Reason for revert:
Erg - dumb bug
Original issue's description:
> Create blurred RRect mask on GPU (rather than uploading it)
>
> This CL doesn't try to resolve any of the larger issues. It just moves the computation of the blurred RRect to the gpu and sets up to start using vertex attributes for a nine patch draw (i.e., returning the texture coordinates)
>
> All blurred rrects using the "analytic" path will change slightly with this CL.
>
> GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2222083004
>
> Committed: https://skia.googlesource.com/skia/+/75ccdc77a70ec2083141bf9ba98eb2f01ece2479TBR=bsalomon@google.com
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
Review-Url: https://codereview.chromium.org/2236493002
This CL doesn't try to resolve any of the larger issues. It just moves the computation of the blurred RRect to the gpu and sets up to start using vertex attributes for a nine patch draw (i.e., returning the texture coordinates)
All blurred rrects using the "analytic" path will change slightly with this CL.
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2222083004
Review-Url: https://codereview.chromium.org/2222083004
SkPDFFont:
- SkPDFType1Font::populate() encode advances correctly.
- break out logically independent code into new files:
* SkPDFConvertType1FontStream
* SkPDFMakeToUnicodeCmap
SkPDFFont.cpp is now 380 lines smaller.
Expose `SkPDFAppendCmapSections()` for testing.
SkPDFFontImpl.h
- Fold into SkPDFFont.
SkPDFConvertType1FontStream:
- Now assume given a SkStreamAsset
SkPDFFont:
- AdvanceMetric now hidden in a anonymous namespace.
No public API changes.
TBR=reed@google.com
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2221163002
Review-Url: https://codereview.chromium.org/2221163002
About 9x faster than Murmur3 for long inputs.
Most of this is a mechanical change from SkChecksum::Murmur3(...) to SkOpts::hash(...).
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2208903002
CQ_INCLUDE_TRYBOTS=master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;master.client.skia.compile:Build-Ubuntu-GCC-x86_64-Release-CMake-Trybot,Build-Mac-Clang-x86_64-Release-CMake-Trybot
Review-Url: https://codereview.chromium.org/2208903002
SkLiteRecorder, a new SkCanvas, fills out SkLiteDL, a new SkDrawable.
This SkDrawable is a display list similar to SkRecord and SkBigPicture / SkRecordedDrawable, but with a few new design points inspired by Android and slimming paint:
1) SkLiteDL is structured as one big contiguous array rather than the two layer structure of SkRecord. This trades away flexibility and large-op-count performance for better data locality for small to medium size pictures.
2) We keep a global freelist of SkLiteDLs, both reusing the SkLiteDL struct itself and its contiguous byte array. This keeps the expected number of mallocs per display list allocation <1 (really, ~0) for cyclical use cases.
These two together mean recording is faster. Measuring against the code we use at head, SkLiteRecorder trends about ~3x faster across various size pictures, matching speed at 0 draws and beating the special-case 1-draw pictures we have today. (I.e. we won't need those special case implementations anymore, because they're slower than this new generic code.) This new strategy records 10 drawRects() in about the same time the old strategy took for 2.
This strategy stays the winner until at least 500 drawRect()s on my laptop, where I stopped checking.
A simpler alternative to freelisting is also possible (but not implemented here), where we allow the client to manually reset() an SkLiteDL for reuse when its refcnt is 1. That's essentially what we're doing with the freelist, except tracking what's available for reuse globally instead of making the client do it.
This code is not fully capable yet, but most of the key design points are there. The internal structure of SkLiteDL is the area I expect to be most volatile (anything involving Op), but its interface and the whole of SkLiteRecorder ought to be just about done.
You can run nanobench --match picture_overhead as a demo. Everything it exercises is fully fleshed out, so what it tests is an apples-to-apples comparison as far as recording costs go. I have not yet compared playback performance.
It should be simple to wrap this into an SkPicture subclass if we want.
I won't start proposing we replace anything old with anything new quite yet until I have more ducks in a row, but this does look pretty promising (similar to the SkRecord over old SkPicture change a couple years ago) and I'd like to land, experiment, iterate, especially with an eye toward Android.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2213333002
Review-Url: https://codereview.chromium.org/2213333002
Change SkDataTable::NewXXX to SkDataTable::MakeXXX and return sk_sp.
This updates users of SkDataTable to sk_sp as well.
There do not appear to be any external users of these methods.
Review-Url: https://codereview.chromium.org/2211143002
With the move from SkData::NewXXX to SkData::MakeXXX most
SkAutoTUnref<SkData> were changed to sk_sp<SkData>. However,
there are still a few SkAutoTUnref<SkData> around, so clean
them up.
Review-Url: https://codereview.chromium.org/2212493002
Motivation: reduce code complexity.
SkCanon stores SkPDFShader::State next to SkDFObject, not inside.
many places use sk_sp<T> rather than T* to represent ownership.
SkPDFShader::State no longer holds bitmap.
SkPDFShader::State gets move constructor, no longer heap-allocated.
Classes removed:
SkPDFFunctionShader
SkPDFAlphaFunctionShader
SkPDFImageShader
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2193973002
Review-Url: https://codereview.chromium.org/2193973002
Lessons learned
1. ImageShader (correctly) always compresses (typically via PNG) during serialization. This has the surprise results of
- if the image was marked opaque, but has some non-opaque pixels (i.e. bug in blitter or caller), then compressing may "fix" those pixels, making the deserialized version draw differently. bug filed.
- 565 compressess/decompresses to 8888 (at least on Mac), which draws differently (esp. under some filters). bug filed.
2. BitmapShader did not enforce a copy for mutable bitmaps, but ImageShader does (since it creates an Image). Thus the former would see subsequent changes to the pixels after shader creation, while the latter does not, hence the change to the BlitRow test to avoid this modify-after-create pattern. I sure hope this prev. behavior was a bug/undefined-behavior, since this CL changes that.
BUG=skia:5595
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2195893002
Review-Url: https://codereview.chromium.org/2195893002
Most visibly this adds a macro SK_RASTER_STAGE that cuts down on the boilerplate of defining a raster pipeline stage function.
Most interestingly, SK_RASTER_STAGE doesn't define a SkRasterPipeline::Fn, but rather a new type EasyFn. This function is always static and inlined, and the details of interacting with the SkRasterPipeline::Stage are taken care of for you: ctx is just passed as a void*, and st->next() is always called. All EasyFns have to do is take care of the meat of the work: update r,g,b, etc. and read and write from their context.
The really neat new feature here is that you can either add EasyFns to a pipeline with the new append() functions, _or_ call them directly yourself. This lets you use the same set of pieces to build either a pipelined version of the function or a custom, fused version. The bench shows this off.
On my desktop, the pipeline version of the bench takes about 25% more time to run than the fused one.
The old approach to creating stages still works fine. I haven't updated SkXfermode.cpp or SkArithmeticMode.cpp because they seemed just as clear using Fn directly as they would have using EasyFn.
If this looks okay to you I will rework the comments in SkRasterPipeline to explain SK_RASTER_STAGE and EasyFn a bit as I've done here in the CL description.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2195853002
Review-Url: https://codereview.chromium.org/2195853002
Motivation:
SkPDFStream and SkPDFSharedStream now work the same.
Also:
- move SkPDFStream into SkPDFTypes (it's a fundamental PDF type).
- minor refactor of SkPDFSharedStream
- SkPDFSharedStream takes unique_ptr to represent ownership
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2190883003
Review-Url: https://codereview.chromium.org/2190883003