shape ops work in progress

git-svn-id: http://skia.googlecode.com/svn/trunk@5959 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
caryclark@google.com 2012-10-16 12:06:27 +00:00
parent f94dd182e6
commit c91dfe417a
10 changed files with 195 additions and 59 deletions

View File

@ -220,7 +220,7 @@ static void tryRoncoOnce(const SkPath& path, const SkRect& target, bool show) {
if (!closed) { if (!closed) {
tiny.close(); tiny.close();
} }
if (false && show) { if (show) {
showPath(tiny, NULL); showPath(tiny, NULL);
SkDebugf("simplified:\n"); SkDebugf("simplified:\n");
} }
@ -229,13 +229,13 @@ static void tryRoncoOnce(const SkPath& path, const SkRect& target, bool show) {
static void tryRonco(const SkPath& path) { static void tryRonco(const SkPath& path) {
const SkRect& overall = path.getBounds(); const SkRect& overall = path.getBounds();
const int divs = 4; const int divs = 64;
SkScalar cellWidth = overall.width() / divs * 2; SkScalar cellWidth = overall.width() / divs * 2;
SkScalar cellHeight = overall.height() / divs * 2; SkScalar cellHeight = overall.height() / divs * 2;
SkRect target; SkRect target;
if (true) { if (true) {
int xDiv = 1; int xDiv = 28;
int yDiv = 2; int yDiv = 17;
target.setXYWH(overall.fLeft + (overall.width() - cellWidth) * xDiv / divs, target.setXYWH(overall.fLeft + (overall.width() - cellWidth) * xDiv / divs,
overall.fTop + (overall.height() - cellHeight) * yDiv / divs, overall.fTop + (overall.height() - cellHeight) * yDiv / divs,
cellWidth, cellHeight); cellWidth, cellHeight);
@ -280,13 +280,14 @@ static bool drawLetters(SkCanvas* canvas, int step, bool useOld)
#if 0 #if 0
for (int mask = 0; mask < 1 << testStrLen; ++mask) { for (int mask = 0; mask < 1 << testStrLen; ++mask) {
char maskStr[testStrLen]; char maskStr[testStrLen];
mask = 12; mask = 15;
for (int letter = 0; letter < testStrLen; ++letter) { for (int letter = 0; letter < testStrLen; ++letter) {
maskStr[letter] = mask & (1 << letter) ? testStr[letter] : ' '; maskStr[letter] = mask & (1 << letter) ? testStr[letter] : ' ';
} }
paint.getPosTextPath(maskStr, testStrLen, textPos, &path); paint.getPosTextPath(maskStr, testStrLen, textPos, &path);
// showPath(path, NULL); // showPath(path, NULL);
// SkDebugf("%d simplified:\n", mask); // SkDebugf("%d simplified:\n", mask);
tryRonco(path);
testSimplifyx(path); testSimplifyx(path);
} }
#endif #endif

View File

@ -16,7 +16,7 @@ public:
}; };
protected: protected:
virtual void onDraw(SkCanvas* canvas) { virtual void onDraw(SkCanvas* canvas) {
static int step = 0 ; // 17904; // drawLetters first error static int step = 0; // 12752; // 17908 ; // 17904; // drawLetters first error
// drawStars triggers error at 23275 // drawStars triggers error at 23275
// error is not easy to debug in its current state // error is not easy to debug in its current state
static double seconds; static double seconds;

View File

@ -14,9 +14,9 @@ void cubecode_test(int test);
void Intersection_Tests() { void Intersection_Tests() {
int testsRun = 0; int testsRun = 0;
SimplifyNew_Test();
QuadraticIntersection_Test(); QuadraticIntersection_Test();
MiniSimplify_Test(); MiniSimplify_Test();
SimplifyNew_Test();
SimplifyAngle_Test(); SimplifyAngle_Test();
QuarticRoot_Test(); QuarticRoot_Test();
// QuadraticIntersection_Test(); // QuadraticIntersection_Test();

