr int32_t pack_vertex_data(int32_t leftNeighborID, int32_t rightNeighborID, static constexpr int32_t pack_vertex_data(int32_t leftNeighborID, int32_t rightNeighborID,
int32_t bloatIdx, int32_t cornerID, int32_t bloatIdx, int32_t cornerID,
@ -114,12 +114,15 @@ static constexpr int32_t hull_vertex_data(int32_t cornerID, int32_t bloatIdx, in
kVertexData_IsHullBit); kVertexData_IsHullBit);
} }
static constexpr int32_t edge_vertex_data(int32_t leftID, int rightID, int32_t bloatIdx, static constexpr int32_t edge_vertex_data(int32_t edgeID, int32_t endptIdx, int32_t bloatIdx,
int32_t extraData = 0) { int n) {
return pack_vertex_data(leftID, leftID, bloatIdx, rightID, kVertexData_IsEdgeBit | extraData); return pack_vertex_data(0 == endptIdx ? (edgeID + 1) % n : edgeID,
0 == endptIdx ? (edgeID + 1) % n : edgeID,
bloatIdx, 0 == endptIdx ? edgeID : (edgeID + 1) % n,
kVertexData_IsEdgeBit |
(!endptIdx ? kVertexData_InvertCoverageBit : 0));
} }
static constexpr int32_t kHull3AndEdgeVertices[] = { static constexpr int32_t kHull3AndEdgeVertices[] = {
hull_vertex_data(0, 0, 3), hull_vertex_data(0, 0, 3),
hull_vertex_data(0, 1, 3), hull_vertex_data(0, 1, 3),
@ -131,26 +134,26 @@ static constexpr int32_t kHull3AndEdgeVertices[] = {
hull_vertex_data(2, 1, 3), hull_vertex_data(2, 1, 3),
hull_vertex_data(2, 2, 3), hull_vertex_data(2, 2, 3),
edge_vertex_data(0, 1, 0), edge_vertex_data(0, 0, 0, 3),
edge_vertex_data(0, 1, 1), edge_vertex_data(0, 0, 1, 3),
edge_vertex_data(0, 1, 2), edge_vertex_data(0, 0, 2, 3),
edge_vertex_data(1, 0, 0, kVertexData_InvertNegativeCoverageBit), edge_vertex_data(0, 1, 0, 3),
edge_vertex_data(1, 0, 1, kVertexData_InvertNegativeCoverageBit), edge_vertex_data(0, 1, 1, 3),
edge_vertex_data(1, 0, 2, kVertexData_InvertNegativeCoverageBit), edge_vertex_data(0, 1, 2, 3),
edge_vertex_data(1, 2, 0), edge_vertex_data(1, 0, 0, 3),
edge_vertex_data(1, 2, 1), edge_vertex_data(1, 0, 1, 3),
edge_vertex_data(1, 2, 2), edge_vertex_data(1, 0, 2, 3),
edge_vertex_data(2, 1, 0, kVertexData_InvertNegativeCoverageBit), edge_vertex_data(1, 1, 0, 3),
edge_vertex_data(2, 1, 1, kVertexData_InvertNegativeCoverageBit), edge_vertex_data(1, 1, 1, 3),
edge_vertex_data(2, 1, 2, kVertexData_InvertNegativeCoverageBit), edge_vertex_data(1, 1, 2, 3),
edge_vertex_data(2, 0, 0), edge_vertex_data(2, 0, 0, 3),
edge_vertex_data(2, 0, 1), edge_vertex_data(2, 0, 1, 3),
edge_vertex_data(2, 0, 2), edge_vertex_data(2, 0, 2, 3),
edge_vertex_data(0, 2, 0, kVertexData_InvertNegativeCoverageBit), edge_vertex_data(2, 1, 0, 3),
edge_vertex_data(0, 2, 1, kVertexData_InvertNegativeCoverageBit), edge_vertex_data(2, 1, 1, 3),
edge_vertex_data(0, 2, 2, kVertexData_InvertNegativeCoverageBit), edge_vertex_data(2, 1, 2, 3),
}; };
GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeVertexBufferKey); GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeVertexBufferKey);
@ -198,7 +201,7 @@ static constexpr uint16_t kHull3AndEdgeIndicesAsTris[] = {
GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeIndexBufferKey); GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeIndexBufferKey);
static constexpr int32_t kHull4AndEdgeVertices[] = { static constexpr int32_t kHull4Vertices[] = {
hull_vertex_data(0, 0, 4), hull_vertex_data(0, 0, 4),
hull_vertex_data(0, 1, 4), hull_vertex_data(0, 1, 4),
hull_vertex_data(0, 2, 4), hull_vertex_data(0, 2, 4),
@ -212,23 +215,17 @@ static constexpr int32_t kHull4AndEdgeVertices[] = {
hull_vertex_data(3, 1, 4), hull_vertex_data(3, 1, 4),
hull_vertex_data(3, 2, 4), hull_vertex_data(3, 2, 4),
edge_vertex_data(0, 3, 0, kVertexData_InvertNegativeCoverageBit), // No edges for now (beziers don't use edges).
