skia2/tools/VisualBench/VisualInteractiveModule.cpp
jvanverth f5d1b2de03 Add viewer mode to VisualBench.
Displays each benchmark/skp with a graph showing a series of frame times.
Use the space bar to skip to the next benchmark.

Adds an option to hit ESC to quit VisualBench. Useful in fullscreen mode.

Review URL: https://codereview.chromium.org/1336043003
2015-09-15 07:40:56 -07:00

231 lines
6.5 KiB
C++
Executable File

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
*/
#include "VisualInteractiveModule.h"
#include "ProcStats.h"
#include "SkApplication.h"
#include "SkCanvas.h"
#include "SkCommandLineFlags.h"
#include "SkForceLinking.h"
#include "SkGraphics.h"
#include "SkGr.h"
#include "SkImageDecoder.h"
#include "SkOSFile.h"
#include "SkStream.h"
#include "Stats.h"
#include "gl/GrGLInterface.h"
__SK_FORCE_IMAGE_DECODER_LINKING;
static const int kGpuFrameLag = 5;
static const int kFrames = 5;
static const double kLoopMs = 5;
VisualInteractiveModule::VisualInteractiveModule(VisualBench* owner)
: fCurrentMeasurement(0)
, fCurrentFrame(0)
, fLoops(1)
, fState(kPreWarmLoops_State)
, fBenchmark(nullptr)
, fOwner(SkRef(owner)) {
fBenchmarkStream.reset(new VisualBenchmarkStream);
memset(fMeasurements, 0, sizeof(fMeasurements));
}
inline void VisualInteractiveModule::renderFrame(SkCanvas* canvas) {
fBenchmark->draw(fLoops, canvas);
this->drawStats(canvas);
canvas->flush();
fOwner->present();
}
void VisualInteractiveModule::drawStats(SkCanvas* canvas) {
static const float kPixelPerMS = 2.0f;
static const int kDisplayWidth = 130;
static const int kDisplayHeight = 100;
static const int kDisplayPadding = 10;
static const int kGraphPadding = 3;
static const float kBaseMS = 1000.f / 60.f; // ms/frame to hit 60 fps
SkISize canvasSize = canvas->getDeviceSize();
SkRect rect = SkRect::MakeXYWH(SkIntToScalar(canvasSize.fWidth-kDisplayWidth-kDisplayPadding),
SkIntToScalar(kDisplayPadding),
SkIntToScalar(kDisplayWidth), SkIntToScalar(kDisplayHeight));
SkPaint paint;
canvas->clipRect(rect);
paint.setColor(SK_ColorBLACK);
canvas->drawRect(rect, paint);
// draw the 16ms line
paint.setColor(SK_ColorLTGRAY);
canvas->drawLine(rect.fLeft, rect.fBottom - kBaseMS*kPixelPerMS,
rect.fRight, rect.fBottom - kBaseMS*kPixelPerMS, paint);
paint.setColor(SK_ColorRED);
paint.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(rect, paint);
int x = SkScalarTruncToInt(rect.fLeft) + kGraphPadding;
const int xStep = 2;
const int startY = SkScalarTruncToInt(rect.fBottom);
int i = fCurrentMeasurement;
do {
int endY = startY - (int)(fMeasurements[i] * kPixelPerMS + 0.5); // round to nearest value
canvas->drawLine(SkIntToScalar(x), SkIntToScalar(startY),
SkIntToScalar(x), SkIntToScalar(endY), paint);
i++;
i &= (kMeasurementCount - 1); // fast mod
x += xStep;
} while (i != fCurrentMeasurement);
}
bool VisualInteractiveModule::advanceRecordIfNecessary(SkCanvas* canvas) {
if (fBenchmark) {
return true;
}
fBenchmark.reset(fBenchmarkStream->next());
if (!fBenchmark) {
return false;
}
// clear both buffers
fOwner->clear(canvas, SK_ColorWHITE, 2);
fBenchmark->preDraw();
return true;
}
void VisualInteractiveModule::draw(SkCanvas* canvas) {
if (!this->advanceRecordIfNecessary(canvas)) {
SkDebugf("Exiting VisualBench successfully\n");
fOwner->closeWindow();
return;
}
this->renderFrame(canvas);
switch (fState) {
case kPreWarmLoopsPerCanvasPreDraw_State: {
this->perCanvasPreDraw(canvas, kPreWarmLoops_State);
break;
}
case kPreWarmLoops_State: {
this->preWarm(kTuneLoops_State);
break;
}
case kTuneLoops_State: {
this->tuneLoops(canvas);
break;
}
case kPreTiming_State: {
fBenchmark->perCanvasPreDraw(canvas);
fCurrentFrame = 0;
fTimer.start();
fState = kTiming_State;
// fall to next state
}
case kTiming_State: {
this->timing(canvas);
break;
}
case kAdvance_State: {
this->postDraw(canvas);
this->nextState(kPreWarmLoopsPerCanvasPreDraw_State);
break;
}
}
}
inline void VisualInteractiveModule::nextState(State nextState) {
fState = nextState;
}
void VisualInteractiveModule::perCanvasPreDraw(SkCanvas* canvas, State nextState) {
fBenchmark->perCanvasPreDraw(canvas);
fCurrentFrame = 0;
this->nextState(nextState);
}
void VisualInteractiveModule::preWarm(State nextState) {
if (fCurrentFrame >= kGpuFrameLag) {
// we currently time across all frames to make sure we capture all GPU work
this->nextState(nextState);
fCurrentFrame = 0;
fTimer.start();
} else {
fCurrentFrame++;
}
}
inline double VisualInteractiveModule::elapsed() {
fTimer.end();
return fTimer.fWall;
}
void VisualInteractiveModule::resetTimingState() {
fCurrentFrame = 0;
fTimer = WallTimer();
fOwner->reset();
}
void VisualInteractiveModule::scaleLoops(double elapsedMs) {
// Scale back the number of loops
fLoops = (int)ceil(fLoops * kLoopMs / elapsedMs);
}
inline void VisualInteractiveModule::tuneLoops(SkCanvas* canvas) {
if (1 << 30 == fLoops) {
// We're about to wrap. Something's wrong with the bench.
SkDebugf("InnerLoops wrapped\n");
fLoops = 0;
} else {
double elapsedMs = this->elapsed();
if (elapsedMs > kLoopMs) {
this->scaleLoops(elapsedMs);
fBenchmark->perCanvasPostDraw(canvas);
this->nextState(kPreTiming_State);
} else {
fLoops *= 2;
this->nextState(kPreWarmLoops_State);
}
this->resetTimingState();
}
}
void VisualInteractiveModule::recordMeasurement() {
double measurement = this->elapsed() / (kFrames * fLoops);
fMeasurements[fCurrentMeasurement++] = measurement;
fCurrentMeasurement &= (kMeasurementCount-1); // fast mod
SkASSERT(fCurrentMeasurement < kMeasurementCount);
}
void VisualInteractiveModule::postDraw(SkCanvas* canvas) {
fBenchmark->perCanvasPostDraw(canvas);
fBenchmark.reset(nullptr);
fLoops = 1;
}
inline void VisualInteractiveModule::timing(SkCanvas* canvas) {
if (fCurrentFrame >= kFrames) {
this->recordMeasurement();
fTimer.start();
fCurrentFrame = 0;
} else {
fCurrentFrame++;
}
}
bool VisualInteractiveModule::onHandleChar(SkUnichar c) {
if (' ' == c) {
this->nextState(kAdvance_State);
}
return true;
}