View File

@ -65,6 +65,7 @@ static void bridgeOp(SkTDArray<Contour*>& contourList, const ShapeOp op,
int oppWinding = current->oppSign(index, endIndex); int oppWinding = current->oppSign(index, endIndex);
bool active = windingIsActive(winding, spanWinding, oppWinding, op); bool active = windingIsActive(winding, spanWinding, oppWinding, op);
SkTDArray<Span*> chaseArray; SkTDArray<Span*> chaseArray;
bool unsortable = false;
do { do {
#if DEBUG_WINDING #if DEBUG_WINDING
SkDebugf("%s active=%s winding=%d spanWinding=%d\n", SkDebugf("%s active=%s winding=%d spanWinding=%d\n",
@ -77,9 +78,12 @@ static void bridgeOp(SkTDArray<Contour*>& contourList, const ShapeOp op,
int nextStart = index; int nextStart = index;
int nextEnd = endIndex; int nextEnd = endIndex;
Segment* next = current->findNextOp(chaseArray, active, Segment* next = current->findNextOp(chaseArray, active,
nextStart, nextEnd, winding, spanWinding, op, nextStart, nextEnd, winding, spanWinding, unsortable, op,
aXorMask, bXorMask); aXorMask, bXorMask);
if (!next) { if (!next) {
// FIXME: if unsortable, allow partial paths to be later
// assembled
SkASSERT(!unsortable);
if (active && firstPt && current->verb() != SkPath::kLine_Verb && *firstPt != lastPt) { if (active && firstPt && current->verb() != SkPath::kLine_Verb && *firstPt != lastPt) {
lastPt = current->addCurveTo(index, endIndex, simple, true); lastPt = current->addCurveTo(index, endIndex, simple, true);
SkASSERT(*firstPt == lastPt); SkASSERT(*firstPt == lastPt);

