Add a preliminary R11 EAC compressor

R=robertphillips@google.com

Author: krajcevski@google.com

Review URL: https://codereview.chromium.org/358973004
This commit is contained in:
krajcevski 2014-06-30 08:47:33 -07:00 committed by Commit bot
parent 952841bf41
commit f3d15dc13a
2 changed files with 261 additions and 48 deletions

View File

@ -23,6 +23,47 @@ template <typename T> inline T abs_diff(const T &a, const T &b) {
return (a > b) ? (a - b) : (b - a);
}
static bool is_extremal(uint8_t pixel) {
return 0 == pixel || 255 == pixel;
}
typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]);
// This function is used by both R11 EAC and LATC to compress 4x4 blocks
// of 8-bit alpha into 64-bit values that comprise the compressed data.
// For both formats, we need to make sure that the dimensions of the
// src pixels are divisible by 4, and copy 4x4 blocks one at a time
// for compression.
static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes,
A84x4To64BitProc proc) {
// Make sure that our data is well-formed enough to be considered for compression
if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
return false;
}
int blocksX = width >> 2;
int blocksY = height >> 2;
uint8_t block[16];
uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
for (int y = 0; y < blocksY; ++y) {
for (int x = 0; x < blocksX; ++x) {
// Load block
for (int k = 0; k < 4; ++k) {
memcpy(block + k*4, src + k*rowBytes + 4*x, 4);
}
// Compress it
*encPtr = proc(block);
++encPtr;
}
src += 4 * rowBytes;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
//
// LATC compressor
@ -30,9 +71,9 @@ template <typename T> inline T abs_diff(const T &a, const T &b) {
////////////////////////////////////////////////////////////////////////////////
// LATC compressed texels down into square 4x4 blocks
static const int kPaletteSize = 8;
static const int kLATCPaletteSize = 8;
static const int kLATCBlockSize = 4;
static const int kPixelsPerBlock = kLATCBlockSize * kLATCBlockSize;
static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize;
// Generates an LATC palette. LATC constructs
// a palette of eight colors from LUM0 and LUM1 using the algorithm:
@ -55,7 +96,7 @@ static const int kPixelsPerBlock = kLATCBlockSize * kLATCBlockSize;
// 0, if lum0 <= lum1 and code(x,y) == 6
// 255, if lum0 <= lum1 and code(x,y) == 7
static void generate_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) {
static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) {
palette[0] = lum0;
palette[1] = lum1;
if (lum0 > lum1) {
@ -71,17 +112,13 @@ static void generate_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) {
}
}
static bool is_extremal(uint8_t pixel) {
return 0 == pixel || 255 == pixel;
}
// Compress a block by using the bounding box of the pixels. It is assumed that
// there are no extremal pixels in this block otherwise we would have used
// compressBlockBBIgnoreExtremal.
static uint64_t compress_block_bb(const uint8_t pixels[]) {
static uint64_t compress_latc_block_bb(const uint8_t pixels[]) {
uint8_t minVal = 255;
uint8_t maxVal = 0;
for (int i = 0; i < kPixelsPerBlock; ++i) {
for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
minVal = SkTMin(pixels[i], minVal);
maxVal = SkTMax(pixels[i], maxVal);
}
@ -89,16 +126,16 @@ static uint64_t compress_block_bb(const uint8_t pixels[]) {
SkASSERT(!is_extremal(minVal));
SkASSERT(!is_extremal(maxVal));
uint8_t palette[kPaletteSize];
generate_palette(palette, maxVal, minVal);
uint8_t palette[kLATCPaletteSize];
generate_latc_palette(palette, maxVal, minVal);
uint64_t indices = 0;
for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
// Find the best palette index
uint8_t bestError = abs_diff(pixels[i], palette[0]);
uint8_t idx = 0;
for (int j = 1; j < kPaletteSize; ++j) {
for (int j = 1; j < kLATCPaletteSize; ++j) {
uint8_t error = abs_diff(pixels[i], palette[j]);
if (error < bestError) {
bestError = error;
@ -120,10 +157,10 @@ static uint64_t compress_block_bb(const uint8_t pixels[]) {
// Compress a block by using the bounding box of the pixels without taking into
// account the extremal values. The generated palette will contain extremal values
// and fewer points along the line segment to interpolate.
static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) {
static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) {
uint8_t minVal = 255;
uint8_t maxVal = 0;
for (int i = 0; i < kPixelsPerBlock; ++i) {
for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
if (is_extremal(pixels[i])) {
continue;
}
@ -135,11 +172,11 @@ static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) {
SkASSERT(!is_extremal(minVal));
SkASSERT(!is_extremal(maxVal));
uint8_t palette[kPaletteSize];
generate_palette(palette, minVal, maxVal);
uint8_t palette[kLATCPaletteSize];
generate_latc_palette(palette, minVal, maxVal);
uint64_t indices = 0;
for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
// Find the best palette index
uint8_t idx = 0;