edge_vertex_data(0, 3, 1),
edge_vertex_data(0, 3, 2),
edge_vertex_data(3, 0, 0),
edge_vertex_data(3, 0, 1),
edge_vertex_data(3, 0, 2, kVertexData_InvertNegativeCoverageBit),
}; };
GR_DECLARE_STATIC_UNIQUE_KEY(gHull4AndEdgeVertexBufferKey); GR_DECLARE_STATIC_UNIQUE_KEY(gHull4VertexBufferKey);
static constexpr uint16_t kHull4AndEdgeIndicesAsStrips[] = { static constexpr uint16_t kHull4IndicesAsStrips[] = {
1, 0, 2, 11, 3, 5, 4, kRestartStrip, // First half of the hull (split diagonally). 1, 0, 2, 11, 3, 5, 4, kRestartStrip, // First half of the hull (split diagonally).
7, 6, 8, 5, 9, 11, 10, kRestartStrip, // Second half of the hull. 7, 6, 8, 5, 9, 11, 10 // Second half of the hull.
13, 12, 14, 17, 15, 16 // Shared edge.
}; };
static constexpr uint16_t kHull4AndEdgeIndicesAsTris[] = { static constexpr uint16_t kHull4IndicesAsTris[] = {
// First half of the hull (split diagonally). // First half of the hull (split diagonally).
1, 0, 2, 1, 0, 2,
0, 11, 2, 0, 11, 2,
@ -242,30 +239,23 @@ static constexpr uint16_t kHull4AndEdgeIndicesAsTris[] = {
8, 5, 9, 8, 5, 9,
5, 11, 9, 5, 11, 9,
9, 11, 10, 9, 11, 10,
// Shared edge.
13, 12, 14,
12, 17, 14,
14, 17, 15,
17, 16, 15,
}; };
GR_DECLARE_STATIC_UNIQUE_KEY(gHull4AndEdgeIndexBufferKey); GR_DECLARE_STATIC_UNIQUE_KEY(gHull4IndexBufferKey);
/** /**
* Generates a conservative raster hull around a triangle or curve. For triangles we generate * Generates a conservative raster hull around a convex polygon. For triangles we generate
* additional conservative rasters with coverage ramps around the edges. For curves we * additional conservative rasters around the edges and calculate coverage ramps.
* generate an additional raster with coverage ramps around its shared edge.
* *
* Triangle rough outlines are drawn in two steps: (1) Draw a conservative raster of the entire * Triangle rough outlines are drawn in two steps: (1) draw a conservative raster of the entire
* triangle, with a coverage of +1. (2) Draw conservative rasters around each edge, with a * triangle, with a coverage of +1, and (2) draw conservative rasters around each edge, with a
* coverage ramp from -1 to 0. These edge coverage values convert jagged conservative raster edges * coverage ramp from -1 to 0. These edge coverage values convert jagged conservative raster edges
* into smooth, antialiased ones. The final corners get touched up in a later step by VSCornerImpl. * into smooth, antialiased ones.
* *
* Curves are drawn in two steps: (1) Draw a conservative raster around the input points, passing * Curve rough outlines are just the conservative raster of a convex quadrilateral that encloses the
* coverage=+1 to the Shader. (2) Draw an additional conservative raster around the curve's shared * curve. The Shader takes care of everything else for now.
* edge, using coverage=-1 at bloat vertices that fall outside the input points. This erases what *
* the hull just wrote and ramps coverage to zero. * The final corners get touched up in a later step by VSCornerImpl.
*/ */
class VSHullAndEdgeImpl : public GrCCCoverageProcessor::VSImpl { class VSHullAndEdgeImpl : public GrCCCoverageProcessor::VSImpl {
public: public:
@ -294,9 +284,10 @@ public:
// Here we generate conservative raster geometry for the input polygon. It is the convex // Here we generate conservative raster geometry for the input polygon. It is the convex
// hull of N pixel-size boxes, one centered on each the input points. Each corner has three // hull of N pixel-size boxes, one centered on each the input points. Each corner has three
// vertices, where one or two may cause degenerate triangles. The vertex data tells us how // vertices, where one or two may cause degenerate triangles. The vertex data tells us how
// to offset each vertex. Edges are also handled here using the same concept. For more // to offset each vertex. For more details on conservative raster, see:
// details on conservative raster, see:
// https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
//
// Triangle edges are also handled here using the same concept (see kHull3AndEdgeVertices).