View File

@ -49,7 +49,7 @@ const bool gRunTestsInOneThread = false;
const bool gRunTestsInOneThread = true; const bool gRunTestsInOneThread = true;
#define DEBUG_ACTIVE_SPANS 0 #define DEBUG_ACTIVE_SPANS 1
#define DEBUG_ADD_INTERSECTING_TS 1 #define DEBUG_ADD_INTERSECTING_TS 1
#define DEBUG_ADD_T_PAIR 1 #define DEBUG_ADD_T_PAIR 1
#define DEBUG_ANGLE 1 #define DEBUG_ANGLE 1
@ -481,6 +481,8 @@ struct Span {
int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident
int fWindValueOpp; // opposite value, if any (for binary ops with coincidence) int fWindValueOpp; // opposite value, if any (for binary ops with coincidence)
bool fDone; // if set, this span to next higher T has been processed bool fDone; // if set, this span to next higher T has been processed
bool fUnsortableStart; // set when start is part of an unsortable pair
bool fUnsortableEnd; // set when end is part of an unsortable pair
}; };
// sorting angles // sorting angles
@ -527,6 +529,14 @@ public:
&& !approximately_zero_squared(cmp)) { && !approximately_zero_squared(cmp)) {
return cmp < 0; return cmp < 0;
} }
// at this point, the initial tangent line is coincident
if (fSide * rh.fSide <= 0 && (!approximately_zero(fSide) || !approximately_zero(rh.fSide))) {
// FIXME: running demo will trigger this assertion
// (don't know if commenting out will trigger further assertion or not)
// commenting it out allows demo to run in release, though
// SkASSERT(fSide != rh.fSide);
return fSide < rh.fSide;
}
// see if either curve can be lengthened and try the tangent compare again // see if either curve can be lengthened and try the tangent compare again
if (cmp && (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolutely identical if (cmp && (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolutely identical
&& (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not intersecting && (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not intersecting
@ -542,14 +552,6 @@ public:
return longer < rhLonger; return longer < rhLonger;
} }
} }
// at this point, the initial tangent line is coincident
if (fSide * rh.fSide <= 0) {
// FIXME: running demo will trigger this assertion
// (don't know if commenting out will trigger further assertion or not)
// commenting it out allows demo to run in release, though
// SkASSERT(fSide != rh.fSide);
return fSide < rh.fSide;
}
SkASSERT(fVerb == SkPath::kQuad_Verb); // worry about cubics later SkASSERT(fVerb == SkPath::kQuad_Verb); // worry about cubics later
SkASSERT(rh.fVerb == SkPath::kQuad_Verb); SkASSERT(rh.fVerb == SkPath::kQuad_Verb);
// FIXME: until I can think of something better, project a ray from the // FIXME: until I can think of something better, project a ray from the
@ -573,8 +575,14 @@ public:
roots = QuadRayIntersect(fPts, ray, i); roots = QuadRayIntersect(fPts, ray, i);
rroots = QuadRayIntersect(rh.fPts, ray, ri); rroots = QuadRayIntersect(rh.fPts, ray, ri);
} while ((roots == 0 || rroots == 0) && (flip ^= true)); } while ((roots == 0 || rroots == 0) && (flip ^= true));
SkASSERT(roots > 0); if (roots == 0 || rroots == 0) {
SkASSERT(rroots > 0); // FIXME: we don't have a solution in this case. The interim solution
// is to mark the edges as unsortable, exclude them from this and
// future computations, and allow the returned path to be fragmented
fUnsortable = true;
rh.fUnsortable = true;
return this < &rh; // even with no solution, return a stable sort
}
_Point loc; _Point loc;
double best = SK_ScalarInfinity; double best = SK_ScalarInfinity;
double dx, dy, dist; double dx, dy, dist;
@ -649,6 +657,7 @@ public:
fVerb = verb; fVerb = verb;
fSpans = &spans; fSpans = &spans;
fReversed = false; fReversed = false;
fUnsortable = false;
setSpans(); setSpans();
} }
@ -687,19 +696,23 @@ public:
return SkSign32(fStart - fEnd); return SkSign32(fStart - fEnd);
} }
const SkTDArray<Span>* spans() const {
return fSpans;
}
int start() const { int start() const {
return fStart; return fStart;
} }
bool unsortable() const {
return fUnsortable;
}
#if DEBUG_ANGLE #if DEBUG_ANGLE
const SkPoint* pts() const { const SkPoint* pts() const {
return fPts; return fPts;
} }
const SkTDArray<Span>* spans() const {
return fSpans;
}
SkPath::Verb verb() const { SkPath::Verb verb() const {
return fVerb; return fVerb;
} }
@ -720,18 +733,9 @@ private:
