f1aa6fc424
Change-Id: Ie096c9f0629102c5c6b2ca9ddfb8e5e2c31218f7 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/333145 Reviewed-by: Greg Daniel <egdaniel@google.com> Commit-Queue: Chris Dalton <csmartdalton@google.com>
92 lines
4.1 KiB
C++
92 lines
4.1 KiB
C++
/*
|
|
* Copyright 2020 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/utils/SkRandom.h"
|
|
#include "src/core/SkGeometry.h"
|
|
#include "src/gpu/geometry/GrPathUtils.h"
|
|
#include "tests/Test.h"
|
|
|
|
static bool is_linear(SkPoint p0, SkPoint p1, SkPoint p2) {
|
|
return SkScalarNearlyZero((p0 - p1).cross(p2 - p1));
|
|
}
|
|
|
|
static bool is_linear(const SkPoint p[4]) {
|
|
return is_linear(p[0],p[1],p[2]) && is_linear(p[0],p[2],p[3]) && is_linear(p[1],p[2],p[3]);
|
|
}
|
|
|
|
DEF_TEST(GrPathUtils_findCubicConvex180Chops, r) {
|
|
// Test all combinations of corners from the square [0,0,1,1]. This gives us all kinds of
|
|
// special cases for cusps, lines, loops, and inflections.
|
|
for (int i = 0; i < (1 << 8); ++i) {
|
|
SkPoint p[4] = {SkPoint::Make((i>>0)&1, (i>>1)&1),
|
|
SkPoint::Make((i>>2)&1, (i>>3)&1),
|
|
SkPoint::Make((i>>4)&1, (i>>5)&1),
|
|
SkPoint::Make((i>>6)&1, (i>>7)&1)};
|
|
float inflectT[2], convex180T[2];
|
|
if (int inflectN = SkFindCubicInflections(p, inflectT)) {
|
|
// The curve has inflections. findCubicConvex180Chops should return the inflection
|
|
// points.
|
|
int convex180N = GrPathUtils::findCubicConvex180Chops(p, convex180T);
|
|
REPORTER_ASSERT(r, inflectN == convex180N);
|
|
for (int i = 0; i < convex180N; ++i) {
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(inflectT[i], convex180T[i]));
|
|
}
|
|
} else {
|
|
float totalRotation = SkMeasureNonInflectCubicRotation(p);
|
|
int convex180N = GrPathUtils::findCubicConvex180Chops(p, convex180T);
|
|
SkPoint chops[10];
|
|
SkChopCubicAt(p, chops, convex180T, convex180N);
|
|
float radsSum = 0;
|
|
for (int i = 0; i <= convex180N; ++i) {
|
|
float rads = SkMeasureNonInflectCubicRotation(chops + i*3);
|
|
SkASSERT(rads < SK_ScalarPI + SK_ScalarNearlyZero);
|
|
radsSum += rads;
|
|
}
|
|
if (totalRotation < SK_ScalarPI - SK_ScalarNearlyZero) {
|
|
// The curve should never chop if rotation is <180 degrees.
|
|
REPORTER_ASSERT(r, convex180N == 0);
|
|
} else if (!is_linear(p)) {
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(radsSum, totalRotation));
|
|
if (totalRotation > SK_ScalarPI + SK_ScalarNearlyZero) {
|
|
REPORTER_ASSERT(r, convex180N == 1);
|
|
// This works because cusps take the "inflection" path above, so we don't get
|
|
// non-lilnear curves that lose rotation when chopped.
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(
|
|
SkMeasureNonInflectCubicRotation(chops), SK_ScalarPI));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(
|
|
SkMeasureNonInflectCubicRotation(chops + 3), totalRotation - SK_ScalarPI));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now test an exact quadratic.
|
|
SkPoint quad[4] = {{0,0}, {2,2}, {4,2}, {6,0}};
|
|
float T[2];
|
|
REPORTER_ASSERT(r, GrPathUtils::findCubicConvex180Chops(quad, T) == 0);
|
|
}
|
|
|
|
DEF_TEST(GrPathUtils_convertToCubic, r) {
|
|
SkPoint cubic[4];
|
|
GrPathUtils::convertLineToCubic({0,0}, {3,6}, cubic);
|
|
REPORTER_ASSERT(r, cubic[0] == SkPoint::Make(0,0));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fX, 1));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fY, 2));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fX, 2));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fY, 4));
|
|
REPORTER_ASSERT(r, cubic[3] == SkPoint::Make(3,6));
|
|
|
|
SkPoint quad[3] = {{0,0}, {3,3}, {6,0}};
|
|
GrPathUtils::convertQuadToCubic(quad, cubic);
|
|
REPORTER_ASSERT(r, cubic[0] == SkPoint::Make(0,0));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fX, 2));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fY, 2));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fX, 4));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fY, 2));
|
|
REPORTER_ASSERT(r, cubic[3] == SkPoint::Make(6,0));
|
|
}
|