v->codeAppendf("float2 corner = %s[clockwise_indices & 3];", hullPts); v->codeAppendf("float2 corner = %s[clockwise_indices & 3];", hullPts);
v->codeAppendf("float2 left = %s[clockwise_indices >> %i];", v->codeAppendf("float2 left = %s[clockwise_indices >> %i];",
hullPts, kVertexData_LeftNeighborIdShift); hullPts, kVertexData_LeftNeighborIdShift);
@ -333,32 +324,29 @@ public:
// fallthru. // fallthru.
v->codeAppend ("}"); v->codeAppend ("}");
v->codeAppend ("float2 vertex = corner + bloatdir * bloat;"); // For triangles, we also emit coverage in order to handle edges and corners.
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex"); const char* coverage = nullptr;
// The hull has a coverage of +1 all around.
v->codeAppend ("half coverage = +1;");
if (3 == fNumSides) { if (3 == fNumSides) {
v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge? v->codeAppend ("half coverage;");
proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit);
Shader::CalcEdgeCoverageAtBloatVertex(v, "left", "corner", "bloatdir", "coverage"); Shader::CalcEdgeCoverageAtBloatVertex(v, "left", "corner", "bloatdir", "coverage");
v->codeAppend ("}"); v->codeAppendf("if (0 != (%s & %i)) {", // Are we the opposite endpoint of an edge?
} else {
SkASSERT(4 == fNumSides);
v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge?
proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit);
v->codeAppend ( "coverage = -1;");
v->codeAppend ("}");
}
v->codeAppendf("if (0 != (%s & %i)) {", // Invert coverage?
proc.getAttrib(kAttribIdx_VertexData).fName, proc.getAttrib(kAttribIdx_VertexData).fName,
kVertexData_InvertNegativeCoverageBit); kVertexData_InvertCoverageBit);
v->codeAppend ( "coverage = -1 - coverage;"); v->codeAppend ( "coverage = -1 - coverage;");
v->codeAppend ("}"); v->codeAppend ("}");
return "coverage"; v->codeAppendf("if (0 != (%s & %i)) {", // Are we a hull vertex?
proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsHullBit);
v->codeAppend ( "coverage = +1;"); // Hull coverage is +1 all around.
v->codeAppend ("}");
coverage = "coverage";
}
v->codeAppend ("float2 vertex = corner + bloatdir * bloat;");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
return coverage;
} }
private: private:
@ -437,7 +425,31 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
break; break;
} }
case RenderPass::kTriangleCorners: { case RenderPass::kQuadratics:
case RenderPass::kCubics: {
GR_DEFINE_STATIC_UNIQUE_KEY(gHull4VertexBufferKey);
fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType, sizeof(kHull4Vertices),
kHull4Vertices, gHull4VertexBufferKey);
GR_DEFINE_STATIC_UNIQUE_KEY(gHull4IndexBufferKey);
if (caps.usePrimitiveRestart()) {
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
sizeof(kHull4IndicesAsStrips),
kHull4IndicesAsStrips,
gHull4IndexBufferKey);
fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4IndicesAsStrips);
} else {
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
sizeof(kHull4IndicesAsTris),
kHull4IndicesAsTris,
gHull4IndexBufferKey);
fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4IndicesAsTris);
}
break;
}
case RenderPass::kTriangleCorners:
case RenderPass::kQuadraticCorners:
case RenderPass::kCubicCorners: {
GR_DEFINE_STATIC_UNIQUE_KEY(gCornerIndexBufferKey); GR_DEFINE_STATIC_UNIQUE_KEY(gCornerIndexBufferKey);
if (caps.usePrimitiveRestart()) { if (caps.usePrimitiveRestart()) {
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType, fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
@ -452,35 +464,14 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
gCornerIndexBufferKey); gCornerIndexBufferKey);
fNumIndicesPerInstance = SK_ARRAY_COUNT(kCornerIndicesAsTris); fNumIndicesPerInstance = SK_ARRAY_COUNT(kCornerIndicesAsTris);
} }
break; if (RenderPass::kTriangleCorners != fRenderPass) {
} fNumIndicesPerInstance = fNumIndicesPerInstance * 2/3;
case RenderPass::kQuadratics:
case RenderPass::kCubics: {
GR_DEFINE_STATIC_UNIQUE_KEY(gHull4AndEdgeVertexBufferKey);
fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType,
sizeof(kHull4AndEdgeVertices),
kHull4AndEdgeVertices,
gHull4AndEdgeVertexBufferKey);
GR_DEFINE_STATIC_UNIQUE_KEY(gHull4AndEdgeIndexBufferKey);
if (caps.usePrimitiveRestart()) {
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
sizeof(kHull4AndEdgeIndicesAsStrips),
kHull4AndEdgeIndicesAsStrips,
gHull4AndEdgeIndexBufferKey);
fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4AndEdgeIndicesAsStrips);
} else {
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
sizeof(kHull4AndEdgeIndicesAsTris),
kHull4AndEdgeIndicesAsTris,
gHull4AndEdgeIndexBufferKey);
fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4AndEdgeIndicesAsTris);
} }
break; break;
} }
} }
if (RenderPass::kCubics == fRenderPass || WindMethod::kInstanceData == fWindMethod) { if (RenderPassIsCubic(fRenderPass) || WindMethod::kInstanceData == fWindMethod) {
SkASSERT(WindMethod::kCrossProduct == fWindMethod || 3 == this->numInputPoints()); SkASSERT(WindMethod::kCrossProduct == fWindMethod || 3 == this->numInputPoints());
SkASSERT(kAttribIdx_X == this->numAttribs()); SkASSERT(kAttribIdx_X == this->numAttribs());
@ -534,11 +525,13 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createVSImpl(std::unique_ptr<Sh
switch (fRenderPass) { switch (fRenderPass) {
case RenderPass::kTriangles: case RenderPass::kTriangles:
return new VSHullAndEdgeImpl(std::move(shadr), 3); return new VSHullAndEdgeImpl(std::move(shadr), 3);
case RenderPass::kTriangleCorners:
return new VSCornerImpl(std::move(shadr));
case RenderPass::kQuadratics: case RenderPass::kQuadratics:
case RenderPass::kCubics: case RenderPass::kCubics:
return new VSHullAndEdgeImpl(std::move(shadr), 4); return new VSHullAndEdgeImpl(std::move(shadr), 4);
case RenderPass::kTriangleCorners:
case RenderPass::kQuadraticCorners:
case RenderPass::kCubicCorners:
return new VSCornerImpl(std::move(shadr));
} }
SK_ABORT("Invalid RenderPass"); SK_ABORT("Invalid RenderPass");
return nullptr; return nullptr;

View File

@ -13,8 +13,8 @@
using Shader = GrCCCoverageProcessor::Shader; using Shader = GrCCCoverageProcessor::Shader;
void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
const char* /*repetitionID*/, const char* /*wind*/, const char* repetitionID, const char* wind,
GeometryVars*) const { GeometryVars* vars) const {
// Find the cubic's power basis coefficients. // Find the cubic's power basis coefficients.
s->codeAppendf("float2x4 C = float4x4(-1, 3, -3, 1, " s->codeAppendf("float2x4 C = float4x4(-1, 3, -3, 1, "
" 3, -6, 3, 0, " " 3, -6, 3, 0, "
@ -58,44 +58,118 @@ void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
// Evaluate the cubic at T=.5 for a mid-ish point. // Evaluate the cubic at T=.5 for a mid-ish point.
s->codeAppendf("float2 midpoint = %s * float4(.125, .375, .375, .125);", pts); s->codeAppendf("float2 midpoint = %s * float4(.125, .375, .375, .125);", pts);
// Orient the KLM matrix so L & M are both positive on the side of the curve we wish to fill. // Orient the KLM matrix so L & M have matching signs on the side of the curve we wish to fill.
// We give L & M both the same sign as wind, in order to pass this value to the fragment shader.
// (Cubics are pre-chopped such that L & M do not change sign within any individual segment).
s->codeAppendf("float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));", s->codeAppendf("float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));",
fKLMMatrix.c_str(), fKLMMatrix.c_str()); fKLMMatrix.c_str(), fKLMMatrix.c_str());
s->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, " s->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, "
"0, orientation[0], 0, " "0, orientation[0] * %s, 0, "
"0, 0, orientation[1]);", fKLMMatrix.c_str()); "0, 0, orientation[1] * %s);", fKLMMatrix.c_str(), wind, wind);
// Determine the amount of additional coverage to subtract out for the flat edge (P3 -> P0).