int fStart; int fStart;
int fEnd; int fEnd;
bool fReversed; bool fReversed;
mutable bool fUnsortable; // this alone is editable by the less than operator
}; };
static void sortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
int angleCount = angles.count();
int angleIndex;
angleList.setReserve(angleCount);
for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
*angleList.append() = &angles[angleIndex];
}
QSort<Angle>(angleList.begin(), angleList.end() - 1);
}
// Bounds, unlike Rect, does not consider a line to be empty. // Bounds, unlike Rect, does not consider a line to be empty.
struct Bounds : public SkRect { struct Bounds : public SkRect {
static bool Intersects(const Bounds& a, const Bounds& b) { static bool Intersects(const Bounds& a, const Bounds& b) {
@ -1131,6 +1135,8 @@ public:
if ((span->fDone = newT == 1)) { if ((span->fDone = newT == 1)) {
++fDoneSpans; ++fDoneSpans;
} }
span->fUnsortableStart = false;
span->fUnsortableEnd = false;
return insertedAt; return insertedAt;
} }
@ -1486,10 +1492,13 @@ public:
// OPTIMIZATION: check all angles to see if any have computed wind sum // OPTIMIZATION: check all angles to see if any have computed wind sum
// before sorting (early exit if none) // before sorting (early exit if none)
SkTDArray<Angle*> sorted; SkTDArray<Angle*> sorted;
sortAngles(angles, sorted); bool sortable = SortAngles(angles, sorted);
#if DEBUG_SORT #if DEBUG_SORT
sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0); sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0);
#endif #endif
if (!sortable) {
return SK_MinS32;
}
int angleCount = angles.count(); int angleCount = angles.count();
const Angle* angle; const Angle* angle;
const Segment* base; const Segment* base;
@ -1651,7 +1660,8 @@ public:
} }
Segment* findNextOp(SkTDArray<Span*>& chase, bool active, Segment* findNextOp(SkTDArray<Span*>& chase, bool active,
int& nextStart, int& nextEnd, int& winding, int& spanWinding, ShapeOp op, int& nextStart, int& nextEnd, int& winding, int& spanWinding,
bool& unsortable, ShapeOp op,
const int aXorMask, const int bXorMask) { const int aXorMask, const int bXorMask) {
const int startIndex = nextStart; const int startIndex = nextStart;
const int endIndex = nextEnd; const int endIndex = nextEnd;
@ -1706,13 +1716,17 @@ public:
addTwoAngles(startIndex, end, angles); addTwoAngles(startIndex, end, angles);
buildAngles(end, angles); buildAngles(end, angles);
SkTDArray<Angle*> sorted; SkTDArray<Angle*> sorted;
sortAngles(angles, sorted); bool sortable = SortAngles(angles, sorted);
int angleCount = angles.count(); int angleCount = angles.count();
int firstIndex = findStartingEdge(sorted, startIndex, end); int firstIndex = findStartingEdge(sorted, startIndex, end);
SkASSERT(firstIndex >= 0); SkASSERT(firstIndex >= 0);
#if DEBUG_SORT #if DEBUG_SORT
debugShowSort(__FUNCTION__, sorted, firstIndex, winding); debugShowSort(__FUNCTION__, sorted, firstIndex, winding);
#endif #endif
if (!sortable) {
unsortable = true;
return NULL;
}
SkASSERT(sorted[firstIndex]->segment() == this); SkASSERT(sorted[firstIndex]->segment() == this);
#if DEBUG_WINDING #if DEBUG_WINDING
SkDebugf("%s [%d] sign=%d\n", __FUNCTION__, firstIndex, sorted[firstIndex]->sign()); SkDebugf("%s [%d] sign=%d\n", __FUNCTION__, firstIndex, sorted[firstIndex]->sign());
@ -1883,7 +1897,8 @@ public:
// it is guaranteed to have an end which describes a non-zero length (?) // it is guaranteed to have an end which describes a non-zero length (?)
// winding -1 means ccw, 1 means cw // winding -1 means ccw, 1 means cw
Segment* findNextWinding(SkTDArray<Span*>& chase, bool active, Segment* findNextWinding(SkTDArray<Span*>& chase, bool active,
int& nextStart, int& nextEnd, int& winding, int& spanWinding) { int& nextStart, int& nextEnd, int& winding, int& spanWinding,
bool& unsortable) {
const int startIndex = nextStart; const int startIndex = nextStart;
const int endIndex = nextEnd; const int endIndex = nextEnd;
int outerWinding = winding; int outerWinding = winding;
@ -1937,13 +1952,17 @@ public:
addTwoAngles(startIndex, end, angles); addTwoAngles(startIndex, end, angles);
buildAngles(end, angles); buildAngles(end, angles);
SkTDArray<Angle*> sorted; SkTDArray<Angle*> sorted;
sortAngles(angles, sorted); bool sortable = SortAngles(angles, sorted);
