Most changes stem from working on an examples bracketed
by #if DEBUG_UNDER_DEVELOPMENT // tiger
These exposed many problems with coincident curves,
as well as errors throughout the code.
Fixing these errors also fixed a number of fuzzer-inspired
bug reports.
* Line/Curve Intersections
Check to see if the end of the line nearly intersects
the curve. This was a FIXME in the old code.
* Performance
Use a central chunk allocator.
Plumb the allocator into the global variable state
so that it can be shared. (Note that 'SkGlobalState'
is allocated on the stack and is visible to children
functions but not other threads.)
* Refactor
Let SkOpAngle grow up from a structure to a class.
Let SkCoincidentSpans grow up from a structure to a class.
Rename enum Alias to AliasMatch.
* Coincidence Rewrite
Add more debugging to coincidence detection.
Parallel debugging routines have read-only logic to report
the current coincidence state so that steps through the
logic can expose whether things got better or worse.
More functions can error-out and cause the pathops
engine to non-destructively exit.
* Accuracy
Remove code that adjusted point locations. Instead,
offset the curve part so that sorted curves all use
the same origin.
Reduce the size (and influence) of magic numbers.
* Testing
The debug suite with verify and the full release suite
./out/Debug/pathops_unittest -v -V
./out/Release/pathops_unittest -v -V -x
expose one error. That error is captured as cubics_d3.
This error exists in the checked in code as well.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003
Review-Url: https://codereview.chromium.org/2128633003
Reason for revert:
Causing roll to fail on telemetry_perf_unittests (bencharks.system_health_smoke_test.SystemHealthBenchmarkSmokeTest.system_health.memory_desktop.load:search:taobao (and baidu)) and browser_tests (FindInPageControllerTest.FindInPageSpecialURLS).
This is due to triggering the assert in copyFTBitmap
SkASSERT(dstMask.fBounds.width() == static_cast<int>(srcFTBitmap.width));
when called from inside the block guarded by
if (bitmapTransform.isIdentity())
Original issue's description:
> Rotate bitmap strikes with FreeType.
>
> BUG=skia:3490
> GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2139703002
>
> Committed: https://skia.googlesource.com/skia/+/31e0c1379e6d0ce48196183e295b929af51fa74eTBR=mtklein@google.com,reed@google.com
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:3490
Review-Url: https://codereview.chromium.org/2149253005
SkPDFUtils now has a special function (SkPDFUtils::AppendColorComponent)
just for writing out (color/255) as a decimal with three digits of
precision.
SkPDFUnion now has a type to represent a color component. It holds a
utint_8, but calls into AppendColorComponent to serialize.
Added a unit test that tests all possible input values.
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2151863003
Review-Url: https://codereview.chromium.org/2151863003
I measured relative runtimes on my laptop:
pack_int_uint16_t_ss…
1036 …e41 1x …se3 1.01x …e2_b 3.01x …e2_a 3.02x
I've run into Clang problems with the actual _mm_packus_epi32 instruction, I think,
so I'm going to exercise a little cowardice and leave that option disabled for now.
The ssse3 version probably looks a little faster than it will be in practice.
We'll usually need to load its mask, which here is hoisted out of the bench loop.
The two sse2 variants are close enough in speed that I'm tie breaking them on other
concerns: the <<16, >>16 version doesn't need any scratch registers or to load any
constants, so it wins.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2150343002
CQ_INCLUDE_TRYBOTS=master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot,Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-Fast-Trybot
Review-Url: https://codereview.chromium.org/2150343002
It's become clear we need to sometimes deal with values <0 or >1.
I'm not yet convinced we care about NaN or +-inf.
We had some fairly clever tricks and optimizations here for NEON
and SSE. I've thrown them out in favor of a single implementation.
If we find the specializations mattered, we can certainly figure out
how to extend them to this new range/domain.
This happens to add a vectorized float -> half for ARMv7, which was
missing from the _01 version. (The SSE strategy was not portable to
platforms that flush denorm floats to zero.)
I've tested the full float range for FloatToHalf on my desktop and a 5x.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2145663003
CQ_INCLUDE_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot,Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-Fast-Trybot
Committed: https://skia.googlesource.com/skia/+/3296bee70d074bb8094b3229dbe12fa016657e90
Review-Url: https://codereview.chromium.org/2145663003
Reason for revert:
Unit tests fail on Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-Fast
Original issue's description:
> Expand _01 half<->float limitation to _finite. Simplify.
>
> It's become clear we need to sometimes deal with values <0 or >1.
> I'm not yet convinced we care about NaN or +-inf.
>
> We had some fairly clever tricks and optimizations here for NEON
> and SSE. I've thrown them out in favor of a single implementation.
> If we find the specializations mattered, we can certainly figure out
> how to extend them to this new range/domain.
>
> This happens to add a vectorized float -> half for ARMv7, which was
> missing from the _01 version. (The SSE strategy was not portable to
> platforms that flush denorm floats to zero.)
>
> I've tested the full float range for FloatToHalf on my desktop and a 5x.
>
> BUG=skia:
> GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2145663003
> CQ_INCLUDE_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot,Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-Fast-Trybot
>
> Committed: https://skia.googlesource.com/skia/+/3296bee70d074bb8094b3229dbe12fa016657e90TBR=msarett@google.com,mtklein@chromium.org
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:
Review-Url: https://codereview.chromium.org/2151023003
It's become clear we need to sometimes deal with values <0 or >1.
I'm not yet convinced we care about NaN or +-inf.
We had some fairly clever tricks and optimizations here for NEON
and SSE. I've thrown them out in favor of a single implementation.
If we find the specializations mattered, we can certainly figure out
how to extend them to this new range/domain.
This happens to add a vectorized float -> half for ARMv7, which was
missing from the _01 version. (The SSE strategy was not portable to
platforms that flush denorm floats to zero.)
I've tested the full float range for FloatToHalf on my desktop and a 5x.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2145663003
CQ_INCLUDE_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;master.client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot
Review-Url: https://codereview.chromium.org/2145663003
Looks like this code is using sk_calloc(), NULL on failure, accidentally
instead of sk_calloc_throw(). We're using sk_malloc_throw() in the parallel
code path, so it really seems like we're not checking the result pointer.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2152753002
Review-Url: https://codereview.chromium.org/2152753002