s->declareGlobal(fEdgeDistanceEquation);
s->codeAppendf("short edgeidx0 = %s > 0 ? 3 : 0;", wind);
s->codeAppendf("float2 edgept0 = %s[edgeidx0];", pts);
s->codeAppendf("float2 edgept1 = %s[3 - edgeidx0];", pts);
Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
this->onEmitSetupCode(s, pts, repetitionID, vars);
} }
void GrCCCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, void GrCCCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code, GrGLSLVarying::Scope scope, SkString* code,
const char* position, const char* inputCoverage, const char* position, const char* inputCoverage,
const char* wind) { const char* /*wind*/) {
SkASSERT(!inputCoverage);
fKLMD.reset(kFloat4_GrSLType, scope);
varyingHandler->addVarying("klmd", &fKLMD);
code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str()); code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
code->appendf("float d = dot(float3(%s, 1), %s);", position, fEdgeDistanceEquation.c_str());
code->appendf("%s = float4(klm, d);", OutName(fKLMD));
fKLMW.reset(kFloat4_GrSLType, scope); this->onEmitVaryings(varyingHandler, scope, code);
varyingHandler->addVarying("klmw", &fKLMW); }
code->appendf("%s.xyz = klm;", OutName(fKLMW));
code->appendf("%s.w = %s * %s;", OutName(fKLMW), inputCoverage, wind);
void GrCCCubicShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const {
f->codeAppendf("float k = %s.x, l = %s.y, m = %s.z, d = %s.w;",
fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn());
this->emitCoverage(f, outputCoverage);
// Wind is the sign of both L and/or M. Take the sign of whichever has the larger magnitude.
// (In reality, either would be fine because we chop cubics with more than a half pixel of
// padding around the L & M lines, so neither should approach zero.)
f->codeAppend ("half wind = sign(l + m);");
f->codeAppendf("%s *= wind;", outputCoverage);
}
void GrCCCubicHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code) {
fGradMatrix.reset(kFloat2x2_GrSLType, scope); fGradMatrix.reset(kFloat2x2_GrSLType, scope);
varyingHandler->addVarying("grad_matrix", &fGradMatrix); varyingHandler->addVarying("grad_matrix", &fGradMatrix);
// "klm" was just defined by the base class.
code->appendf("%s[0] = 3 * klm[0] * %s[0].xy;", OutName(fGradMatrix), fKLMMatrix.c_str()); code->appendf("%s[0] = 3 * klm[0] * %s[0].xy;", OutName(fGradMatrix), fKLMMatrix.c_str());
code->appendf("%s[1] = -klm[1] * %s[2].xy - klm[2] * %s[1].xy;", code->appendf("%s[1] = -klm[1] * %s[2].xy - klm[2] * %s[1].xy;",
OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str()); OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str());
} }
void GrCCCubicShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc, void GrCCCubicHullShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const { const char* outputCoverage) const {
f->codeAppendf("float k = %s.x, l = %s.y, m = %s.z;", // k,l,m,d are defined by the base class.
fKLMW.fsIn(), fKLMW.fsIn(), fKLMW.fsIn());
f->codeAppend ("float f = k*k*k - l*m;"); f->codeAppend ("float f = k*k*k - l*m;");
f->codeAppendf("float2 grad_f = %s * float2(k, 1);", fGradMatrix.fsIn()); f->codeAppendf("float2 grad_f = %s * float2(k, 1);", fGradMatrix.fsIn());
f->codeAppend ("float d = f * inversesqrt(dot(grad_f, grad_f));"); f->codeAppendf("%s = clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);", outputCoverage);
#ifdef SK_DEBUG f->codeAppendf("%s += min(d, 0);", outputCoverage); // Flat edge opposite the curve.
if (proc.debugVisualizationsEnabled()) {
f->codeAppendf("d /= %f;", proc.debugBloat());
} }
#endif
f->codeAppendf("%s = clamp(0.5 - d, 0, 1) * %s.w;", outputCoverage, fKLMW.fsIn()); void GrCCCubicCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
const char* repetitionID, GeometryVars* vars) const {
s->codeAppendf("float2 corner = %s[%s * 3];", pts, repetitionID);
vars->fCornerVars.fPoint = "corner";
}
void GrCCCubicCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code) {
using Interpolation = GrGLSLVaryingHandler::Interpolation;
fdKLMDdx.reset(kFloat4_GrSLType, scope);
varyingHandler->addVarying("dklmddx", &fdKLMDdx, Interpolation::kCanBeFlat);
code->appendf("%s = float4(%s[0].x, %s[1].x, %s[2].x, %s.x);",
OutName(fdKLMDdx), fKLMMatrix.c_str(), fKLMMatrix.c_str(),
fKLMMatrix.c_str(), fEdgeDistanceEquation.c_str());
fdKLMDdy.reset(kFloat4_GrSLType, scope);
varyingHandler->addVarying("dklmddy", &fdKLMDdy, Interpolation::kCanBeFlat);
code->appendf("%s = float4(%s[0].y, %s[1].y, %s[2].y, %s.y);",
OutName(fdKLMDdy), fKLMMatrix.c_str(), fKLMMatrix.c_str(),
fKLMMatrix.c_str(), fEdgeDistanceEquation.c_str());
}
void GrCCCubicCornerShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const {
f->codeAppendf("float2x4 grad_klmd = float2x4(%s, %s);", fdKLMDdx.fsIn(), fdKLMDdy.fsIn());
// Erase what the previous hull shader wrote. We don't worry about the two corners falling on
// the same pixel because those cases should have been weeded out by this point.