int angleCount = angles.count(); int angleCount = angles.count();
int firstIndex = findStartingEdge(sorted, startIndex, end); int firstIndex = findStartingEdge(sorted, startIndex, end);
SkASSERT(firstIndex >= 0); SkASSERT(firstIndex >= 0);
#if DEBUG_SORT #if DEBUG_SORT
debugShowSort(__FUNCTION__, sorted, firstIndex, winding); debugShowSort(__FUNCTION__, sorted, firstIndex, winding);
#endif #endif
if (!sortable) {
unsortable = true;
return NULL;
}
SkASSERT(sorted[firstIndex]->segment() == this); SkASSERT(sorted[firstIndex]->segment() == this);
#if DEBUG_WINDING #if DEBUG_WINDING
SkDebugf("%s [%d] sign=%d\n", __FUNCTION__, firstIndex, sorted[firstIndex]->sign()); SkDebugf("%s [%d] sign=%d\n", __FUNCTION__, firstIndex, sorted[firstIndex]->sign());
@ -2068,7 +2087,7 @@ public:
return nextSegment; return nextSegment;
} }
Segment* findNextXor(int& nextStart, int& nextEnd) { Segment* findNextXor(int& nextStart, int& nextEnd, bool& unsortable) {
const int startIndex = nextStart; const int startIndex = nextStart;
const int endIndex = nextEnd; const int endIndex = nextEnd;
SkASSERT(startIndex != endIndex); SkASSERT(startIndex != endIndex);
@ -2126,13 +2145,17 @@ public:
addTwoAngles(startIndex, end, angles); addTwoAngles(startIndex, end, angles);
buildAngles(end, angles); buildAngles(end, angles);
SkTDArray<Angle*> sorted; SkTDArray<Angle*> sorted;
sortAngles(angles, sorted); bool sortable = SortAngles(angles, sorted);
int angleCount = angles.count(); int angleCount = angles.count();
int firstIndex = findStartingEdge(sorted, startIndex, end); int firstIndex = findStartingEdge(sorted, startIndex, end);
SkASSERT(firstIndex >= 0); SkASSERT(firstIndex >= 0);
#if DEBUG_SORT #if DEBUG_SORT
debugShowSort(__FUNCTION__, sorted, firstIndex, 0); debugShowSort(__FUNCTION__, sorted, firstIndex, 0);
#endif #endif
if (!sortable) {
unsortable = true;
return NULL;
}
SkASSERT(sorted[firstIndex]->segment() == this); SkASSERT(sorted[firstIndex]->segment() == this);
int nextIndex = firstIndex + 1; int nextIndex = firstIndex + 1;
int lastIndex = firstIndex != 0 ? firstIndex : angleCount; int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
@ -2302,6 +2325,12 @@ public:
} }
} }
// start here;
// either:
// a) mark spans with either end unsortable as done, or
// b) rewrite findTop / findTopSegment / findTopContour to iterate further
// when encountering an unsortable span
// OPTIMIZATION : for a pair of lines, can we compute points at T (cached) // OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
// and use more concise logic like the old edge walker code? // and use more concise logic like the old edge walker code?
// FIXME: this needs to deal with coincident edges // FIXME: this needs to deal with coincident edges
@ -2316,9 +2345,10 @@ public:
int count = fTs.count(); int count = fTs.count();
// see if either end is not done since we want smaller Y of the pair // see if either end is not done since we want smaller Y of the pair
bool lastDone = true; bool lastDone = true;
bool lastUnsortableEnd;
for (int index = 0; index < count; ++index) { for (int index = 0; index < count; ++index) {
const Span& span = fTs[index]; const Span& span = fTs[index];
if (!span.fDone || !lastDone) { if ((!span.fDone && !span.fUnsortableStart) || (!lastDone && !lastUnsortableEnd)) {
const SkPoint& intercept = xyAtT(&span); const SkPoint& intercept = xyAtT(&span);
if (topPt.fY > intercept.fY || (topPt.fY == intercept.fY if (topPt.fY > intercept.fY || (topPt.fY == intercept.fY
&& topPt.fX > intercept.fX)) { && topPt.fX > intercept.fX)) {
@ -2329,6 +2359,7 @@ public:
} }
} }
lastDone = span.fDone; lastDone = span.fDone;
lastUnsortableEnd = span.fUnsortableEnd;
} }
// sort the edges to find the leftmost // sort the edges to find the leftmost
int step = 1; int step = 1;
@ -2345,7 +2376,7 @@ public:
addTwoAngles(end, firstT, angles); addTwoAngles(end, firstT, angles);
buildAngles(firstT, angles); buildAngles(firstT, angles);
SkTDArray<Angle*> sorted; SkTDArray<Angle*> sorted;
sortAngles(angles, sorted); (void) SortAngles(angles, sorted);
#if DEBUG_SORT #if DEBUG_SORT
sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0); sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0);
#endif #endif
@ -2354,6 +2385,11 @@ public:
Segment* leftSegment; Segment* leftSegment;
do { do {
