- Sk4f would be my choice, but it's not allowed in include/
- SkColor4f and SkPM4f are specified to be unpremultiplied/premultiplied, whereas GrColor (and GrColor4f) are either, depending on context.
This adds 12 bytes to GrPaint. Not sure if we want to pay that price. The precision loss for a single value (vs. in a gradient, etc...) may not justify changing the storage type here. Easy enough to back that part out, while still keeping the 4f intermediate type for the helper math that it adds, and for storage and parameter passing in other locations.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2088303002
Review-Url: https://codereview.chromium.org/2088303002
sRGB support now also requires GL_EXT_texture_sRGB_decode, which allows
us to disable sRGB -> Linear conversion when reading textures. This gives
us an easy way to support "legacy" L32 mode. We disable decoding based on
the pixel config of the render target. Textures can override that behavior
(specifically for format-conversion draws where we want that behavior).
Added sBGRA pixel config, which is not-really-a-format. It's just sRGBA
internally, and the external format is BGR order, so TexImage calls will
swizzle correctly. This lets us interact with sRGB raster surfaces on BGR
platforms.
Devices without sRGB support behave like they always have: conversion from
color type and profile type ignores sRGB and always returns linear pixel
configs.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1789663002
Review URL: https://codereview.chromium.org/1789663002
Reason for revert:
We're getting sRGB non-8888 configs?
Original issue's description:
> sRGB support in Ganesh. Several pieces:
>
> sRGB support now also requires GL_EXT_texture_sRGB_decode, which allows
> us to disable sRGB -> Linear conversion when reading textures. This gives
> us an easy way to support "legacy" L32 mode. We disable decoding based on
> the pixel config of the render target. Textures can override that behavior
> (specifically for format-conversion draws where we want that behavior).
>
> Added sBGRA pixel config, which is not-really-a-format. It's just sRGBA
> internally, and the external format is BGR order, so TexImage calls will
> swizzle correctly. This lets us interact with sRGB raster surfaces on BGR
> platforms.
>
> Devices without sRGB support behave like they always have: conversion from
> color type and profile type ignores sRGB and always returns linear pixel
> configs.
>
> BUG=skia:
> GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1789663002
>
> Committed: https://skia.googlesource.com/skia/+/9e3f1bf4e5cd8fc59554f986f36d6b034e99f9ebTBR=reed@google.com,bsalomon@google.com,robertphillips@google.com
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:
Review URL: https://codereview.chromium.org/1814533003
sRGB support now also requires GL_EXT_texture_sRGB_decode, which allows
us to disable sRGB -> Linear conversion when reading textures. This gives
us an easy way to support "legacy" L32 mode. We disable decoding based on
the pixel config of the render target. Textures can override that behavior
(specifically for format-conversion draws where we want that behavior).
Added sBGRA pixel config, which is not-really-a-format. It's just sRGBA
internally, and the external format is BGR order, so TexImage calls will
swizzle correctly. This lets us interact with sRGB raster surfaces on BGR
platforms.
Devices without sRGB support behave like they always have: conversion from
color type and profile type ignores sRGB and always returns linear pixel
configs.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1789663002
Review URL: https://codereview.chromium.org/1789663002
One side effect is that the SkShader's (or implicit shader's) fragment processor is responsible for the transition from an unpremul paint color to a premul color.
Review URL: https://codereview.chromium.org/1348583002
The new FP is used to implement SkXM::Mode color filters and SkXM::Mode image filters. Also, these now support all advanced SkXM::Mode xfermodes.
Review URL: https://codereview.chromium.org/1334293003
Removes the runtime logic used by PorterDuffXferProcessor to decide
blend coeffs and shader outputs, and instead uses a compile-time
constant table of pre-selected blend formulas. Separates out the dst
read fallback into its own XP.
Introduces a new blend strategy for srcCoeff=0 that can apply coverage
with a reverse subtract blend equation instead of dual source
blending.
Adds new macros in GrBlend.h to analyze blend formulas both runtime.
Removes kSetCoverageDrawing_OptFlag and GrSimplifyBlend as they are no
longer used.
Adds a GM that verifies all xfermodes, including arithmetic, with the
color/coverage invariants used by Porter Duff.
Adds a unit test that verifies each Porter Duff formula with every
color/coverage invariant.
Major changes:
* Uses a reverse subtract blend equation for coverage when srcCoeff=0
(clear, dst-out [Sa=1], dst-in, modulate). Platforms that don't
support dual source blending no longer require a dst copy for
dst-in and modulate.
* Sets BlendInfo::fWriteColor to false when the blend does not modify
the dst. GrGLGpu will now use glColorMask instead of blending for
these modes (dst, dst-in [Sa=1], modulate ignored for [Sc=1]).
* Converts all SA blend coeffs to One for opaque inputs, and ISA to
Zero if there is also no coverage. (We keep ISA around when there
is coverage because we use it to tweak alpha for coverage.)
* Abandons solid white optimizations for the sake of simplicity
(screen was the only mode that previous had solid white opts).
Minor differences:
* Inconsequential differences in opt flags (e.g. we now return
kCanTweakAlphaForCoverage_OptFlag even when there is no coverage).