// k,l,m,d are defined by the base class.
f->codeAppend ("float f = k*k*k - l*m;");
f->codeAppend ("float2 grad_f = float3(3*k*k, -m, -l) * float2x3(grad_klmd);");
f->codeAppendf("%s = -clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);",
outputCoverage);
f->codeAppendf("%s -= d;", outputCoverage);
// Use software msaa to estimate actual coverage at the corner pixels.
const int sampleCount = Shader::DefineSoftSampleLocations(f, "samples");
f->codeAppendf("float4 klmd_center = float4(%s.xyz, %s.w + 0.5);",
fKLMD.fsIn(), fKLMD.fsIn());
f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
f->codeAppend ( "float4 klmd = grad_klmd * samples[i] + klmd_center;");
f->codeAppend ( "half f = klmd.y * klmd.z - klmd.x * klmd.x * klmd.x;");
f->codeAppendf( "%s += all(greaterThan(half4(f, klmd.y, klmd.z, klmd.w), "
"half4(0))) ? %f : 0;",
outputCoverage, 1.0 / sampleCount);
f->codeAppend ("}");
} }

View File

@ -24,17 +24,37 @@
class GrCCCubicShader : public GrCCCoverageProcessor::Shader { class GrCCCubicShader : public GrCCCoverageProcessor::Shader {
protected: protected:
void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID, void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
const char* wind, GeometryVars*) const override; const char* wind, GeometryVars*) const final;
virtual void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
GeometryVars*) const {}
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code, void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* inputCoverage, const char* wind) override; const char* position, const char* inputCoverage, const char* wind) final;
virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) = 0;
void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const final;
const char* outputCoverage) const override; virtual void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const = 0;
GrShaderVar fKLMMatrix{"klm_matrix", kFloat3x3_GrSLType}; GrShaderVar fKLMMatrix{"klm_matrix", kFloat3x3_GrSLType};
GrGLSLVarying fKLMW; GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType};
GrGLSLVarying fKLMD;
};
class GrCCCubicHullShader : public GrCCCubicShader {
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
GrGLSLVarying fGradMatrix; GrGLSLVarying fGradMatrix;
}; };
class GrCCCubicCornerShader : public GrCCCubicShader {
void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
GeometryVars*) const override;
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
GrGLSLVarying fdKLMDdx;
GrGLSLVarying fdKLMDdy;
};
#endif #endif

View File

@ -530,11 +530,15 @@ void GrCCPathParser::drawCoverageCount(GrOpFlushState* flushState, CoverageCount
if (batchTotalCounts.fQuadratics) { if (batchTotalCounts.fQuadratics) {
this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadratics, this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadratics,
WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds); WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds);
this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadraticCorners,
WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds);
} }
if (batchTotalCounts.fCubics) { if (batchTotalCounts.fCubics) {
this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubics, this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubics,
WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds); WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds);
this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubicCorners,
WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds);
} }
} }

View File

@ -14,7 +14,7 @@
using Shader = GrCCCoverageProcessor::Shader; using Shader = GrCCCoverageProcessor::Shader;
void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
const char* /*repetitionID*/, const char* /*wind*/, const char* repetitionID, const char* wind,
GeometryVars* vars) const { GeometryVars* vars) const {
s->declareGlobal(fCanonicalMatrix); s->declareGlobal(fCanonicalMatrix);
s->codeAppendf("%s = float3x3(0.0, 0, 1, " s->codeAppendf("%s = float3x3(0.0, 0, 1, "
@ -25,6 +25,41 @@ void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* p
"%s[2], 1));", "%s[2], 1));",
fCanonicalMatrix.c_str(), pts, pts, pts); fCanonicalMatrix.c_str(), pts, pts, pts);
s->declareGlobal(fEdgeDistanceEquation);
s->codeAppendf("float2 edgept0 = %s[%s > 0 ? 2 : 0];", pts, wind);
s->codeAppendf("float2 edgept1 = %s[%s > 0 ? 0 : 2];", pts, wind);
Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
this->onEmitSetupCode(s, pts, repetitionID, vars);
}
void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code,
const char* position, const char* inputCoverage,
const char* wind) {
SkASSERT(!inputCoverage);
fXYDW.reset(kFloat4_GrSLType, scope);
varyingHandler->addVarying("xydw", &fXYDW);
code->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
OutName(fXYDW), fCanonicalMatrix.c_str(), position);
code->appendf("%s.z = dot(%s.xy, %s) + %s.z;",
OutName(fXYDW), fEdgeDistanceEquation.c_str(), position,
fEdgeDistanceEquation.c_str());
code->appendf("%s.w = %s;", OutName(fXYDW), wind);
this->onEmitVaryings(varyingHandler, scope, code);
}
void GrCCQuadraticShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const {
this->emitCoverage(f, outputCoverage);
f->codeAppendf("%s *= %s.w;", outputCoverage, fXYDW.fsIn()); // Sign by wind.