const Angle* angle = sorted[++firstT]; const Angle* angle = sorted[++firstT];
if (angle->unsortable()) {
// FIXME: if all angles are unsortable, find next topmost
SkASSERT(firstT < angles.count() - 1);
continue;
}
leftSegment = angle->segment(); leftSegment = angle->segment();
tIndex = angle->end(); tIndex = angle->end();
endIndex = angle->start(); endIndex = angle->start();
@ -2687,6 +2723,33 @@ public:
fTs.reset(); fTs.reset();
} }
static bool SortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
int angleCount = angles.count();
int angleIndex;
angleList.setReserve(angleCount);
for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
*angleList.append() = &angles[angleIndex];
}
QSort<Angle>(angleList.begin(), angleList.end() - 1);
bool result = true;
for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
Angle& angle = angles[angleIndex];
if (angle.unsortable()) {
// so that it is available for early exclusion in findTop and others
const SkTDArray<Span>* spans = angle.spans();
Span* span = const_cast<Span*>(&(*spans)[angle.start()]);
if (angle.start() < angle.end()) {
span->fUnsortableStart = true;
} else {
--span;
span->fUnsortableEnd = true;
}
result = false;
}
}
return result;
}
// OPTIMIZATION: mark as debugging only if used solely by tests // OPTIMIZATION: mark as debugging only if used solely by tests
const Span& span(int tIndex) const { const Span& span(int tIndex) const {
return fTs[tIndex]; return fTs[tIndex];
@ -2968,9 +3031,10 @@ public:
lastSum = windSum; lastSum = windSum;
windSum -= segment.spanSign(&angle); windSum -= segment.spanSign(&angle);
} }
SkDebugf("%s [%d] id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)" SkDebugf("%s [%d] %s id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)"
" sign=%d windValue=%d winding: %d->%d (max=%d) done=%d\n", " sign=%d windValue=%d winding: %d->%d (max=%d) done=%d\n",
__FUNCTION__, index, segment.fID, kLVerbStr[segment.fVerb], __FUNCTION__, index, angle.unsortable() ? "*** UNSORTABLE ***" : "",
segment.fID, kLVerbStr[segment.fVerb],
start, segment.xAtT(&sSpan), start, segment.xAtT(&sSpan),
segment.yAtT(&sSpan), end, segment.xAtT(&eSpan), segment.yAtT(&sSpan), end, segment.xAtT(&eSpan),
segment.yAtT(&eSpan), angle.sign(), mSpan.fWindValue, segment.yAtT(&eSpan), angle.sign(), mSpan.fWindValue,
@ -4075,7 +4139,7 @@ static int innerContourCheck(SkTDArray<Contour*>& contourList,
// returns the first counterclockwise hour before 6 o'clock, // returns the first counterclockwise hour before 6 o'clock,
// or if the base point is rightmost, returns the first clockwise // or if the base point is rightmost, returns the first clockwise
// hour after 6 o'clock // hour after 6 o'clock
sortAngles(angles, sorted); (void) Segment::SortAngles(angles, sorted);
#if DEBUG_SORT #if DEBUG_SORT
sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0); sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0);
#endif #endif
@ -4089,6 +4153,9 @@ static int innerContourCheck(SkTDArray<Contour*>& contourList,
bool baseMatches = test->yAtT(tIndex) == basePt.fY; bool baseMatches = test->yAtT(tIndex) == basePt.fY;
for (int index = 0; index < count; ++index) { for (int index = 0; index < count; ++index) {
angle = sorted[index]; angle = sorted[index];
if (angle->unsortable()) {
continue;
}
if (baseMatches && angle->isHorizontal()) { if (baseMatches && angle->isHorizontal()) {
continue; continue;
} }
@ -4235,10 +4302,14 @@ static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex,
continue; continue;
} }
SkTDArray<Angle*> sorted; SkTDArray<Angle*> sorted;
sortAngles(angles, sorted); bool sortable = Segment::SortAngles(angles, sorted);
#if DEBUG_SORT #if DEBUG_SORT
sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0); sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0);
#endif #endif
if (!sortable) {
chase.pop(&span);
continue;
}
// find first angle, initialize winding to computed fWindSum // find first angle, initialize winding to computed fWindSum
int firstIndex = -1; int firstIndex = -1;
const Angle* angle; const Angle* angle;
@ -4331,8 +4402,10 @@ static bool windingIsActive(int winding, int spanWinding) {
// is an option, choose first edge that continues the inside. // is an option, choose first edge that continues the inside.