@ -153,7 +190,7 @@ static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) {
}
} else {
uint8_t bestError = abs_diff(pixels[i], palette[0]);
for (int j = 1; j < kPaletteSize - 2; ++j) {
for (int j = 1; j < kLATCPaletteSize - 2; ++j) {
uint8_t error = abs_diff(pixels[i], palette[j]);
if (error < bestError) {
bestError = error;
@ -170,7 +207,7 @@ static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) {
SkEndian_SwapLE64(
static_cast<uint64_t>(minVal) |
(static_cast<uint64_t>(maxVal) << 8) |
(indices << 16));
(indices << 16));
}
@ -183,11 +220,11 @@ static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) {
// palette that has the extremal values built in. Otherwise, we use the full bounding
// box.
static uint64_t compress_block(const uint8_t pixels[]) {
static uint64_t compress_latc_block(const uint8_t pixels[]) {
// Collect unique pixels
int nUniquePixels = 0;
uint8_t uniquePixels[kPixelsPerBlock];
for (int i = 0; i < kPixelsPerBlock; ++i) {
uint8_t uniquePixels[kLATCPixelsPerBlock];
for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
bool foundPixel = false;
for (int j = 0; j < nUniquePixels; ++j) {
foundPixel = foundPixel || uniquePixels[j] == pixels[i];
@ -208,7 +245,7 @@ static uint64_t compress_block(const uint8_t pixels[]) {
// with one or zero depending on which pixel they belong to.
} else if (2 == nUniquePixels) {
uint64_t outBlock = 0;
for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
int idx = 0;
if (pixels[i] == uniquePixels[1]) {
idx = 1;
@ -237,42 +274,215 @@ static uint64_t compress_block(const uint8_t pixels[]) {
// never take this step. We don't lose too much perf here because
// most of the processing in this function is worth it for the
// 1 == nUniquePixels optimization.
return compress_block_bb(pixels);
return compress_latc_block_bb(pixels);
} else {
return compress_block_bb_ignore_extremal(pixels);
return compress_latc_block_bb_ignore_extremal(pixels);
}
}
static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes) {
// Make sure that our data is well-formed enough to be
// considered for LATC compression
if (0 == width || 0 == height ||
(width % kLATCBlockSize) != 0 || (height % kLATCBlockSize) != 0) {
return false;
return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block);
}
////////////////////////////////////////////////////////////////////////////////
//
// R11 EAC Compressor
//
////////////////////////////////////////////////////////////////////////////////
// Blocks compressed into R11 EAC are represented as follows:
// 0000000000000000000000000000000000000000000000000000000000000000
// |base_cw|mod|mul| ----------------- indices -------------------
//
// To reconstruct the value of a given pixel, we use the formula:
// clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8)
//
// mod_val is chosen from a palette of values based on the index of the
// given pixel. The palette is chosen by the value stored in mod.
// This formula returns a value between 0 and 2047, which is converted
// to a float from 0 to 1 in OpenGL.
//
// If mul is zero, then we set mul = 1/8, so that the formula becomes
// clamp[0, 2047](base_cw * 8 + 4 + mod_val)
static const int kNumR11EACPalettes = 16;
static const int kR11EACPaletteSize = 8;
static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = {
{-3, -6, -9, -15, 2, 5, 8, 14},
{-3, -7, -10, -13, 2, 6, 9, 12},
{-2, -5, -8, -13, 1, 4, 7, 12},
{-2, -4, -6, -13, 1, 3, 5, 12},
{-3, -6, -8, -12, 2, 5, 7, 11},
{-3, -7, -9, -11, 2, 6, 8, 10},
{-4, -7, -8, -11, 3, 6, 7, 10},
{-3, -5, -8, -11, 2, 4, 7, 10},
{-2, -6, -8, -10, 1, 5, 7, 9},
{-2, -5, -8, -10, 1, 4, 7, 9},
{-2, -4, -8, -10, 1, 3, 7, 9},
{-2, -5, -7, -10, 1, 4, 6, 9},
{-3, -4, -7, -10, 2, 3, 6, 9},
{-1, -2, -3, -10, 0, 1, 2, 9},
{-4, -6, -8, -9, 3, 5, 7, 8},
{-3, -5, -7, -9, 2, 4, 6, 8}
};
// Pack the base codeword, palette, and multiplier into the 64 bits necessary
// to decode it.
static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier,
uint64_t indices) {
SkASSERT(palette < 16);
SkASSERT(multiplier < 16);
SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
const uint64_t b = static_cast<uint64_t>(base_cw) << 56;
const uint64_t m = static_cast<uint64_t>(multiplier) << 52;
const uint64_t p = static_cast<uint64_t>(palette) << 48;
return SkEndian_SwapBE64(b | m | p | indices);
}
// Given a base codeword, a modifier, and a multiplier, compute the proper
// pixel value in the range [0, 2047].
static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) {
int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8);
return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret);
}
// Compress a block into R11 EAC format.
// The compression works as follows:
// 1. Find the center of the span of the block's values. Use this as the base codeword.
// 2. Choose a multiplier based roughly on the size of the span of block values
// 3. Iterate through each palette and choose the one with the most accurate
// modifiers.
static uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