}
void GrCCQuadraticHullShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
const char* /*repetitionID*/,
GeometryVars* vars) const {
// Find the T value whose tangent is halfway between the tangents at the endpionts. // Find the T value whose tangent is halfway between the tangents at the endpionts.
s->codeAppendf("float2 tan0 = %s[1] - %s[0];", pts, pts); s->codeAppendf("float2 tan0 = %s[1] - %s[0];", pts, pts);
s->codeAppendf("float2 tan1 = %s[2] - %s[1];", pts, pts); s->codeAppendf("float2 tan1 = %s[2] - %s[1];", pts, pts);
@ -41,31 +76,66 @@ void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* p
vars->fHullVars.fAlternatePoints = "quadratic_hull"; vars->fHullVars.fAlternatePoints = "quadratic_hull";
} }
void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, void GrCCQuadraticHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code, GrGLSLVarying::Scope scope, SkString* code) {
const char* position, const char* inputCoverage, fGrad.reset(kFloat2_GrSLType, scope);
const char* wind) { varyingHandler->addVarying("grad", &fGrad);
fCoords.reset(kFloat4_GrSLType, scope); code->appendf("%s = float2(2 * %s.x, -1) * float2x2(%s);",
varyingHandler->addVarying("coords", &fCoords); OutName(fGrad), OutName(fXYDW), fCanonicalMatrix.c_str());
code->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
OutName(fCoords), fCanonicalMatrix.c_str(), position);
code->appendf("%s.zw = float2(2 * %s.x, -1) * float2x2(%s);",
OutName(fCoords), OutName(fCoords), fCanonicalMatrix.c_str());
fCoverageTimesWind.reset(kHalf_GrSLType, scope);
varyingHandler->addVarying("coverage_times_wind", &fCoverageTimesWind);
code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind);
} }
void GrCCQuadraticShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc, void GrCCQuadraticHullShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const { const char* outputCoverage) const {
f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s.zw, %s.zw));", f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));",
fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn()); fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn(), fGrad.fsIn(), fGrad.fsIn());
#ifdef SK_DEBUG f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage);
if (proc.debugVisualizationsEnabled()) { f->codeAppendf("%s += min(%s.z, 0);", outputCoverage, fXYDW.fsIn()); // Flat closing edge.
f->codeAppendf("d /= %f;", proc.debugBloat());
} }
#endif
f->codeAppendf("%s = clamp(0.5 - d, 0, 1) * %s;", outputCoverage, fCoverageTimesWind.fsIn()); void GrCCQuadraticCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
const char* repetitionID,
GeometryVars* vars) const {
s->codeAppendf("float2 corner = %s[%s * 2];", pts, repetitionID);
vars->fCornerVars.fPoint = "corner";
}
void GrCCQuadraticCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code) {
using Interpolation = GrGLSLVaryingHandler::Interpolation;
fdXYDdx.reset(kFloat3_GrSLType, scope);
varyingHandler->addVarying("dXYDdx", &fdXYDdx, Interpolation::kCanBeFlat);
code->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);",
OutName(fdXYDdx), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
fEdgeDistanceEquation.c_str());
fdXYDdy.reset(kFloat3_GrSLType, scope);
varyingHandler->addVarying("dXYDdy", &fdXYDdy, Interpolation::kCanBeFlat);
code->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);",
OutName(fdXYDdy), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
fEdgeDistanceEquation.c_str());
}
void GrCCQuadraticCornerShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const {
f->codeAppendf("float x = %s.x, y = %s.y, d = %s.z;",
fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn());
f->codeAppendf("float2x3 grad_xyd = float2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn());
// Erase what the previous hull shader wrote. We don't worry about the two corners falling on
// the same pixel because those cases should have been weeded out by this point.
f->codeAppend ("float f = x*x - y;");
f->codeAppend ("float2 grad_f = float2(2*x, -1) * float2x2(grad_xyd);");
f->codeAppendf("%s = -(0.5 - f * inversesqrt(dot(grad_f, grad_f)));", outputCoverage);
f->codeAppendf("%s -= d;", outputCoverage);
// Use software msaa to approximate coverage at the corner pixels.