// since we start with leftmost top edge, we'll traverse through a // since we start with leftmost top edge, we'll traverse through a
// smaller angle counterclockwise to get to the next edge. // smaller angle counterclockwise to get to the next edge.
static void bridgeWinding(SkTDArray<Contour*>& contourList, SkPath& simple) { // returns true if all edges were processed
static bool bridgeWinding(SkTDArray<Contour*>& contourList, SkPath& simple) {
bool firstContour = true; bool firstContour = true;
bool unsortable = false;
do { do {
Segment* topStart = findTopContour(contourList); Segment* topStart = findTopContour(contourList);
if (!topStart) { if (!topStart) {
@ -4392,11 +4465,11 @@ static void bridgeWinding(SkTDArray<Contour*>& contourList, SkPath& simple) {
#endif #endif
const SkPoint* firstPt = NULL; const SkPoint* firstPt = NULL;
do { do {
SkASSERT(!current->done()); SkASSERT(unsortable || !current->done());
int nextStart = index; int nextStart = index;
int nextEnd = endIndex; int nextEnd = endIndex;
Segment* next = current->findNextWinding(chaseArray, active, Segment* next = current->findNextWinding(chaseArray, active,
nextStart, nextEnd, winding, spanWinding); nextStart, nextEnd, winding, spanWinding, unsortable);
if (!next) { if (!next) {
if (active && firstPt && current->verb() != SkPath::kLine_Verb && *firstPt != lastPt) { if (active && firstPt && current->verb() != SkPath::kLine_Verb && *firstPt != lastPt) {
lastPt = current->addCurveTo(index, endIndex, simple, true); lastPt = current->addCurveTo(index, endIndex, simple, true);
@ -4443,19 +4516,22 @@ static void bridgeWinding(SkTDArray<Contour*>& contourList, SkPath& simple) {
active = windingIsActive(winding, spanWinding); active = windingIsActive(winding, spanWinding);
} while (true); } while (true);
} while (true); } while (true);
return !unsortable;
} }
static void bridgeXor(SkTDArray<Contour*>& contourList, SkPath& simple) { // returns true if all edges were processed
static bool bridgeXor(SkTDArray<Contour*>& contourList, SkPath& simple) {
Segment* current; Segment* current;
int start, end; int start, end;
bool unsortable = false;
while ((current = findUndone(contourList, start, end))) { while ((current = findUndone(contourList, start, end))) {
const SkPoint* firstPt = NULL; const SkPoint* firstPt = NULL;
SkPoint lastPt; SkPoint lastPt;
do { do {
SkASSERT(!current->done()); SkASSERT(unsortable || !current->done());
int nextStart = start; int nextStart = start;
int nextEnd = end; int nextEnd = end;
Segment* next = current->findNextXor(nextStart, nextEnd); Segment* next = current->findNextXor(nextStart, nextEnd, unsortable);
if (!next) { if (!next) {
if (firstPt && current->verb() != SkPath::kLine_Verb && *firstPt != lastPt) { if (firstPt && current->verb() != SkPath::kLine_Verb && *firstPt != lastPt) {
lastPt = current->addCurveTo(start, end, simple, true); lastPt = current->addCurveTo(start, end, simple, true);
@ -4481,6 +4557,7 @@ static void bridgeXor(SkTDArray<Contour*>& contourList, SkPath& simple) {
debugShowActiveSpans(contourList); debugShowActiveSpans(contourList);
#endif #endif
} }
return !unsortable;
} }
static void fixOtherTIndex(SkTDArray<Contour*>& contourList) { static void fixOtherTIndex(SkTDArray<Contour*>& contourList) {
@ -4503,6 +4580,11 @@ static void makeContourList(SkTArray<Contour>& contours,
QSort<Contour>(list.begin(), list.end() - 1); QSort<Contour>(list.begin(), list.end() - 1);
} }
static void assemble(SkPath& simple) {
// TODO: find the non-closed paths and connect them together
SkASSERT(0);
}
void simplifyx(const SkPath& path, SkPath& simple) { void simplifyx(const SkPath& path, SkPath& simple) {
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
simple.reset(); simple.reset();
@ -4533,10 +4615,11 @@ void simplifyx(const SkPath& path, SkPath& simple) {
coincidenceCheck(contourList); coincidenceCheck(contourList);
fixOtherTIndex(contourList); fixOtherTIndex(contourList);
// construct closed contours // construct closed contours
if (builder.xorMask() == kWinding_Mask) { if (builder.xorMask() == kWinding_Mask
bridgeWinding(contourList, simple); ? !bridgeWinding(contourList, simple)
} else { : !bridgeXor(contourList, simple))
bridgeXor(contourList, simple); { // if some edges could not be resolved, assemble remaining fragments
assemble(simple);
} }
} }