// Find the center of the data...
uint16_t bmin = block[0];
uint16_t bmax = block[0];
for (int i = 1; i < 16; ++i) {
bmin = SkTMin<uint16_t>(bmin, block[i]);
bmax = SkTMax<uint16_t>(bmax, block[i]);
}
int blocksX = width / kLATCBlockSize;
int blocksY = height / kLATCBlockSize;
uint16_t center = (bmax + bmin) >> 1;
SkASSERT(center <= 255);
uint8_t block[16];
uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
for (int y = 0; y < blocksY; ++y) {
for (int x = 0; x < blocksX; ++x) {
// Load block
static const int kBS = kLATCBlockSize;
for (int k = 0; k < kBS; ++k) {
memcpy(block + k*kBS, src + k*rowBytes + (kBS * x), kBS);
// Based on the min and max, we can guesstimate a proper multiplier
// This is kind of a magic choice to start with.
uint16_t multiplier = (bmax - center) / 10;
// Now convert the block to 11 bits and transpose it to match
// the proper layout
uint16_t cblock[16];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
int srcIdx = i*4+j;
int dstIdx = j*4+i;
cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5);
}
}
// Finally, choose the proper palette and indices
uint32_t bestError = static_cast<uint32_t>(-1);
uint64_t bestIndices = 0;
uint16_t bestPalette = 0;
for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) {
const int *palette = kR11EACModifierPalettes[paletteIdx];
// Iterate through each pixel to find the best palette index
// and update the indices with the choice. Also store the error
// for this palette to be compared against the best error...
uint32_t error = 0;
uint64_t indices = 0;
for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) {
const uint16_t pixel = cblock[pixelIdx];
// Iterate through each palette value to find the best index
// for this particular pixel for this particular palette.
uint16_t bestPixelError =
abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier));
int bestIndex = 0;
for (int i = 1; i < kR11EACPaletteSize; ++i) {
const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier);
const uint16_t perror = abs_diff(pixel, p);
// Is this index better?
if (perror < bestPixelError) {
bestIndex = i;
bestPixelError = perror;
}
}
// Compress it
*encPtr = compress_block(block);
++encPtr;
SkASSERT(bestIndex < 8);
error += bestPixelError;
indices <<= 3;
indices |= bestIndex;
}
SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
// Is this palette better?
if (error < bestError) {
bestPalette = paletteIdx;
bestIndices = indices;
bestError = error;
}
src += kLATCBlockSize * rowBytes;
}
return true;
// Finally, pack everything together...
return pack_r11eac_block(center, bestPalette, multiplier, bestIndices);
}
static uint64_t compress_r11eac_block(const uint8_t block[16]) {
// Are all blocks a solid color?
bool solid = true;
for (int i = 1; i < 16; ++i) {
if (block[i] != block[0]) {
solid = false;
break;
}
}
// Fully transparent? We know the encoding...
if (solid && 0 == block[0]) {
// (0x0060 << 48) produces the following:
// basw_cw: 0
// mod: 6, palette: {-4, -7, -8, -11, 3, 6, 7, 10}
// mod_val: -3
//
// this gives the following formula:
// clamp[0, 2047](0*8+4+(-4)) = 0
return SkEndian_SwapBE64(static_cast<uint64_t>(0x0060) << 48);
// Fully opaque? We know this encoding too...
} else if (solid && 255 == block[0]) {
// -1 produces the following:
// basw_cw: 255
// mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8}
// mod_val: 8
//
// this gives the following formula:
// clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047
return static_cast<uint64_t>(-1);
}
#if 0
else if (solid) {
// !TODO! krajcevski:
// This will probably never happen, since we're using this format
// primarily for compressing alpha maps. Usually the only
// non-fullly opaque or fully transparent blocks are not a solid
// intermediate color. If we notice that they are, then we can
// add another optimization...
}
#endif
return compress_heterogeneous_r11eac_block(block);
}
static bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes) {
return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block);
}
////////////////////////////////////////////////////////////////////////////////
@ -281,6 +491,7 @@ namespace SkTextureCompressor {
static size_t get_compressed_data_size(Format fmt, int width, int height) {
switch (fmt) {
case kR11_EAC_Format:
case kLATC_Format:
{
// The LATC format is 64 bits per 4x4 block.
@ -308,6 +519,7 @@ bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol
memset(kProcMap, 0, sizeof(kProcMap));
kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc;
kProcMap[kR11_EAC_Format][kAlpha_8_SkColorType] = compress_a8_to_r11eac;
CompressBitmapProc proc = kProcMap[format][srcColorType];
if (NULL != proc) {

View File

@ -16,10 +16,11 @@ class SkData;
namespace SkTextureCompressor {
// Various texture compression formats that we support.
enum Format {
// Alpha only format.
// Alpha only formats.
kLATC_Format,
kR11_EAC_Format,
kLast_Format = kLATC_Format
kLast_Format = kR11_EAC_Format
};
static const int kFormatCnt = kLast_Format + 1;