int sampleCount = Shader::DefineSoftSampleLocations(f, "samples");
f->codeAppendf("float3 xyd_center = float3(%s.xy, %s.z + 0.5);", fXYDW.fsIn(), fXYDW.fsIn());
f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
f->codeAppend ( "float3 xyd = grad_xyd * samples[i] + xyd_center;");
f->codeAppend ( "half f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve.
f->codeAppendf( "%s += all(greaterThan(float2(f,xyd.z), float2(0))) ? %f : 0;",
outputCoverage, 1.0 / sampleCount);
f->codeAppendf("}");
} }

View File

@ -23,17 +23,48 @@
class GrCCQuadraticShader : public GrCCCoverageProcessor::Shader { class GrCCQuadraticShader : public GrCCCoverageProcessor::Shader {
protected: protected:
void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID, void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
const char* wind, GeometryVars*) const override; const char* wind, GeometryVars*) const final;
virtual void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
GeometryVars*) const = 0;
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code, void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* inputCoverage, const char* wind) override; const char* position, const char* inputCoverage, const char* wind) final;
virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) {}
void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const final;
const char* outputCoverage) const override; virtual void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const = 0;
const GrShaderVar fCanonicalMatrix{"canonical_matrix", kFloat3x3_GrSLType}; const GrShaderVar fCanonicalMatrix{"canonical_matrix", kFloat3x3_GrSLType};
GrGLSLVarying fCoords; const GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType};
GrGLSLVarying fCoverageTimesWind; GrGLSLVarying fXYDW;
};
/**
* This pass draws a conservative raster hull around the quadratic bezier curve, computes the
* curve's coverage using the gradient-based AA technique outlined in the Loop/Blinn paper, and
* uses simple distance-to-edge to subtract out coverage for the flat closing edge [P2 -> P0]. Since
* the provided curves are monotonic, this will get every pixel right except the two corners.
*/
class GrCCQuadraticHullShader : public GrCCQuadraticShader {
void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
GeometryVars*) const override;
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
GrGLSLVarying fGrad;
};
/**
* This pass fixes the corners of a closed quadratic segment with soft MSAA.
*/
class GrCCQuadraticCornerShader : public GrCCQuadraticShader {
void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
GeometryVars*) const override;
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
GrGLSLVarying fdXYDdx;
GrGLSLVarying fdXYDdy;
}; };
#endif #endif

View File

@ -22,8 +22,7 @@ void GrCCTriangleShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind); code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind);
} }
void GrCCTriangleShader::onEmitFragmentCode(const GrCCCoverageProcessor&, void GrCCTriangleShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const { const char* outputCoverage) const {
f->codeAppendf("%s = %s;", outputCoverage, fCoverageTimesWind.fsIn()); f->codeAppendf("%s = %s;", outputCoverage, fCoverageTimesWind.fsIn());
} }
@ -107,8 +106,7 @@ void GrCCTriangleCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandl
code->appendf("%s = %s * .5;", OutName(fWindTimesHalf), wind); code->appendf("%s = %s * .5;", OutName(fWindTimesHalf), wind);
} }
void GrCCTriangleCornerShader::onEmitFragmentCode(const GrCCCoverageProcessor&, void GrCCTriangleCornerShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
GrGLSLFPFragmentBuilder* f,
const char* outputCoverage) const { const char* outputCoverage) const {
// By the time we reach this shader, the pixel is in the following state: // By the time we reach this shader, the pixel is in the following state:
// //

View File

@ -19,8 +19,7 @@
class GrCCTriangleShader : public GrCCCoverageProcessor::Shader { class GrCCTriangleShader : public GrCCCoverageProcessor::Shader {
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code, void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* inputCoverage, const char* wind) override; const char* position, const char* inputCoverage, const char* wind) override;
void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
const char* outputCoverage) const override;
GrGLSLVarying fCoverageTimesWind; GrGLSLVarying fCoverageTimesWind;
}; };
@ -35,8 +34,7 @@ class GrCCTriangleCornerShader : public GrCCCoverageProcessor::Shader {
const char* wind, GeometryVars*) const override; const char* wind, GeometryVars*) const override;
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code, void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* inputCoverage, const char* wind) override; const char* position, const char* inputCoverage, const char* wind) override;
void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*, void onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const override;
const char* outputCoverage) const override;
GrShaderVar fAABoxMatrices{"aa_box_matrices", kFloat2x2_GrSLType, 2}; GrShaderVar fAABoxMatrices{"aa_box_matrices", kFloat2x2_GrSLType, 2};
GrShaderVar fAABoxTranslates{"aa_box_translates", kFloat2_GrSLType, 2}; GrShaderVar fAABoxTranslates{"aa_box_translates", kFloat2_GrSLType, 2};