View File

@ -35,8 +35,10 @@ static const SimplifyFindNextTest::Segment* testCommon(
int nextStart = startIndex; int nextStart = startIndex;
int nextEnd = endIndex; int nextEnd = endIndex;
SkTDArray<SimplifyFindNextTest::Span*> chaseArray; SkTDArray<SimplifyFindNextTest::Span*> chaseArray;
bool unsortable = false;
SimplifyFindNextTest::Segment* next = segment.findNextWinding(chaseArray, SimplifyFindNextTest::Segment* next = segment.findNextWinding(chaseArray,
true, nextStart, nextEnd, contourWinding, spanWinding); true, nextStart, nextEnd, contourWinding, spanWinding,
unsortable);
pts[1] = next->xyAtT(&next->span(nextStart)); pts[1] = next->xyAtT(&next->span(nextStart));
SkASSERT(pts[0] == pts[1]); SkASSERT(pts[0] == pts[1]);
return next; return next;

View File

@ -2828,7 +2828,7 @@ static void testQuadratic38() {
testSimplifyx(path); testSimplifyx(path);
} }
static void (*firstTest)() = testLine73x; static void (*firstTest)() = testQuadratic7;
static struct { static struct {
void (*fun)(); void (*fun)();

View File

@ -2274,11 +2274,56 @@ path.lineTo(398.164948,136.674606);
path.quadTo(388.299255,136.674606, 380.294495,140.44487); path.quadTo(388.299255,136.674606, 380.294495,140.44487);
</div> </div>
<div id="testQuadratic47o">
path.moveTo(343.939362, 212.598053);
path.lineTo(378.457642, 118.940636);
path.lineTo(383.692657, 141.516571);
path.lineTo(350.319519, 231.902115);
path.lineTo(343.939362, 212.598053);
path.close();
path.moveTo(325.429016, 162.047577);
path.quadTo(336.348907, 149.123688, 353.36264, 149.123688);
path.quadTo(369.476624, 149.123688, 378.269806, 160.575241);
path.lineTo(325.429016, 162.047577);
path.close();
path.moveTo(370.867188, 186.014069);
path.quadTo(370.867188, 161.229614, 352.381104, 161.229614);
path.quadTo(333.813202, 161.229614, 331.686493, 186.014069);
path.lineTo(370.867188, 186.014069);
path.close();
path.moveTo(353.161499, 195.011719);
path.quadTo(353.161499, 174.726105, 363.876862, 161.96579);
path.lineTo(353.161499, 195.011719);
path.close();
</div>
<div id="testQuadratic47s">
path.moveTo(366.466309, 151.476364);
path.lineTo(378.457642,118.940636);
path.lineTo(383.692657,141.516571);
path.lineTo(377.159943,159.209305);
path.quadTo(377.728729,159.87059, 378.269806,160.575241);
path.lineTo(376.638824,160.620682);
path.lineTo(370.26593,177.8806);
path.quadTo(368.708496,168.390671, 363.116943,164.309357);
path.lineTo(356.079041,186.014069);
path.lineTo(367.262817,186.014069);
path.lineTo(350.319519,231.902115);
path.lineTo(343.939362,212.598053);
path.lineTo(353.736816,186.014923);
path.lineTo(353.737122,186.014069);
path.lineTo(353.736938,186.014069);
path.quadTo(353.736877,186.014496, 353.736816,186.014923);
path.quadTo(353.161499,190.31131, 353.161499,195.011719);
</div>
</div> </div>
<script type="text/javascript"> <script type="text/javascript">
var testDivs = [ var testDivs = [
testQuadratic47o,
testQuadratic47s,
testQuadratic46o, testQuadratic46o,
testQuadratic46s, testQuadratic46s,
testQuadratic45o, testQuadratic45o,

View File

@ -76,7 +76,7 @@
'pdf.gyp:pdf', 'pdf.gyp:pdf',
], ],
'conditions' : [ 'conditions' : [
[ 'skia_os in ["linux", "freebsd", "openbsd", "solaris"]', { [ 'skia_os in ["linux", "freebsd", "openbsd", "solaris"]', {
}], }],
[ 'skia_os == "win"', { [ 'skia_os == "win"', {
}], }],

View File

@ -55,6 +55,7 @@
'../experimental/Intersection/LineQuadraticIntersection.cpp', '../experimental/Intersection/LineQuadraticIntersection.cpp',
'../experimental/Intersection/LineQuadraticIntersection_Test.cpp', '../experimental/Intersection/LineQuadraticIntersection_Test.cpp',
'../experimental/Intersection/LineUtilities.cpp', '../experimental/Intersection/LineUtilities.cpp',
'../experimental/Intersection/MiniSimplify_Test.cpp',
'../experimental/Intersection/QuadraticBezierClip.cpp', '../experimental/Intersection/QuadraticBezierClip.cpp',
'../experimental/Intersection/QuadraticBezierClip_Test.cpp', '../experimental/Intersection/QuadraticBezierClip_Test.cpp',
'../experimental/Intersection/QuadraticBounds.cpp', '../experimental/Intersection/QuadraticBounds.cpp',