* Src coeffs when the shader outputs 0.
* IS2C vs IS2A when the secondary output is scalar.
BUG=skia:
Committed: https://skia.googlesource.com/skia/+/9a70920db22b6309c671f8e5d519bb95570e4414
Review URL: https://codereview.chromium.org/1124373002
Reason for revert:
Blocking DEPS roll into Chromium. Crashing virtual/gpu/fast/canvas/canvas-composite-*.html tests with the assert
../../third_party/skia/src/gpu/gl/builders/GrGLFragmentShaderBuilder.cpp:281: failed assertion "k110_GrGLSLGeneration != gpu->glslGeneration() || fOutputs.empty()"
Original issue's description:
> Implement Porter Duff XP with a blend table
>
> Removes the runtime logic used by PorterDuffXferProcessor to decide
> blend coeffs and shader outputs, and instead uses a compile-time
> constant table of pre-selected blend formulas.
>
> Introduces a new blend strategy for srcCoeff=0 that can apply coverage
> with a reverse subtract blend equation instead of dual source
> blending.
>
> Adds new macros in GrBlend.h to analyze blend formulas both runtime.
>
> Removes kSetCoverageDrawing_OptFlag and GrSimplifyBlend as they are no
> longer used.
>
> Adds a GM that verifies all xfermodes, including arithmetic, with the
> color/coverage invariants used by Porter Duff.
>
> Adds a unit test that verifies each Porter Duff formula with every
> color/coverage invariant.
>
> Major changes:
>
> * Uses a reverse subtract blend equation for coverage when srcCoeff=0
> (clear, dst-out [Sa=1], dst-in, modulate). Platforms that don't
> support dual source blending no longer require a dst copy for
> dst-in and modulate.
>
> * Sets BlendInfo::fWriteColor to false when the blend does not modify
> the dst. GrGLGpu will now use glColorMask instead of blending for
> these modes (dst, dst-in [Sa=1], modulate ignored for [Sc=1]).
>
> * Converts all SA blend coeffs to One for opaque inputs, and ISA to
> Zero if there is also no coverage. (We keep ISA around when there
> is coverage because we use it to tweak alpha for coverage.)
>
> * Abandons solid white optimizations for the sake of simplicity
> (screen was the only mode that previous had solid white opts).
>
> Minor differences:
>
> * Inconsequential differences in opt flags (e.g. we now return
> kCanTweakAlphaForCoverage_OptFlag even when there is no coverage).
>
> * Src coeffs when the shader outputs 0.
>
> * IS2C vs IS2A when the secondary output is scalar.
>
> BUG=skia:
>
> Committed: https://skia.googlesource.com/skia/+/9a70920db22b6309c671f8e5d519bb95570e4414TBR=egdaniel@google.com,bsalomon@google.com,cdalton@nvidia.com
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:
Review URL: https://codereview.chromium.org/1153993002
Removes the runtime logic used by PorterDuffXferProcessor to decide
blend coeffs and shader outputs, and instead uses a compile-time
constant table of pre-selected blend formulas.
Introduces a new blend strategy for srcCoeff=0 that can apply coverage
with a reverse subtract blend equation instead of dual source
blending.
Adds new macros in GrBlend.h to analyze blend formulas both runtime.
Removes kSetCoverageDrawing_OptFlag and GrSimplifyBlend as they are no
longer used.
Adds a GM that verifies all xfermodes, including arithmetic, with the
color/coverage invariants used by Porter Duff.
Adds a unit test that verifies each Porter Duff formula with every
color/coverage invariant.
Major changes:
* Uses a reverse subtract blend equation for coverage when srcCoeff=0
(clear, dst-out [Sa=1], dst-in, modulate). Platforms that don't
support dual source blending no longer require a dst copy for
dst-in and modulate.
* Sets BlendInfo::fWriteColor to false when the blend does not modify
the dst. GrGLGpu will now use glColorMask instead of blending for
these modes (dst, dst-in [Sa=1], modulate ignored for [Sc=1]).
* Converts all SA blend coeffs to One for opaque inputs, and ISA to
Zero if there is also no coverage. (We keep ISA around when there
is coverage because we use it to tweak alpha for coverage.)
* Abandons solid white optimizations for the sake of simplicity
(screen was the only mode that previous had solid white opts).
Minor differences:
* Inconsequential differences in opt flags (e.g. we now return
kCanTweakAlphaForCoverage_OptFlag even when there is no coverage).
* Src coeffs when the shader outputs 0.
* IS2C vs IS2A when the secondary output is scalar.
BUG=skia:
Review URL: https://codereview.chromium.org/1124373002
In addition, NVPR makes this very complicated, and I haven't quite figured out a good way to handle it, so for now color and coverage DO live on optstate, but I will figure out some way to refactor that in future CLs.
BUG=skia:
Review URL: https://codereview.chromium.org/783763002
This allows us to create distance field textures with better precision,
which may help text quality.
BUG=skia:3103
Review URL: https://codereview.chromium.org/762923003
This CL cleans up the existing violations and enables the
build time check to ensure that we don't regress.
The motiviation behind this change is to allow clients who include
our headers to be able to build with this warning enabled.
Review URL: https://codereview.chromium.org/726923002